首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the intracellular regulatory pathways involved in the adrenalin-stimulated chloride secretion across T84 cells were investigated. Biphasic characteristics were observed in the Isc response to the basolateral addition of adrenalin (0.25 nM-100 microM). The biphasic response was almost abolished by removing ambient Cl(-). Chloride secretion was found to depend on the activities of basolaterally located Na+-K+-2Cl(-) cotransporters and K+ channels. The alpha-adrenoceptor antagonist phentolamine did not have any effect on either phase of adrenalin-induced Isc, while after pretreatment of the beta-adrenoceptor antagonist propranolol, the adrenalin-induced Isc was substantially abolished, suggesting the biphasic response may be mediated by the beta-adrenoceptor. Under whole cell patch-clamp conditions, T84 cells responded to adrenalin with a rise in inward current. The current, which exhibited a linear I-V relationship and time- and voltage-independent characteristics, was inhibited by the chloride channel blocker DPC and the reverse potential was close to the equilibrium potential for Cl(-) (0 mV), implying that the current was Cl(-) selective. When preloaded with a Ca2+-chelating agent, BAPTA/AM did not affect the Isc response to adrenalin, whereas the Isc was destroyed by pretreating the cells with an adenyl cyclase inhibitor, MDL12330A. These observations were further supported by the intracellular [cAMP] measurement experiment, indicating that adrenalin induced chloride secretion could be mediated by a beta-adrenoceptor only involving cAMP as an intracellular second messenger.  相似文献   

2.
The water residence time and diffusional water permeability in colonic epithelial T84 cancer cells was measured using (1)H NMR spectroscopy; the values estimated were 35.2+/-2.8 ms and (7.4+/-0.6)x10(-3)cms(-1), respectively. Water permeability was inhibited to approximately 10% of its original value by the mercurial diuretic, p-chloromercuribenzenesulfonate (PCMBS; 1mM), and fully restored by dithiothreitol (DTT; 1mM). The permeability was also inhibited reversibly to approximately 55%, by extracellular glibenclamide (1mM), an inhibitor of some ATP-binding cassette (ABC) transporters, including the cystic fibrosis transmembrane conductance regulator (CFTR). Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IMBX; 0.1-1mM) and the adenylate cyclase activator, forskolin (0.1-1mM) did not alter water permeability. It is concluded that in T84 cells water diffuses through the membrane lipid bilayer and via channels that are inhibited by PCMBS, including the channels that are known to be inhibited by glibenclamide.  相似文献   

3.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a novel hypothalamic peptide, which has been shown to exert various functions in a number of tissues, including exocrine and endocrine tissues. The present study investigated the role of local PACAP in the control of anion secretion by the human colonic T84 cell. Both bioactive forms of PACAP-27 and PACAP-38 gave rise to a dose-dependent increase in the short-circuit current (I(SC)). However, there was a reversal in the order of potency observed at different concentration ranges for the two bioactive forms. PACAP-27 was greater than PACAP-38 when the peptide concentrations were below 10 n m; PACAP-38 was greater than PACAP-27 in the range of 10-80 n m. The effects of both PACAP forms were restricted to the apical aspect of the T84 cell. The I(SC)responses to both PACAP-27 and PACAP-38 were suppressed respectively by the non-selective Cl(-)channel blocker, diphenylamine-dicarboxylic acid (DPC), by the Ca(2+)dependent Cl(-)channel blocker, diisothiocyanatostilbene-disulfonic acid (DIDS) and by the Ca(2+)chelator, BAPTA-AM, indicating the involvement of Ca(2+). The expression of PACAP was demonstrated and localized specifically to the perinuclear cytoplasm of the T84 cell using immunocytochemistry, indicating its epithelial origin. Thus, the present data suggest that, in addition to the well-known cAMP-dependent pathway, PACAP may play a role in regulating colonic Cl(-)secretion via a Ca(2+)-dependent pathway, perhaps through two distinct PACAP receptor subtypes. Moreover, the regulation of anion secretion by T84 cells may be mediated by locally formed PACAP in an autocrine or paracrine fashion.  相似文献   

4.
J.A. Tabcharani  W. Low  D. Elie  J.W. Hanrahan   《FEBS letters》1990,270(1-2):157-164
We have studied the modulation and pharmacological properties of two anion channels in T84 cells by recording single channel and transepithelial currents. One channel had an outwardly rectifying current-voltage I/V curve, was rarely active in cell-attached patches, and was unaffected by cAMP. The other channel had lower conductance (8.7 pS at 37°C) and a more ohmic I/V relationship. Exposure to cAMP increased the probability of observing low-conductance channel activity in cell-attached patches> 6-fold. Extracellular DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) or IAA-94 (an indanyloxyacetic acid) inhibited the outward rectifier but did not affect the low-conductance channel or cAMP-stimulated transepithelial current. These results suggest the low-conductance Cl channel may contribute to apical membrane conductance during cAMP-stimulated secretion.  相似文献   

