首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localization of the 49-kDa apyrase (ATP diphosphohydrolase, EC3.6.1.5; DDBJ/EMBL/GenBank BAB40230) was investigated during early stages of germination of pea (Pisum sativum L. var. Alaska) at the organ, tissue, cellular, and sub-cellular level using light-microscopical immunohistochemistry. Whole mount tissues were immuno-reacted with anti-APY1 serum, pre-immune serum or anti-actin antibody for control. Antigen to the anti-APY1 serum was not detected until 16 h after sowing (26 h after start of imbibition), when the antigen was detected throughout the tissue, especially in the epidermis and cortex. At 35 h after sowing, the younger regions including the root tip and the tip of the stele were more strongly stained than the control. Both, epidermal and cortical cells of the epicotyl and root tip were stained. The stain was mainly localized in the cytoplasm and around nuclei in the apical meristem and the root tip, while vacuoles and cell walls were not stained. At 62 h, there was major staining in the plumule, hook, and elongating regions of the epicotyl and in the region between cotyledons and the epicotyl. After 84 h, lateral root primordia were stained. The pre-immune serum showed virtually no staining while the anti-actin antibody reacted solely with the cytoplasm. Since the antigen to the anti-APY1 serum was primarily found in the cytoplasm and around nuclei in elongating and differentiating tissues and labeling declined in mature tissues, it is suggested that apyrases may play a role in growth and development of tissues, for example, lateral roots.  相似文献   

2.
3.
Fusicoccin inhibits the germination of pea (Pisum sativum L. cv Progress 9) seeds by decreasing the growth of the embryonal axis and by stimulating the fresh weight increase of the cotyledons. The growth of isolated embryonal axes in the presence of sucrose and KCl is stimulated by fusicoccin. The effect of fusicoccin on the seeds is not counteracted by sucrose and KCl. Fusicoccin promotes preferentially in the cotyledons a hyperpolarization of the transmembrane electric potential and an increase in the uptake capacity, suggesting the reinforcement of the sink strength of the cotyledons in comparison with the one of the embryonal axis and therefore the inhibition of translocation from the cotyledons of some substance necessary for the growth of the embryonal axis.  相似文献   

4.
Y. Kaneko  K. Keegstra 《Protoplasma》1996,195(1-4):59-67
Summary The ultrastructure of embryonic pea leaf cells was examined during the first 24 h of imbibition of dry seeds. Special attention was paid to plastids, which underwent two interesting interactions during this period. The first was a close physical association between the endoplasmic reticulum and plastids. The second was an association of numerous lipid bodies with the surface of plastids. The functional implications of these associations are considered.Abbreviations CCF conventional chemical fixation - ER endoplasmic reticulum - HPF-FS high-pressure freezing and freeze substitution Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

5.
6.
Raffinose family oligosaccharides (RFOs) are almost ubiquitous in seeds and have been hypothesized to constitute an important energy source during germination. To test this hypothesis we applied a specific alpha-galactosidase inhibitor (1-deoxygalactonojirimycin, DGJ) to germinating pea seeds, resulting in a complete blocking of RFO breakdown. The germination rates of DGJ-treated seeds dropped drastically to about 25% of controls two days after imbibition. Similarly, the activities of the key enzymes in the galactose salvage pathway galactokinase, UDP-galactose pyrophosphorylase and UDP-galactose 4'-epimerase, were also significantly lower in seeds treated with the inhibitor. The inhibitory effect on germination could be relieved by galactose but only partially by sucrose, indicating that galactose, in addition to providing easily available energy for growth, may also be an important component of the sugar signaling pathway during germination. Taken together our study, for the first time, provides clear evidence that RFOs play an important role for early germination.  相似文献   

