首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The slow-channel congenital myasthenic syndrome (SCCMS) is a disorder of the neuromuscular junction caused by gain-of-function mutations to the muscle nicotinic acetylcholine (ACh) receptor (AChR). Although it is clear that the slower deactivation time course of the ACh-elicited currents plays a central role in the etiology of this disease, it has been suggested that other abnormal properties of these mutant receptors may also be critical in this respect. We characterized the kinetics of a panel of five SCCMS AChRs (αS269I, βV266M, εL221F, εT264P, and εL269F) at the ensemble level in rapidly perfused outside-out patches. We found that, for all of these mutants, the peak-current amplitude decreases along trains of nearly saturating ACh pulses delivered at physiologically relevant frequencies in a manner that is consistent with enhanced entry into desensitization during the prolonged deactivation phase. This suggests that the increasingly reduced availability of activatable AChRs upon repetitive stimulation may well contribute to the fatigability and weakness of skeletal muscle that characterize this disease. Also, these results emphasize the importance of explicitly accounting for entry into desensitization as one of the pathways for burst termination, if meaningful mechanistic insight is to be inferred from the study of the effect of these naturally occurring mutations on channel function. Applying a novel single-channel–based approach to estimate the contribution of Ca2+ to the total cation currents, we also found that none of these mutants affects the Ca2+-conduction properties of the AChR to an extent that seems to be of physiological importance. Our estimate of the Ca2+-carried component of the total (inward) conductance of wild-type and SCCMS AChRs in the presence of 150 mM Na+, 1.8 mM Ca2+, and 1.7 mM Mg2+ on the extracellular side of cell-attached patches turned out be in the 5.0–9.4 pS range, representing a fractional Ca2+ current of ∼14%, on average. Remarkably, these values are nearly identical to those we estimated for the NR1-NR2A N-methyl-d-aspartate receptor (NMDAR), which has generally been considered to be the main neurotransmitter-gated pathway of Ca2+ entry into the cell. Our estimate of the rat NMDAR Ca2+ conductance (using the same single-channel approach as for the AChR but in the nominal absence of extracellular Mg2+) was 7.9 pS, corresponding to a fractional Ca2+ current of 13%.  相似文献   

2.
Madhavan R  Peng HB 《IUBMB life》2005,57(11):719-730
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.  相似文献   

3.
Levamisole is an anthelmintic agent that exerts its therapeutic effect by acting as a full agonist of the nicotinic receptor (AChR) of nematode muscle. Its action at the mammalian muscle AChR has not been elucidated to date despite its wide use as an anthelmintic in humans and cattle. By single channel and macroscopic current recordings, we investigated the interaction of levamisole with the mammalian muscle AChR. Levamisole activates mammalian AChRs. However, single channel openings are briefer than those activated by acetylcholine (ACh) and do not appear in clusters at high concentrations. The peak current induced by levamisole is about 3% that activated by ACh. Thus, the anthelmintic acts as a weak agonist of the mammalian AChR. Levamisole also produces open channel blockade of the AChR. The apparent affinity for block (190 microm at -70 mV) is similar to that of the nematode AChR, suggesting that differences in channel activation kinetics govern the different sensitivity of nematode and mammalian muscle to anthelmintics. To identify the structural basis of this different sensitivity, we performed mutagenesis targeting residues in the alpha subunit that differ between vertebrates and nematodes. The replacement of the conserved alphaGly-153 with the homologous glutamic acid of nematode AChR significantly increases the efficacy of levamisole to activate channels. Channel activity takes place in clusters having two different kinetic modes. The kinetics of the high open probability mode are almost identical when the agonist is ACh or levamisole. It is concluded that alphaGly-153 is involved in the low efficacy of levamisole to activate mammalian muscle AChRs.  相似文献   

