首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have used a well-differentiated A6-cell preparation (A6-C1) to study cellular location and vasopressin control of Na/H-exchange activity. After cell acidification, cell pHi (measured by BCECF-fluorescence) only recovered by the addition of Na medium to the basolateral cell surface; this pHi recovery was inhibited by dimethylamiloride (2 m) consistent with basolateral location of Na/H-exchange activity. Addition of vasopressin produced stimulation of Na/H-exchange activity and increased the affinity of the exchanger for Na+. Stimulation of Na/H exchange was mimicked by pharmacological activation of protein kinase A (forskolin, 8-Br-cAMP) and not by pharmacological activation of protein kinase C (TPA). It is concluded that basolaterally located Na/H-exchange in A6-C1 cells is activated by vasopressin.  相似文献   

2.
The recently cloned Na/P i -cotransport system NaPi-2 is an apical membrane protein of rat proximal tubular cells and is involved in proximal phosphate reabsorption. To make the protein available for further functional/structural studies, this transport system has been expressed in Sf9 insect cells using a recombinant baculovirus. Sf9 cells infected with NaPi-2 (or 6His tagged NaPi-2) expressed functional Na/P i -cotransport up to 20- to 50-fold over noninfected Sf9 cells. Transport of phosphate in infected cells was highly dependent on sodium, exhibited a K m for P i of 0.114 mm and an apparent K m for Na of 63 mm (Hill coefficient of approximately 3) and was stimulated by high external pH. Infected cells expressed a polypeptide of 65 kDa representing a nonglycosylated form of the 85 kDa mature NaPi-2 transporter as present in proximal tubular brush-border membranes. By confocal microscopy expression of NaPi-2 protein was observed in the plasma membrane, yet submembranous accumulation of NaPi-2 protein could not be excluded. This demonstrates that the rat proximal tubular Na/P i -cotransport system NaPi-2 can be successfully expressed in Sf9 cells with characteristics similar to that in isolated brush-border membranes. The 6His tagging will permit isolation of the NaPi-2 cotransporter in amounts sufficient for structural/functional studies.We would like to thank W. Scherle and M. Lötscher (Institute of Anatomy) for their generous help using the confocal microscope and Ch. Gasser for the art work. Financial support by the Swiss National Fonds [Grant No. 32-30785.91 (to H.M.) and 32-28664.90 (to J.B.)] and by Stiftung für wissenschaftliche Forschung an der Universitát Zürich is greatly acknowledged.  相似文献   

3.
Transition from low salt water to sea water of the euryhaline fish, Fundulus heteroclitus, involves a rapid signal that induces salt secretion by the gill chloride cells. An increase of 65 mOsm in plasma osmolarity was found during the transition. The isolated, chloridecell-rich opercular epithelium of sea-water-adapted Fundulus exposed to 50 mOsm mannitol on the basolateral side showed a 100% increase in chloride secretion, which was inhibited by bumetanide 10–4 m and 10–4 m DPC (N-Phenylanthranilic acid). No effect of these drugs was found on apical side exposure. A Na+/H+ exchanger, demonstrated by NH4Cl exposure, was inhibited by amiloride and its analogues and stimulated by IBMX, phorbol esters, and epithelial growth factor (EGF). Inhibition of the Na+/H+ exchanger blocks the chloride secretion increase due to basolateral hypertonicity. A Cl/HCO 3 exchanger was also found in the chloride cells, inhibited by 10–4 m DIDS but not involved in the hyperosmotic response. Ca2+ concentration in the medium was critical for the stimulation of Cl secretion to occur. Chloride cell volume shrinks in response to hypertonicity of the basolateral side in sea-water-adapted operculi; no effect was found on the apical side. Freshwater-adapted fish chloride cells show increased water permeability of the apical side. It is concluded that the rapid signal for adaptation to higher salinities is an increased tonicity of the plasma that induces chloride cell shrinkage, increased chloride secretion with activation of the Na+K+2Cl cotransporter, the Na+/H+ exchanger and opening of Cl channels.The work was supported by the National Institutes of Health, Research Grant EYO1340 to J.A.Z. Part of this research was performed while Dr. Zadunaisky was a Scholar In Residence at the Fogarty International Center of The National Institutes of Health in Bethesda, Maryland. Ms. Dawn Roberts was a fellow of the Grass Foundation and Pew Foundation during this work. Grants from the National Science Foundation and the National Institutes of Health to the Mount Desert Island Biological Laboratory also provided assistance for this research.  相似文献   