5.
The aim of our study was to determine whether a meal modifies the antisecretory response induced by PYY and the structural requirements to elicit antisecretory effects of analogue PYY(22–36) for potential antidiarrhea therapy. The variations in short-circuit current (Isc) due to the modification of ionic transport across the rat intestine were assessed in vitro, using Ussing chambers. In fasted rats, PYY induced a dose- and time-dependent reduction in Isc, with a sensitivity threshold at 5 × 10−11 M (ΔIsc −2 ± 0.5 μA/cm2). The reduction was maximal at 10−7 M (Isc −23 ± 2 μA/cm2), and the concentration producing half-maximal inhibition was 10−9 M. At 10−7 M, reduction of Isc by PYY reached 90% of response to 5 × 10−5 M bumetanide. The PYY effect was partly reversed by 10−5 M forskolin (Isc +13.43 ± 2.91 μA/h·cm2, p < 0.05) or 10−3 M dibutyryl adenosine 3′,5′ cyclic monophosphate (Isc +12 ± 1.69 μA/cm2, p < 0.05). Naloxone and tetrodotoxin did not alter the effect of PYY. In addition, PYY and its analogue P915 reduced net chloride ion secretion to 2.85 and 2.29 μEq/cm2 (p < 0.05), respectively. The antisecretory effect of PYY was accompanied by dose- and time-dependent desensitization when jejunum was prestimulated by a lower dose of peptide. The antisecretory potencies exhibited by PYY analogues required both a C-terminal fragment (22–36) and an aromatic amino acid residue (Trp or Phe) at position 27. At 10−7 M the biological activity of PYY was lower in fed than fasted rats (p < 0.001). Our results confirm the antisecretory effect of PYY, but show that the fed period is accompanied by desensitization, similar to the transient desensitization observed in the fasted period with cumulative doses. This suggests that PYY may act as a physiological mediator that reduces intestinal secretion.  相似文献   

6.
The cytoskeleton is required for multiple cellular events including endocytosis and the transfer of cargo within the endocytic system. Polarized epithelial cells are capable of endocytosis at either of their distinct apical or basolateral plasma membrane domains. Actin plays a role in internalization at both cell surfaces. Microtubules and actin are required for efficient transcytosis and delivery of proteins to late endosomes and lysosomes. Microtubules are also important in apical recycling pathways and, in some polarized cell types, basolateral recycling requires actin. The microtubule motor proteins dynein and kinesin and the class I unconventional myosin motors play a role in many of these trafficking steps. This review examines the endocytic pathways of polarized epithelial cells and focuses on the emerging roles of the actin cytoskeleton in these processes.  相似文献   

7.
8.
Among the seven serotypes (A–G), type A botulinum neurotoxin (BoNT/A) is the most prevalent etiologic agent and the most potent serotype to cause foodborne botulism, characterized by flaccid muscle paralysis. Upon ingestion, BoNT/A crosses epithelial cell barriers to reach lymphatic and circulatory systems and blocks acetylcholine release at the pre-synaptic cholinergic nerve terminals of neuromuscular junctions (NMJs) resulting in paralysis. One of the unique features of BoNT/A intoxication is its neuroparalytic longevity due to its persistent catalytic activity. The persistent presence of the toxin inside the cell can induce host cell responses. To understand the pathophysiology and host response at the cellular level, gene expression changes upon exposure of human HT-29 colon carcinoma (epithelial) and SH-SY5Y neuroblastoma cell lines to BoNT/A complex were investigated using microarray analysis. In HT-29 cells, 167 genes were up-regulated while 60 genes were down-regulated, whereas in SH-SY5Y cells about 223 genes were up-regulated and 18 genes were down-regulated. Modulation of genes and pathways involved in neuroinflammatory, ubiquitin–proteasome degradation, phosphatidylinositol, calcium signaling in SH-SY5Y cells, and genes relevant to focal adhesion, cell adhesion molecules, adherens and gap junction related pathways in HT-29 cells suggest a massive host response to BoNT/A. A clear differential response in epithelial and neuronal cells indicates that the genes affected may play a distinct role in BoNTs cellular mode of action, involving these two types of host cells.  相似文献   

9.
10.
Summary Forskolin (i.e, cAMP)-modulation of ion transport pathways in filter-grown monolayers of the Cl-secreting subclone (19A) of the human colon carcinoma cell line HT29 was studied by combined Ussing chamber and microimpalement experiments.Changes in electrophysiological parameters provoked by serosal addition of 10–5 m forskolin included: (i) a sustained increase in the transepithelial potential difference (3.9±0.4 mV). (ii) a transient decrease in transepithelial resistance with 26±3 · cm2 from a mean value of 138±13 · cm2 before forskolin addition, (iii) a depolarization of the cell membrane potential by 24±1 mV from a resting value of –50±1 mV and (iv) a decrease in the fractional resistance of the apical membrane from 0.80±0.02 to 0.22±0.01. Both, the changes in cell potential and the fractional resistance, persisted for at least 10 min and were dependent on the presence of Cl in the medium. Subsequent addition of bumetanide (10–4 m), an inhibitor of Na/K/2Cl cotransport, reduced the transepithelial potential, induced a repolarization of the cell potential and provoked a small increase of the transepithelial resistance and fractional apical resistance. Serosal Ba2+ (1mm), a known inhibitor of basolateral K+ conductance, strongly reduced the electrical effects of forskolin. No evidence was found for a forskolin (cAMP)-induced modulation of basolateral K+ conductance.The results suggest that forskolin-induced Cl secretion in the HT-29 cl.19A colonic cell line results mainly from a cAMP-provoked increase in the Cl conductance of the apical membrane but does not affect K+ or Cl conductance pathways at the basolateral pole of the cell. The sustained potential changes indicate that the capacity of the basolateral transport mechanism for Cl and the basal Ba2+-sensitive K+ conductance are sufficiently large to maintain the Cl efflux across the apical membrane. Furthermore, evidence is presented for an anomalous inhibitory action of the putative Cl channel blockers NPPB and DPC on basolateral conductance rather than apical Cl conductance.  相似文献   