4.
S A Forman  K W Miller 《Biochemistry》1989,28(4):1678-1685
The relationship between the high-affinity procaine channel inhibition site (apparent dissociation constant Kp congruent to 200 microM) and the agonist self-inhibition site on acetylcholine receptors (AChRs) from Torpedo electroplaque was investigated by using rapid 86Rb+ quenched-flux assays at 4 degrees C in native AChR-rich vesicles on which 50-60% of ACh activation sites were blocked with alpha-bungarotoxin (alpha-BTX). In the presence of channel-activating acetylcholine (ACh) concentrations (10 microM-10 mM) alone, AChR undergoes one phase of inactivation (fast desensitization, rate = kd) in under a second. Addition of procaine produces two-phase inactivation similar to that seen with self-inhibiting (greater than 10 mM) ACh concentrations [Forman & Miller (1988) Biophys. J. 54, 149-158]--rapid inactivation (rate = kr) complete in 30-75 ms is followed by fast desensitization at the same kd observed without procaine. The dependence of kr on [procaine] is consistent with a bimolecular association between procaine and its AChR site with kon = 2.5 X 10(5) M-1 s-1, koff = 36 s-1, and Kp = 145 +/- 36 microM). Inhibition of AChR function by mixtures of procaine (up to 12Kp) plus self-inhibiting concentrations of ACh or suberyldicholine ([SubCh] up to 13 X the 50% self-inhibiting agonist concentration, KB) was studied by reducing the level of alpha-BTX block in vesicles. The apparent KB increased in the presence of procaine, and the apparent KP increased linearly with [SubCh], indicating mutually exclusive actions at a common AChR site. Our data support a mechanism where procaine binds preferentially to the open-channel AChR state, since no procaine-induced inactivation is observed without agonist and kr's dependence on [ACh] in the channel-activating range closely parallels that of 86Rb+ flux response to ACh.  相似文献   

5.
Substance P (SP) is present in avian sympathetic ganglia and accelerates the decay rate of acetylcholine (ACh)-evoked macroscopic currents in sympathetic neurons. We demonstrate here that SP modulates ACh-elicited single channels in a manner consistent with an enhancement of ACh receptor (AChR) desensitization. Furthermore, since AChR channel function was monitored in cell-attached patches with SP applied to the extra-patch membrane, the peptide must act via a second messenger mechanism. SP specifically decreases the net ACh-activated single-channel current across the patch membrane by decreasing both channel opening frequency and mean open time kinetics. These experiments demonstrate that a peptide can modulate neuronal AChR function by a second messenger mechanism.  相似文献   

6.
7.
Nicotinic acetylcholine receptor channel (AChR) gating is an organized sequence of molecular motions that couples a change in the affinity for ligands at the two transmitter binding sites with a change in the ionic conductance of the pore. Loop 5 (L5) is a nine-residue segment (mouse alpha-subunit 92-100) that links the beta4 and beta5 strands of the extracellular domain and that (in the alpha-subunit) contains binding segment A. Based on the structure of the acetylcholine binding protein, we speculate that in AChRs L5 projects from the transmitter binding site toward the membrane along a subunit interface. We used single-channel kinetics to quantify the effects of mutations to alphaD97 and other L5 residues with respect to agonist binding (to both open and closed AChRs), channel gating (for both unliganded and fully-liganded AChRs), and desensitization. Most alphaD97 mutations increase gating (up to 168-fold) but have little or no effect on ligand binding or desensitization. Rate-equilibrium free energy relationship analysis indicates that alphaD97 moves early in the gating reaction, in synchrony with the movement of the transmitter binding site (Phi = 0.93, which implies an open-like character at the transition state). alphaD97 mutations in the two alpha-subunits have unequal energetic consequences for gating, but their contributions are independent. We conclude that the key, underlying functional consequence of alphaD97 perturbations is to increase the unliganded gating equilibrium constant. L5 emerges as an important and early link in the AChR gating reaction which, in the absence of agonist, serves to increase the relative stability of the closed conformation of the protein.  相似文献   