7.
This study was designed to examine and compare the metabolism of myristic and palmitic acids in cultured rat hepatocytes. [1-(14)C]-Labeled fatty acids were solubilized with albumin at 0.1 mmol/L in culture medium. Incubation with 24-hr cultured hepatocytes was carried out for 12 hr. Myristic acid was more rapidly (P < 0.05) taken up by the cells than was palmitic acid (86.9 +/- 0.9% and 68.3 +/- 5.7%, respectively, of the initial radioactivity was cleared from the medium after 4 hr incubation). Incorporation into cellular lipids, however, was similar after the same time (33.4 +/- 2.8% and 34.9 +/- 9.3%, respectively, of initial radioactivity). In the early phase of the incubation (30 min), myristic acid was more rapidly incorporated into cellular triglycerides than was palmitic acid (7.4 +/- 0.9% and 3.6 +/- 1.9%, respectively, of initial radioactivity). However, after 12 hr incubation, the radioactivity of cellular triglycerides, cellular phospholipids, and secreted triglycerides was significantly higher with palmitic acid as precursor. Myristic acid oxidation was significantly higher than that of palmitic acid (14.9 +/- 2.2% and 2.3 +/- 0.6%, respectively, of the initial radioactivity was incorporated into the beta-oxidation products after 4 hr). Myristic acid was also more strongly elongated to radiolabeled palmitic acid (12.2 +/- 0.8% of initial radioactivity after 12 hr) than palmitic acid was to stearic acid (5.1 +/- 1.3% of initial radioactivity after 12 hr). The combination of elongation and beta-oxidation results in the rapid disappearance of C14:0 in hepatocytes whereas C16:0 is esterified to form glycerolipids. This study provides evidence that myristic acid is more rapidly metabolized in cultured hepatocytes than is palmitic acid.  相似文献   

8.
9.
10.
This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [14C]-lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells (94.8 +/- 2.2% of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low (24.6 +/- 4.2% of initial radioactivity after 4 h), due to the high beta-oxidation of lauric acid in hepatocytes (38.7 +/- 4.4% after the same time). Among cellular lipids, lauric acid was preferentially incorporated into triglycerides (10.6 +/- 4.6% of initial radioactivity after 4 h). Lauric acid was also rapidly converted to palmitic acid by two successive elongations. Protein acylation was detected after metabolic labeling of the cells with [11,12-3H]-lauric acid. Two-dimensional electrophoresis separation of the cellular proteins and autoradiography evidenced the incorporation of radioactivity into 35 well-resolved proteins. Radiolabeling of several proteins resulted from covalent linkage to the precursor [11,12-3H]-lauric acid or to its elongation product, myristic acid. The covalent linkages between these proteins and lauric acid were broken by base hydrolysis, indicating that the linkage was of the thioester or ester-type. Endogenous myristic acid produced by lauric acid elongation was used for both protein N-myristoylation and protein S-acylation. Therefore, these results show for the first time that, although it is rapidly metabolized in hepatocytes, exogenous lauric acid is a substrate for the acylation of liver proteins.  相似文献   

11.
Mitochondrial development in pea cotyledons during the imbibitionstage of germination requires a temperature-dependent processin addition to hydration of the cotyledons, but increases inenzyme activities in the mitochondrial fraction seem merelyto depend upon hydration. Water inflow appears to play an importantrole in the assembly of the mitochondrial membrane. (Received January 19, 1973; )  相似文献   

12.
Qualitative and quantitative differences in cytokinin levels of gram seeds were observed during germination of control and 6-benzylaminopurine (BAP; 4.44 x 10t-5 M) treated seeds. Zeatin riboside (ZR), zeatin (Z), dihydrozeatin (DHZ), isopentenyladenosine (iPA) and isopentenyladenine (iP) were determined using high pressure liquid chromatography. In the control seeds the ZR content increased markedly only after 24 h of germination. In BAP treated seeds, the increase in ZR content was stronger than in control seeds and it persisted during further germination. Z content increased during germination in both control and treated seeds. After 48 h of germination iP appeared in control and especially in treated seeds. Acknowledgements: The senior author is thankful to University Grants Commision, New Delhi for award of Research Associateship.  相似文献   

13.
1. The RNA polyadenylating activity was found in embryo axes of dry, as well as imbibed and germinated pea seeds, both in nucleus and cytoplasm. 2. The total enzymatic activity remains unchanged during germination, but the intracellular distribution is altered; the activity in nuclei is increased about four-fold at the expense of the postmitochondrial fraction. 3. Specificity towards RNA primers of the polyadenylating system from pea embryo axes is low. 4. Cordycepin inhibits RNA polyadenylation only when [14C]ATP is used as a nucleotide donor, and has no visible influence on the activity of the system utilizing [14C]oligo(A)-nucleotides. 5. It seems that RNA in the pea embryo axes is polyadenylated by a two-step mechanism: synthesis of oligo(A)-nucleotides, and their addition to RNA.  相似文献   

14.