4.
Summary Forskolin (i.e, cAMP)-modulation of ion transport pathways in filter-grown monolayers of the Cl-secreting subclone (19A) of the human colon carcinoma cell line HT29 was studied by combined Ussing chamber and microimpalement experiments.Changes in electrophysiological parameters provoked by serosal addition of 10–5 m forskolin included: (i) a sustained increase in the transepithelial potential difference (3.9±0.4 mV). (ii) a transient decrease in transepithelial resistance with 26±3 · cm2 from a mean value of 138±13 · cm2 before forskolin addition, (iii) a depolarization of the cell membrane potential by 24±1 mV from a resting value of –50±1 mV and (iv) a decrease in the fractional resistance of the apical membrane from 0.80±0.02 to 0.22±0.01. Both, the changes in cell potential and the fractional resistance, persisted for at least 10 min and were dependent on the presence of Cl in the medium. Subsequent addition of bumetanide (10–4 m), an inhibitor of Na/K/2Cl cotransport, reduced the transepithelial potential, induced a repolarization of the cell potential and provoked a small increase of the transepithelial resistance and fractional apical resistance. Serosal Ba2+ (1mm), a known inhibitor of basolateral K+ conductance, strongly reduced the electrical effects of forskolin. No evidence was found for a forskolin (cAMP)-induced modulation of basolateral K+ conductance.The results suggest that forskolin-induced Cl secretion in the HT-29 cl.19A colonic cell line results mainly from a cAMP-provoked increase in the Cl conductance of the apical membrane but does not affect K+ or Cl conductance pathways at the basolateral pole of the cell. The sustained potential changes indicate that the capacity of the basolateral transport mechanism for Cl and the basal Ba2+-sensitive K+ conductance are sufficiently large to maintain the Cl efflux across the apical membrane. Furthermore, evidence is presented for an anomalous inhibitory action of the putative Cl channel blockers NPPB and DPC on basolateral conductance rather than apical Cl conductance.  相似文献   

5.
Summary The cellular distribution (apicalvs. basolateral) of parathyroid hormone (PTH) signal transduction systems in opossum kidney (OK) cells was evaluated by measuring the action of PTH on apically located transport processes (Na/Pi cotransport and Na/H exchange) and on the generation of intracellular messengers (cAMP and IP3).PTH application led to immediate inhibition of Na/H-exchange without a difference in dose/response relationships between apical and basolateral cell-surface hormone addition (halfmaximal inhibition at 5×10–10 m). PTH required 2–3 hr for maximal inhibition of Na/Pi cotransport with a half-maximal inhibition occurring at ×10–12 m for apical application. PTH addition to either side of the monolayer produced a dose-dependent production of both cAMP and IP3. Half-maximal activation of IP3 was at about 7×10–12 m PTH and displayed no differences between apical and basolateral hormone addition, while cAMP was produced with a half maximal concentration of 7×10–9 m for apical PTH application and 10–9 m for basolateral administration.The PTH analog [nle8.18, tyr34]PTH(3-34), (nlePTH), produced partial inhibition of Na/Pi cotransport (agonism) with no difference between apical and basolateral application. When applied as a PTH antagonist, nlePTH displayed dose-dependent antagonism of PTH inhibition of Na/Pi cotransport on the apical surface, failing to have an effect on the basolateral surface. Independent of addition to the apical or basolateral cell surface, nlePTH had only weak stimulatory effect on production of cAMP, whereas high levels of IP3 could be measured after addition of this PTH analog to either cell surface. Also an antagonistic action of nlePTH on PTH-dependent generation of the internal messengers, cAMP and IP3, was observed; at the apical and basolateral cell surface nlePTH reduced PTH-dependent generation of cAMP, while PTH-dependent generation of IP3 was only reduced by nlePTH at the apical surface.Pertussis toxin (PT) preincubation produced an attenuation of both PTH-dependent inhibition of Na/Pi cotransport and IP3 generation while producing an enhancement of PTH-dependent cAMP generation; these effects displayed no cell surface polarity, suggesting that PTH action through either adenylate cyclase or phospholipase C was transduced through similar sets of G-proteins at each cell surface.It is concluded that apparent receptor activities with high and low affinity for PTH exist on both cell surfaces; those with apparent high affinity seem to be coupled preferentially to phospholipase C and those with apparent low affinity to adenylate cyclase. The differences in apparent affinity of receptor events coupled to adenylate cyclase and the differences in PTH/nlePTH interaction on the two cell surfaces are suggestive of the existence of differences in apparent PTH-receptor activities on the two cell surfaces.  相似文献   