8.
New Views of Multi-Ion Channels   总被引:1,自引:0,他引:1       下载免费PDF全文
The rate constants of acetylcholine receptor channels (AChR) desensitization and recovery were estimated from the durations and frequencies of clusters of single-channel currents. Diliganded-open AChR desensitize much faster than either unliganded- or diliganded-closed AChR, which indicates that the desensitization rate constant depends on the status of the activation gate rather than the occupancy of the transmitter binding sites. The desensitization rate constant does not change with the nature of the agonist, the membrane potential, the species of permeant cation, channel block by ACh, the subunit composition (ε or γ), or several mutations that are near the transmitter binding sites. The results are discussed in terms of cyclic models of AChR activation, desensitization, and recovery. In particular, a mechanism by which activation and desensitization are mediated by two distinct, but interrelated, gates in the ion permeation pathway is proposed.  相似文献   

9.
Escobar syndrome is a form of arthrogryposis multiplex congenita and features joint contractures, pterygia, and respiratory distress. Similar findings occur in newborns exposed to nicotinergic acetylcholine receptor (AChR) antibodies from myasthenic mothers. We performed linkage studies in families with Escobar syndrome and identified eight mutations within the gamma -subunit gene (CHRNG) of the AChR. Our functional studies show that gamma -subunit mutations prevent the correct localization of the fetal AChR in human embryonic kidney-cell membranes and that the expression pattern in prenatal mice corresponds to the human clinical phenotype. AChRs have five subunits. Two alpha, one beta, and one delta subunit are always present. By switching gamma to epsilon subunits in late fetal development, fetal AChRs are gradually replaced by adult AChRs. Fetal and adult AChRs are essential for neuromuscular signal transduction. In addition, the fetal AChRs seem to be the guide for the primary encounter of axon and muscle. Because of this important function in organogenesis, human mutations in the gamma subunit were thought to be lethal, as they are in gamma -knockout mice. In contrast, many mutations in other subunits have been found to be viable but cause postnatally persisting or beginning myasthenic syndromes. We conclude that Escobar syndrome is an inherited fetal myasthenic disease that also affects neuromuscular organogenesis. Because gamma expression is restricted to early development, patients have no myasthenic symptoms later in life. This is the major difference from mutations in the other AChR subunits and the striking parallel to the symptoms found in neonates with arthrogryposis when maternal AChR auto-antibodies crossed the placenta and caused the transient inactivation of the AChR pathway.  相似文献   

10.
Acetylcholine receptor (AChR) channels with proline (P) mutations in the putative pore-forming domain (at the 12' position of the M2 segment) were examined at the single-channel level. For all subunits (alpha, beta, epsilon, and delta), a 12'P mutation increased the open channel lifetime >5-fold. To facilitate the estimation of binding and gating rate constants, subunits with 12'P mutations were co-expressed with alpha subunits having a binding site mutation that slows channel opening (alphaD200N). In these AChRs, a 12'P mutation in epsilon or beta slowed the closing rate constant approximately 6-fold but had no effect on either the channel opening rate constant or the equilibrium dissociation constant for ACh (Kd). In contrast, a 12'P mutation in delta slowed the channel closing rate constant only approximately 2-fold and significantly increased both the channel opening rate constant and the Kd. Pairwise expression of 12'P subunits indicates that mutations in epsilon and beta act nearly independently, but one in delta reduces the effect of a homologous mutation in epsilon or beta. The results suggest that a 12'P mutation in epsilon and beta has mainly local effects, whereas one in delta has both local and distributed effects that influence both agonist binding and channel gating.  相似文献   