Background and Aims

The Campanulaceae is a large cosmopolitan family, but is understudied in terms of germination, and seed biology in general. Small seed mass (usually in the range 10–200 µg) is a noteworthy trait of the family, and having small seeds is commonly associated with a light requirement. Thus, the purpose of this study was to investigate the effect of light on germination in 131 taxa of the Campanulaceae family, from all five continents of its distribution.

Methods

For all taxa, seed germination was tested in light (8 or 12 h photoperiod) and continuous darkness under constant and alternating temperatures. For four taxa, the effect of light on germination was examined over a wide range of temperatures on a thermogradient plate, and the possible substitution of the light requirement by gibberellic acid and nitrate was examined in ten taxa.

Key Results

For all 131 taxa, seed germination was higher in light than in darkness for every temperature tested. Across species, the light requirement decreased significantly with increasing seed mass. For larger seeded species, germination in the dark reached higher levels under alternating than under constant temperatures. Gibberellic acid promoted germination in darkness whereas nitrates partially substituted for a light requirement only in species showing some dark germination.

Conclusions

A light requirement for germination, observed in virtually all taxa examined, constitutes a collective characteristic of the family. It is postulated that smaller seeded taxa might germinate only on the soil surface or at shallow depths, while larger seeded species might additionally germinate when buried in the soil if cued to do so by fluctuating temperatures.  相似文献   

15.
During 6 days of pea seed germination the depletion of legumin with mol. m. 390 000 from protein bodies was observed. SDS-PAGE indicated that the legumin subunits with mol. m. 41 700 and 21 000 were prevailing. Only the former of these, probably corresponding to α-subunit, was degraded rapidly during 6 days of germination. Water-soluble proteins (albumins) prepared from pea cotyledons were separated by preparative IEF into proteins with pI 7.1, 6.5, 6.0, 5.4, 5.0, and 4.6. During 6 days the components of albumin with pI 7.1, and 6.5 were dramatically depleted. Major fractions with pI 6.5, 6.0, and 5.4 were subjected to SDS-PAGE and their subunit composition was determined. Moreover, albumin of pea cotyledons was resolved into 13 components by SDS-PAGE. Mobilization of albumin began from the degradation of components with higher mol. m. during germination.  相似文献   

16.
Using cDNA representational difference analysis (cDNA RDA), we isolated a cDNA named GDA-1 from a cDNA library constructed with mRNA from short-day (SD) grown G2 pea apical tissue. The amino acid sequence deduced from GDA-1 shares partial identity with the B2 protein which is expressed during embryogenesis of carrot cells. Northern analysis showed that GDA-1 mRNA is abundant in SD-grown G2 pea apical buds. In long-day (LD) conditions, there was almost no detectable GDA-1 mRNA. When LD-grown G2 peas were kept in continuous darkness for 24 h, the GDA-1 mRNA content reached a level equivalent to about 50% of that in the SD samples. On the other hand, when SD-grown peas were transferred into the light for 24 h, the amount of hybridizable GDA-1 mRNA dropped to the same as that of LD-grown plants. GDA-1 expression was found to be independent of flower initiation time. GA3 application in vitro resulted in rapid accumulation of GDA-1 mRNA in LD-grown G2 pea apical buds, which is compatible with its delaying effect on apical senescence. Time-course experiments revealed that GDA-1 is induced within 15 min of GA3 application. Exogenous GA3 did not influence the expression of GDA-1 in SD-grown G2 peas. Since both photoperiod and GA induce the expression of GDA-1, we speculate that they may activate similar signal transduction pathways in G2 peas. Our work also shows that photoperiod may change the efficiency of gibberellin perception by plants. Received: 27 March 1998 / Accepted: 2 June 1998  相似文献   