6.
Epithelial layers of LLC-PK1/PKE20 cells, a renal epithelial cell line which expresses Na+/H+ exchange activities in the apical as well as basolateral membrane domains, are examined in the single cell mode by microspectrofluorometry. We provide evidence that basolateral Na+/H+ exchange is more sensitive to amiloride inhibition than is apical Na+/H+ exchange. Furthermore, we demonstrate that the two exchange activities differ in their regulatory control: kinase A activation (forskolin, 8-Br-cAMP) leads to inhibition of both exchange activities, whereas kinase C activation (phorbol ester) stimulates basolateral and inhibits apical Na+/H+ exchange. Thus, renal epithelial cells may contain two Na+/H+ exchange activities: an apical ("epithelial") and basolateral ("housekeeping") which may serve different cellular functions and are under separate regulatory controls.  相似文献   

7.
Summary The renal cell line LLC-PK1 cultured on a membrane filter forms a functional epithelial tissue. This homogeneous cell population exhibits rheogenic Na-dependentd-glucose coupled transport. The short-circuit current (I sc) was acccounted for by net apical-to-basolaterald-glucose coupled Na flux, which was 0.53±0.09(8) eq cm–2hr–1, andI sc, 0.50±0.50(8) eq cm–2hr–1. A linear plot of concurrent net Na vs. netd-glucose apical-to-basolateral fluxes gave a regression coefficient of 2.08. As support for a 21 transepithelial stoichiometry, sodium was added in the presence ofd-glucose and the response ofI sc analyzed by a Hill plot. A slope of 2.08±0.06(5) was obtained confirming a requirement of 2 Na for 1d-glucose coupled transport. A Hill plot ofI sc increase to addedd-glucose in the presence of Na gave a slope of 1.02±0.02(5). A direct determination of the initial rates of Na andd-glucose translocation across the apical membrane using phlorizin, a nontransported glycoside competitive inhibitor to identify the specific coupled uptake, gave a stoichiometry of 2.2 A coupling ratio of 2 for Na,d-glucose uptake, doubles the potential energy available for Na-gradient coupledd-glucose transport. In contrast to coupled uptake, the stoichiometry for Na-dependentphlorizin binding was 1.1±0.1(8) from Hill plot analyses of Na-dependent-phlorizin binding as a function of [Na]. Although occurring at the same site the process of Na-dependent binding of phlorizin differs from the binding and translocation ofd-glucose. Our results support a two-step, two-sodium model for Na-dependentd-glucose cotransport; the initial binding to the cotransporter requires a single Na andd-glucose, a second Na then binds to the ternary complex resulting in translocation.  相似文献   