11.
We characterized the functional and molecular properties of nicotinic acetylcholine receptors (AChRs) expressed by IMR-32, a human neuroblastoma cell line, and compared them to human alpha3 AChRs expressed in stably transfected human embryonic kidney (HEK) cells. IMR-32 cells, like neurons of autonomic ganglia, have been shown to express alpha3, alpha5, alpha7, beta2, and beta4 AChR subunits. From these subunits, several types of alpha3 AChRs as well as homomeric alpha7 AChRs could be formed. However, as we show, the properties of functional AChRs in these cells overwhelmingly reflect alpha3beta4 AChRs. alpha7 AChR function was not detected, yet we estimate that there are 70% as many surface alpha7 AChRs in IMR-32 when compared with alpha3 AChRs. Agonist potencies (EC(50) values) followed the rank order of 1,1-dimethyl-4-phenylpiperazinium (DMPP; 16+/-1 microM) > nicotine (Nic; 48 +/- 7 microM) > or = cytisine (Cyt; 57 +/- 3 microM) = acetylcholine (ACh; 59 +/- 6 microM). All agonists exhibited efficacies of at least 80% relative to ACh. The currents showed strong inward rectification and desensitized at a rate of 3 s(-1) (300 microM ACh; -60 mV). Assays that used mAbs confirmed the predominance of alpha3- and beta4-containing AChRs in IMR-32 cells. Although 18% of total alpha3 AChRs contained beta2 subunits, no beta2 subunit was detected on the cell surface. Chronic Nic incubation increased the amount of total, but not surface alpha3beta2 AChRs in IMR-32 cells. Nic incubation and reduced culture temperature increased total and surface AChRs in alpha3beta2 transfected HEK cells. Characterization of various alpha3 AChRs expressed in HEK cell lines revealed that the functional properties of the alpha3beta4 cell line best matched those found for IMR-32 cells. The rank order of agonist potencies (EC(50) values) for this line was DMPP (14 +/- 1 microM) = Cyt (18 +/- 1 microM) > Nic (56 +/- 15 microM > ACh (79 +/- 8 microM). The efficacies of both Cyt and DMPP were approximately 80% when compared with ACh and the desensitization rate was 2 s(-1). These data show that even with the potential to express several human nicotinic AChR subtypes, the functional properties of AChRs expressed by IMR-32 are completely attributable to alpha3beta4 AChRs.  相似文献   

12.
J Chen  Y Zhang  G Akk  S Sine    A Auerbach 《Biophysical journal》1995,69(3):849-859
Affinity labeling and mutagenesis studies have demonstrated that the conserved tyrosine Y190 of the acetylcholine receptor (AChR) alpha-subunit is a key determinant of the agonist binding site. Here we describe the binding and gating kinetics of embryonic mouse AChRs with mutations at Y190. In Y190F the dissociation constant for ACh binding to closed channels was reduced approximately 35-fold at the first binding site and only approximately 2-fold at the second site. At both binding sites the association and dissociation rate constants were decreased by the mutation. Compared with wildtype AChRs, doubly-liganded alpha Y190F receptors open 400 times more slowly but close only 2 times more rapidly. Considering the overall activation reaction (vacant-closed to fully occupied-open), there is an increase of approximately 6.4 kcal/mol caused by the Y-to-F mutation, of which at least 2.1 and 0.3 kcal/mol comes from altered agonist binding to the first and second binding sites, respectively. The closing rate constant of alpha Y190F receptors was the same with ACh, carbamoylcholine, or tetramethylammonium as the agonist. This rate constant was approximately 3 times faster in ACh-activated S, W, and T mutants. The equilibrium dissociation constant for channel block by ACh was approximately 2-fold lower in alpha Y190F receptors compared with in wildtype receptors, suggesting that there are changes in the pore region of the receptor as a consequence of the mutation. The activation reaction is discussed with regard to energy provided by agonist-receptor binding contacts, and by the intrinsic folding energy of the receptor.  相似文献   

13.
The muscle acetylcholine receptor (AChR) has served as a prototype for understanding allosteric mechanisms of neurotransmitter-gated ion channels. The phenomenon of cooperative agonist binding is described by the model of Monod et al. (Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118; MWC model), which requires concerted switching of the two binding sites between low and high affinity states. The present study examines binding of acetylcholine (ACh) and epibatidine, agonists with opposite selectivity for the two binding sites of mouse muscle AChRs. We expressed either fetal or adult AChRs in 293 HEK cells and measured agonist binding by competition against the initial rate of 125I-alpha-bungarotoxin binding. We fit predictions of the MWC model to epibatidine and ACh binding data simultaneously, taking as constants previously determined parameters for agonist binding and channel gating steps, and varying the agonist-independent parameters. We find that the MWC model describes the apparent dissociation constants for both agonists but predicts Hill coefficients that are far too steep. An Uncoupled model, which relaxes the requirement of concerted state transitions, accurately describes binding of both ACh and epibatidine and provides parameters for agonist-independent steps consistent with known aspects of AChR function.  相似文献   