17.
Protoplasts were isolated from pea (Pisum sativum L. cv. Alaska) embryonic axes during and after germination to determine whether the loss of desiccation tolerance in the embryos also occurs in the protoplasts. At all times studied, protoplast survival decreased as water content decreased; however, the sensitivity to dehydration was less when the protoplasts were isolated from embryos that were still desiccation-tolerant (12 h and 18 h of imbibition) than when protoplasts were derived from axes that were sensitive (24 h and 36 h of imbibition). The water content at which 50% of the population was killed (WC50) increased throughout germination and early seedling growth for both the intact tissue and the protoplasts derived from them. Prior to radicle emergence, protoplasts were less desiccation-tolerant than the intact axes; however, protoplasts isolated from radicles shortly after emergence had lower WC50s than the intact radicles. A comparison of protoplast survival after isolation and dehydration in either 500 mM sucrose/raffinose or 700 mM sucrose revealed no difference in tolerance except at 24 h of imbibition, when protoplasts treated in the more concentrated solution had improved tolerance of dehydration. Although intact epicotyls are generally more desiccation-tolerant than radicles, protoplasts isolated separately from epicotyls and radicles did not differ in tolerance. Collectively, these data suggest that protoplasts gradually lose desiccation tolerance during germination, as do the orthodox embryos from which they were derived. However, even prior to radicle emergence, protoplasts display a sensitivity to progressive dehydration that is similar to that shown by recalcitrant and ageing embryos.  相似文献   

18.
1. Major changes in the free nucleotide and nucleoside pattern of germinating pea seeds are described. 2. During the imbibition phase of germination (0–16hr.) there was a 250% increase in ATP content and a parallel fall in AMP content without detectable change in ADP content. Metabolic implications are discussed. 3. The main nucleoside changes during imbibition were a 93% increase in xanthosine content and a 39% fall in adenosine content. 4. During the last phase of germination, leading to the emergence of the radicle, there is a general fall in free nucleotide content. AMP, ADP and ATP contents decreased 73, 48 and 52% respectively. Acetyl-3′-dephosphocoenzyme A concentration fell by 53%. However, the (NADP++NADPH)/(NAD++NADH) ratio increased, and except for uridine content (52% decrease) the nucleoside pattern changed little. 5. A sixfold increase in the concentration of an unidentified UDP-glycosyl compound occurs at this stage, although the content of UDP-glucose and UDP-galactose remained unchanged. 6. No free purine or pyrimidine bases could be detected at any stage of germination.  相似文献   

19.
Detailed analysis revealed fundamental differences between bacterial association with cucumber (Cucumis sativus) seeds and seedlings roots. Seed colonization by bacteria seems to result from passive encounter between bacteria, conveyed by imbibed soil solution, and the germinating seed. In accordance, the seed-associated bacterial community composition directly reflected that of the germination medium and was characterized by low dominance. Transition from seed to root was marked by a shift in bacterial community composition and in an increase in dominance values. Furthermore, settlement of bacteria on roots was tightly controlled by the specific properties of each root segment. Size and richness of the seed-associated bacterial community were clearly determinate by the community in the germination medium. In contrast, for fully developed and active roots, the medium effect on these parameters was negligible. Perturbation of the seed environment by a pathogen (Pythium aphanidermatum) had major consequences on the seed bacterial community. However, those were mostly related to direct pathogen-bacteria rather than seed-bacteria interactions. In conclusion, simple, even passive processes may determine the initial stage of plant-microbe association during seed germination, prior to extension of the primary root. Therefore, seed germination is a unique phase in the plant life cycle, with respect to its interaction with the below-ground microbiome.  相似文献   

20.
Analysis of DNA methylation during the germination of wheat seeds   总被引:1,自引:0,他引:1  
DNA methylation is known to play a crucial role in regulating plant development and organ or tissue differentiation. Here, we focused on the DNA methylation dynamics during the germination of wheat seeds using the adapted AFLP technique so called methylation-sensitive amplified polymorphism (MSAP). The MSAP profiles of genomic DNA in embryo and endosperm tissues of germinating seeds, as well as dry seeds were characterized and notable changes of cytosine methylation were detected. Comparisons of MSAP profiles in different tissues tested showed that the methylation level in dry seeds is the highest. The alteration analysis of cytosine methylation displayed that the number of demethylation events were three times higher than that of de novo methylation, which indicated that the demethylation was predominant in germinating wheat seeds, though the methylation events occurred as well. Sixteen differentially displayed DNA fragments in MSAP profiles were cloned and the sequencing analysis confirmed that nine of them contained CCGG sites. The further BLAST search showed that four of the cloned sequences were located in coding regions. Interestingly, three of the sixteen candidates were homologous to retrotransposons, which indicated that switches between DNA methylation and demethylation occurred in retrotransposon elements along with the germination of wheat seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号