8.
Summary The present study was designed to investigate the apical and basolateral transport processes responsible for intracellular pH regulation in the thin descending limb of Henle. Rabbit thin descending limbs of long-loop nephrons were perfused in vitro and intracellular pH (pH i ) was measured using BCECF. Steady-state pH i in HEPES buffered solutions (pH 7.4) was 7.18±0.03. Following the removal of luminal Na+, pH i decreased at a rate of 1.96±0.37 pH/min. In the presence of luminal amiloride (1mm), the rate of decrease of pH i was significantly less, 0.73±0.18 pH/min. Steady-state pH i decreased 0.18 pH units following the addition of amiloride (1mm) to the lumen (Na+ 140mm lumen and bath). When Na+ was removed from the basolateral side of the tubule, pH i decreased at a rate of 0.49±0.05 pH/min. The rate of decrease of pH i was significantly less in the presence of 1mm basolateral amiloride, 0.29±0.04 pH/min. Addition of 1mm amiloride to the basolateral side (Na+ 140mm lumen and bath) caused steady-state pH i to decrease significantly by 0.06 pH units. When pH i was acutely decreased to 5.87±0.02 following NH4Cl removal (lumen, bath), pH i failed to recover in the absence of Na+ (lumen, bath). Addition of 140mm Na+ to the lumen caused pH i to recover at a rate of 2.17±0.59 pH/min. The rate of pH i recovery was inhibited 93% by 1mm luminal amiloride. When 140mm Na+ was added to the basolateral side, pH i recovered only partially at 0.38±0.07 pH/min. Addition of 1mm basolateral amiloride inhibited the recovery of pH i , by 97%. The results demonstrate that the rabbit thin descending limb of long-loop nephrons possesses apical and basolateral Na+/N+ antiporters. In the steady state, the rate of Na+-dependent H+ flux across the apical antiporter exceeds the rate of Na+-dependent H+ flux via the basolateral antiporter. Recovery of pH i following acute intracellular acidification is Na+ dependent and mediated primarily by the luminal antiporter.  相似文献   

9.
Summary Na, K-ATPase function was studied in order to evaluate the mechanism of increased colonic Na+ transport during early postnatal development. The maximum Na+-pumping activity that was represented by the equivalent short-circuit current after addition of nystatin (I sc N ) did not change during postnatal life or after adrenalectomy performed in 16-day-old rats.I sc N was entirely inhibited by ouabain; the inhibitory constant was 0.1mm in 10-day-old (young) and 0.4mm in 90-day-old (adult) rats. The affinity of the Na, K pump for Na+ was higher in young (11mm) than in adult animals (19mm). The Na, K-ATPase activity (measured after unmasking of latent activity by treatment with sodium dodecylsulfate) increased during development and was also not influenced by adrenalectomy of 16-day-old rats. The inhibitory constant for ouabain (K I ) was not changed during development (0.1–0.3mm). Specific [3H]ouabain binding to isolated colonocytes increased during development (19 and 82 pmol/mg protein), the dissociation constant (K D ) was 8 and 21 m in young and adult rats, respectively. The Na+ turnover rate per single Na, K pump, which was calculated fromI sc N and estimated density of binding sites per cm2 of tissue was 500 in adult and 6400 Na+/min·site in young rats. These data indicate that the very high Na+ transport during early postnatal life reflects an elevated turnover rate and increased affinity for Na+ of a single isoform of the Na, K pump. The development of Na+ extrusion across the basolateral membrane is not directly regulated by corticosteroids.  相似文献   

10.
Summary These experiments were designed to determine whether proton-driven86Rb uptake was present in apical membrane vesicles prepared from rat ileum. The uptake of86Rb was approximately 300 to 350% greater in the presence of a 100-fold H+ gradient than in its absence and was greater at 1, 2 and 5 minutes (overshoot) than that at 90 minutes. Proton-driven86Rb uptake was decreased by 20% in TMA-nitrate compared to that in TMA-gluconate. 0.3mm amiloride did not significantly inhibit proton-driven86Rb uptake; in contrast, proton-driven22Na uptake was significantly inhibited by 0.3mm amiloride by 34%. Similarly, 25mm KCl inhibited proton-driven86Rb uptake more than that of22Na, while the inhibition of proton-driven22Na uptake by 25mm NaCl was greater than that of86Rb. In additional studies intravesicular acidification measured by acridine orange fluorescence was demonstrated in the presence of an out-wardly directed K gradient. These studies demonstrate that a proton gradient stimulates86Rb uptake and a K gradient induces intravesicular acidification; and that these fluxes are mediated by a K/H exchange distinct from Na/H exchange which is also present in this membrane. We conclude that a specific exchange process for K/H is located in ileal apical membrane vesicles.  相似文献   