14.
The nicotinic acetylcholine receptor (AChR) is a pentameric transmembrane protein (alpha 2 beta gamma delta) that binds the neurotransmitter acetylcholine (ACh) and transduces this binding into the opening of a cation selective channel. The agonist, competitive antagonist, and snake toxin binding functions of the AChR are associated with the alpha subunit (Kao et al., 1984; Tzartos and Changeux, 1984; Wilson et al., 1985; Kao and Karlin, 1986; Pederson et al., 1986). We used site-directed mutagenesis and expression of AChR in Xenopus oocytes to identify amino acid residues critical for ligand binding and channel activation. Several mutations in the alpha subunit sequence were constructed based on information from sequence homology and from previous biochemical (Barkas et al., 1987; Dennis et al., 1988; Middleton and Cohen, 1990) and spectroscopic (Pearce and Hawrot, 1990; Pearce et al., 1990) studies. We have identified one mutation, Tyr190 to Phe (Y190F), that had a dramatic effect on ligand binding and channel activation. These mutant channels required more than 50-fold higher concentrations of ACh for channel activation than did wild type channels. This functional change is largely accounted for by a comparable shift in the agonist binding affinity, as assessed by the ability of ACh to compete with alpha-bungarotoxin binding. Other mutations at nearby conserved positions of the alpha subunit (H186F, P194S, Y198F) produce less dramatic changes in channel properties. Our results demonstrate that ligand binding and channel gating are separable properties of the receptor protein, and that Tyr190 appears to play a specific role in the receptor site for acetylcholine.  相似文献   

15.
A comparison between the Torpedo and muscle-type acetylcholine receptors (AChRs) reveals differences in several lipid-exposed amino acids, particularly in the polarity of those residues. The goal of this study was to characterize the role of eight lipid-exposed residues in the functional differences between the Torpedo and muscle-type AChRs. To this end, residues αS287, αC412, βY441, γM299, γS460, δM293, δS297 and δN305 in the Torpedo AChR were replaced with those found in the muscle-type receptor. Mutant receptor expression was measured in Xenopus oocytes using [125I]-α-bungarotoxin, and AChR ion channel function was evaluated using the two-electrode voltage clamp. Eight mutant combinations resulted in an increase (1.5- to 5.2-fold) in AChR expression. Four mutant combinations produced a significant 46% decrease in the ACh 50% inhibitory concentration (EC50), while three mutant combinations resulted in 1.7- to 2-fold increases in ACh EC50. Finally, seven mutant combinations resulted in a decrease in normalized, ACh-induced currents. Our results suggest that these residues, although remote from the ion channel pore, (1) contribute to ion channel gating, (2) may affect trafficking of AChR into specialized membrane domains and (3) account for the functional differences between Torpedo and muscle-type AChR. These findings emphasize the importance of the lipid-protein interface in the functional differences between the Torpedo and muscle-type AChRs.  相似文献   

16.
Y Gu  Z W Hall 《Neuron》1988,1(2):117-125
We used specific antibodies to gamma, delta, and epsilon subunits to characterize acetylcholine receptor (AChR) in extracts and at endplates of developing, adult, and denervated rat muscle. The AChRs in normal adult muscle were immunoprecipitated by anti-epsilon and anti-delta, but not by anti-gamma antibodies, whereas AChRs in denervated and embryonic muscles were precipitated by anti-gamma and anti-delta, but showed little or no reactivity to anti-epsilon antibodies. In immunofluorescence experiments, AChRs at neonatal endplates bound antibodies to gamma or delta, but not epsilon, subunit, whereas those in adult muscles bound antibodies to epsilon or delta, but not gamma, subunit. AChRs at denervated endplates and at developing endplates between postnatal days 9 and 16 bound all three antibodies. We conclude that the distribution of gamma and epsilon subunits of the AChR parallels the distribution of AChRs with embryonic and adult channel properties, respectively.  相似文献   