11.
Summary In intact ileal mucosa, uptake of SO4 across the brush border membrane requires the presence of Na and is saturable, withK1/2=1.3mm at 140mm Na (P.L. Smith, S.A. Orellana & M. Field, 1981.J. Membrane Biol. 63:199–206). The present study examines the substrate specificities and transport stoichiometry of the Na-dependent SO4 uptake process. The effects of variations in medium anion and cation composition on lumen-to-epithelium influx of SO4 (J me SO4 ) were determined under short-circuit conditions.J me SO4 is inhibited by thiosulfate, but not by phosphate, methylsulfate, vanadate or taurocholate. Cl is weakly inhibitory. Uptake of SO4 is poorly supported by Li, and is unaffected by K, indicating a specific dependence on Na. At low SO4 concentration (0.22mm),J me SO4 is a hyperbolic function of medium Na concentration; the corresponding Hill plot is linear with a slope of 1.0, suggesting a transport stoichiometry of 1 Na: 1 SO4. At high SO4 concentration (6.7mm), the Na-dependent SO4 velocity curve is sigmoidal and yields a Hill plot which is again linear but has a slope of 1.56, suggesting transport of more than 1 Na per SO4. SO4 uptake in presence of Na exhibits a dependence on medium pH. At 0.22mm SO4 and 140mm Na,J me SO4 was doubled by lowering pH from 7.4 to 6.8. However, at 6.7mm SO4 and 140mm Na, changing pH had no effect onJ me SO4 over the range 6.8 to 8.5. The pH dependence ofJ me SO4 at 6.7mm SO4 was restored when medium Na was lowered to 3mm, suggesting that pH sensitivity is a function of the concentration of preformed NaSO 4 ion pair. The results suggest that SO4 influx across the ileal brush border occurs by electroneutral Na+/NaSO 4 or Na+/H+/SO 4 2– cotransport, the former being favored by high concentrations of Na and SO4.  相似文献   

12.
Summary The apical membrane of rabbit urinary bladder can be functionally removed by application of nystatin at high concentration if the mucosal surface of the tissue is bathed in a saline which mimics intracellular ion concentrations. Under these conditions, the tissue is as far as the movement of univalent ions no more than a sheet of basolateral membrane with some tight junctional membrane in parallel. In this manner the Na+ concentration at the inner surface of the basolateral membrane can be varied by altering the concentration in the mucosal bulk solution. When this was done both mucosal-to-serosal22Na flux and net change in basolateral current were measured. The flux and the current could be further divided into the components of each that were either blocked by ouabain or insensitive to ouabain. Ouabain-insensitive mucosal-to-serosal Na+ flux was a linear function of mucosal Na+ concentration. Ouabain-sensitive Na+ flux and ouabain-sensitive, Na+-induced current both display a saturating relationship which cannot be accounted for by the presence of unstirred layers. If the interaction of Na+ with the basolateral transport process is assumed to involve the interaction of some number of Na+ ions,n, with a maximal flux,M max, then the data can be fit by assuming 3.2 equivalent sites for interaction and a value forM max of 287.8pm cm–2 sec–1 with an intracellular Na concentration of 2.0mm Na+ at half-maximal saturation. By comparing these values with the ouabain-sensitive, Na+-induced current, we calculate a Na+ to K+ coupling ratio of 1.40±0.07 for the transport process.  相似文献   

13.
Summary We have analyzed the mechanism of Na+-dependent pHi; recovery from an acid load in A6 cells (an amphibian distal nephron cell line) by using the intracellular pH indicator 27-bis(2-carboxyethyl)5, 6 carboxyfluorescein (BCECF) and single cell microspectrofluorometry. A6 cells were found to express Na+/H+-exchange activity only on the basolateral membrane: Na+/H+-exchange activity follows simple saturation kinetics with an apparent K mfor Na+ of approximately 11 mm; it is inhibited in a competitive manner by ethylisopropylamiloride (EIPA). This Na+/H+-exchange activity is inhibited by pharmacological activation of protein kinase A (PKA) as well as of protein kinase C (PKC). Addition of arginine vasopressin (AVP) either at low (subnanomolar) or at high (micromolar) concentrations inhibits Na+/H+-exchange activity; AVP stimulates IP3 production at low concentrations, whereas much higher concentrations are required to stimualte cAMP formation. These findings suggest that in A6 cells (i) Na+/H+-exchange is located in the basolateral membrane and (ii) PKC activation (heralded by IP3 turnover) is likely to be the mediator of AVP action at low AVP concentrations.This work was supported by the Swiss National Science Foundation (Grant No. 32-30785.91), the Stiftung für wissenschaftliche Forschung an der Universität Zürich, the Hartmann-Müller Stiftung, the Sandoz-Stiftung, the Roche Research Foundation, and the Geigy Jubiläumsstiftung. Prof. Dr. V. Casavola and Dr. R. Guerra were supported by a research grant, No. 91.02470.CT14 of the Consiglio Nazionale della Ricerche (C.N.R.) We are grateful to Prof. Dr. B.C. Rossier of the Institute of Pharmacology of Lausanne (Switzerland) for the gift of the A6 cells, to H.P. Gaeggeler for the supply of the necessary culture media and to Jutka Forgo for her excellent help in the day-to-day culturing of the A6 cells. The secretarial assistance of D. Rossi is gratefully acknowledged.  相似文献   

14.
15.
Summary Cell Na activity,a Na c , was measured in the short-circuited frog skin by simulaneous cell punctures from the apical surface with open-tip and Na-selective microelectrodes. Skins were bathed on the serosal surface with NaCl Ringer and, to reduce paracellular conductance, with NaNO3 Ringer on the apical surface. Under control conditionsa Na c averaged 8±2mm (n=9,sd). Apical addition of amiloride (20 m) or Na replacement reduceda Na c to 3mm in 6–15 min. Sequential decreases in apical [Na] induced parallel reductions ina Na c and cell current,I c . On restoring Na after several minutes of exposure to apical Na-free solutionI c rose rapidly to a stable value whilea Na c increased exponentially, with a time constant of 1.8±0.7 min (n=8). Analysis of the time course ofa Na c indicates that the pump Na flux is linearly related toa Na c in the range 2–12mm. These results indicate thata Na c plays an important role in relating apical Na entry to basolateral active Na flux.  相似文献   

16.
A Cl/HCO3 exchanger mediates HCO3 extrusion across rat jejunal basolateral membrane. Previous studies demonstrated that anion antiport activity is positively affected by Na, but evidence was given that this cation is not translocated by the carrier protein. Basolateral membranes isolated from rat jejunum were used to give more insight on Na effect. Uptake studies, performed together with vesicle sidedness determinations, indicated that the greatest stimulation of Cl-dependent HCO3 uptake occurs when Na is present at both vesicle surfaces. The kinetic dependence of Cl/HCO3 exchange on equal intra- and extravesicular Na concentration showed a hyperbolic relationship, and the calculated kinetic parameters were V max=0.153 ± 0.006 nmol mg protein-1 sec-1, K m =23.0 Mm. Ion replacement studies indicated that Na can be partially substituted only by Li and not by other monovalent cations. Results of this study suggest that Na could act as a nonessential activator of the Cl/HCO3 exchanger. A possible role of the Na-sensitive modifier site in the physiology of jejunal enterocyte is suggested.  相似文献   

17.
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act on Na,K-ATPase.  相似文献   