17.
Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases.  相似文献   

18.
Abstract: The nicotinic acetylcholine receptor (AChR) exhibits at least four different conformational states varying in affinity for agonists such as acetylcholine (ACh). Photoaffinity labeling has been previously used to elucidate the topography of the AChR. However, to date, the photosensitive probes used to explore the cholinergic binding site photolabeled only closed or desensitized states of the receptor. To identify the structural modifications occurring at the ACh binding site on allosteric transition associated with receptor activation, we have investigated novel photoactivatable 4-diazocyclohexa-2,5-dienone derivatives as putative cholinergic agonists. Such compounds are fairly stable in the dark and generate highly reactive carbenic species on irradiation. In binding experiments using AChRs from Torpedo marmorata, these ligands had affinities for the ACh binding site in the micromolar range and did not interact with the noncompetitive blocker site (greater than millimolar affinity). Irreversible photoinactivation of ACh binding sites was obtained with the ligand 1b (up to 42% at 500 µM) in a protectable manner. In patch-clamp studies, 1b was shown to be a functional agonist of peripheral AChR in TE 671 cells, with the interesting property of exhibiting no or very little desensitization even at high concentrations.  相似文献   

19.
L Li  M Schuchard  A Palma  L Pradier  M G McNamee 《Biochemistry》1990,29(23):5428-5436
Previous chemical modification studies of the acetylcholine receptor [Yee, A.S., Corey, D.E., & McNamee, M.G. (1986) Biochemistry 25, 2110-2119] were extended by using fluorescent N-pyrenylmaleimide to alkylate purified Torpedo californica nicotinic acetylcholine receptor (AChR). Peptide sequencing of the tryptic fragments of the labeled AChR gamma subunit identified cysteines 416, 420, and 451 as the modified residues. The functional role of Cys-451 in the M4 transmembrane domain of the AChR gamma subunit was further investigated by studying the functional consequences of the site-specific mutation of this cysteine to either serine or tryptophan by using AChR mRNAs injected into Xenopus laevis oocytes. Both mutants displayed about 50% reduction in the normalized channel activity of the receptor measured as the ACh-induced conductance per femtomole of surface alpha-bungarotoxin binding sites. However, the mutations did not change other AChR functional properties such as agonist binding ability, the slow phase of desensitization, and blockade by competitive and noncompetitive antagonists. The significant reduction in AChR ion channel activity associated with the above point mutations, especially the simple change of the -SH group on Cys-451 to the -OH group, suggests that this thiol group in the M4 helix of gamma subunit may play an important role in AChR ion channel function. Previous site-directed mutations of the Cys-416 and -420 residues showed a decreased response when both of these residues were changed to phenylalanine, but not when they were changed to serine [Pradier, L., Yee, A.S., & McNamee, M.G. (1989) Biochemistry 28, 6562-6571].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Nicotinic acetylcholine receptors (AChRs) are a family of acetylcholine-gated cation channels that form the predominant excitatory neurotransmitter receptors on muscles and nerves in the peripheral nervous system. AChRs are also expressed on neurons in lower amounts throughout the central nervous system. AChRs are even being reported on unexpected cell types such as keratinocytes. Structures of these AChRs are being determined with increasing precision, but functions of some orphan subunits are just beginning to be established. Functional roles for postsynaptic AChRs in muscle are well known, but in neurons the post-, peri-, extra-, and presynaptic roles of AChRs are just being revealed. Pathogenic roles of AChRs are being discovered in many diseases involving mechanisms ranging from mutations, to autoimmune responses, to the unknown; involving cell types ranging from muscles, to neurons, to keratinocytes; and involving signs and symptoms ranging from muscle weakness to epilepsy, to neurodegenerative disease, to psychiatric disease, to nicotine addiction. Awareness of AChR involvement in some of these diseases has provoked new interests in development of therapeutic agonists for specific AChR subtypes and the use of expressed cloned AChR subunits as possible immunotherapeutic agents. Highlights of recent developments in these areas will be briefly reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号