18.
Summary WhenNecturus gallbladder epithelium is treated with ouabain the cells swell rapidly for 20–30 minutes then stabilize at a cell volume 30% greater than control. The cells then begin to shrink slowly to below control size. During the initial rapid swelling phase cell Na activity, measured with microelectrodes, rises rapidly. Calculations of the quantity of intracellular Na suggest that the volume increase is due to NaCl entry. Once the peak cell volume is achieved, the quantity of Na in the cell does not increase, suggesting that NaCl entry has been inhibited. We tested for inhibition of apical NaCl entry during ouabain treatment either by suddenly reducing the NaCl concentration in the mucosal bath or by adding bumetanide to the perfusate. Both maneuvers caused rapid cell shrinkage during the initial phase of the ouabain experiment, but had no effect on cell volume if performed during the slow shrinkage period. The lack of sensitivity to the composition of the mucosal bath during the shrinkage period occurred because of apparent feedback inhibition of NaCl entry. Another maneuver, reduction of the Na in the serosal bath to 10mm, also resulted in inhibition of apical NaCl uptake. The slow shrinkage which occurred after one or more hours of ouabain treatment was sensitive to the transmembrane gradients for K and Cl across the basolateral membrane and could be inhibited by bumetanide. Thus during pump inhibition inNecturus gallbladder epithelium cell Na and volume first increase due to continuing NaCl entry and then cell volume slowly decreases due to inhibition of the apical NaCl entry and activation of basolateral KCl exit.  相似文献   

19.
Summary Apical Na+ entry into frog skin epithelium is widely presumed to be electrodiffusive in nature, as for other tight epithelia. However, in contrast to rabbit descending colon andNecturus urinary bladder, the constant field equation has been reported to fit the apical sodium current (N Na)-membrane potential (mc) relationship over only a narrow range of apical membrane potentials or to be inapplicable altogether. We have re-examined this issue by impaling split frog skins across the basolateral membrane and examining the current-voltage relationships at extremely early endpoints in time after initiating pulses of constant transepithelial voltage. In this study, the rapid transient responses in mc were completed within 0.5 to 3.5 msec. Using endpoints to 1 to 25 msec, the Goldman equation provided excellent fits of the data over large ranges in apical potential of 300 to 420 mV, from approximately –200 to about +145 mV (cell relative to mucosa). Split skins were also studied when superfused with high serosal K+ in order to determine whether theI Na-mc relationship could be generated purely by transepithelial measurements. Under these conditions, the basolateral membrane potential was found to be –10±3 mV (cell relative to serosa, mean±se), the basolateral fractional resistance was greater than zero, and the transepithelial current was markedly and reversibly reduced. For these reasons, use of high serosal K+ is considered inadvisable for determining theI Na-mc relationship, at least in those tissues (such as frog skin) where more direct measurements are technically feasible. Analysis of theI Na-mc relationships under baseline conditions provided estimates of intracellular Na+ concentration and of apical Na+ permeability of 9 to 14mm and of 3 × 10–7 cm · sec–1, respectively, in reasonable agreement with estimates obtained by different techniques.  相似文献   

20.
Basolateral membrane potassium conductance of A6 cells   总被引:2,自引:0,他引:2  
Summary To study the properties of the basolateral membrane conductance of an amphibian epithelial cell line, we have adapted the technique of apical membrane selective permeabilization (Wills, N.K., Lewis, S.A., Eaton, D.C., 1979b, J. Membrane Biol. 45:81–108). Monolayers of A6 cells cultured on permeable supports were exposed to amphotericin B. The apical membrane was effectively permeabilized, while the high electrical resistance of the tight junctions and the ionic selectivity of the basolateral membrane were preserved. Thus the transepithelial current-voltage relation reflected mostly the properties of the basolateral membrane. Under basal conditions, the basolateral membrane conductance was inward rectifying, highly sensitive to barium but not to quinidine. After the induction of cell swelling either by adding chloride to the apical solution or by lowering the osmolarity of the basolateral solution, a large out-ward-rectifying K+ conductance was observed, and addition of barium or quinidine to the basolateral side inhibited, respectively, 82.4±1.9% and 90.9±1.0% of the transepithelial current at 0 mV. Barium block was voltage dependent; the half-inhibition constant (K i) varied from 1499±97 m at 0 mV to 5.7±0.5 m at –120 mV.Cell swelling induces a large quinidine-sensitive K+ conductance, changing the inward-rectifying basolateral membrane conductance observed under basal conditions into a conductance with outward-rectifying properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号