11.
Dysadherin is a recently found anti-adhesion molecule, therefore detection and down regulation of its expression is promising in cancer treatment. The up-regulation of dysadherin contributes to colon cancer recurrence and metastasis. Dysadherin also has connections with cytoskeletal proteins and it can cause alterations in the organisation of filamentous actin (F-actin) in metastatic cancers. In this study, hypericin (HYP)-mediated photodynamic therapy (PDT) was performed in two different grade colon adenocarcinoma cell lines HT-29 (Grade I) and Caco-2 (Grade II). Cells were treated with 0.04, 0.08 or 0.15 μM HYP concentrations and irradiated with (4 J/cm2) fluorescent lamps. The effects of HYP was examined 16 and 24 h after the activation. We investigated for the first time the effect of HYP-mediated PDT on the expression of dysadherin and F-actin organisation. According to the results, HYP mediated PDT caused a decrease in gene expression and immunofluorescence staining of dysadherin and an increase in actin stress fibers and actin aggregates in HT-29 and Caco-2 cell lines. Besides, cytotoxicity, number of floating cells and apoptotic index changed depending on the cell type, HYP concentration and incubation time. We have demonstrated for the first time that dysadherin and F-actin could be target molecules for HYP-mediated PDT in HT-29 and Caco-2 colon cancer cell lines.  相似文献   

12.
Summary Cl-sensitive microelectrodes were employed to investigate the mechanism of Cl secretion by canine tracheal epithelium. In control tissues with a mean calculated short-circuit current (I sc) of 18.1 A/cm2, the intracellular Cl activity (a Cl i ) was 47.2mm. This value is 30.1mm (or 27.0 mV) above the electrochemical equilibrium for Cl across the apical membrane. Epinephrine, which stimulates Cl secretion, increased the calculatedI sc to 160 A/cm2 and decreaseda Cl i to 32.2mm, a value only 11.2mm (or 10.9 mV) above equilibrium for the apical membrane. These results indicate a secretagogue induced decrease in the impedance to Cl exit from the cell via the apical membrane. From these and prior measurements we calculate that epinephrine-induced Cl efflux from the cell can occur by simple diffusion across the apical membrane. Further implications of these calculations are also discussed.  相似文献   

13.
14.
Steady state Cl? flux across the Ehrlich mouse ascites cell membrane was studied when gluconate replaced Cl? in the external medium. Saturation behavior was observed; K12 was 23.9 mM Cl? and V was 758 μmol · g?1 dry weight · h?1. The cells lost K+, Cl? and H2O, consistent with relative impermeability to gluconate, and the Cl? efflux rate coefficient was elevated. The results indicate that a major portion of Cl? exchange occurs as a membrane transport process and suggest that the process is sensitive to intracellular Cl? levels.  相似文献   

15.
Summary We demonstrate that arachidonic acid (AA) stimulation of chloride transport across frog cornea is mediated via two independent pathways: (1) stimulation of prostaglandins and cAMP synthesis, and (2) a direct physical change in the membrane produced by substitution of different phospholipid acyl chains. AA is well known as a precursor in the synthesis of prostaglandins, which have been shown to stimulate cAMP synthesis and chloride transport in frog cornea. We show that frog cornea can convert exogenous AA to PGE2, but that in the presence of 10–5 m indomethacin both the conversion to PGE2 and stimulation of cAMP are completely blocked. However, with indomethacin the action of AA to stimulate chloride transport (as measured by SCC) remains, but peak height of the response is reduced to 57% of that found when AA alone is given. Similarly, we show that propranolol completely blocks cAMP stimulation, but stimulation of SCC is reduced to 45% of the original response. Therefore, cAMP appears to be responsible for roughly half of the observed stimulation in SCC. By gas chromatographic analysis we show that significant quantities of AA can rapidly substitute into membrane phospholipids of corneal epithelium and L929 cells following the addition of AA to the medium. Modification of membrane phospholipid structure can affect membrane viscosity, membrane-bound enzyme activity, and the distribution and lateral mobility of integral proteins. It seems likely that such alterations in the properties of the membrane may modulate the rate of chloride transport, and this may constitute the second mechanism. Upon addition of AA, both mechanisms appear to stimulate chloride transport simultaneously, and are apparently additive. We show that prolonged exposure to AA results in a large incorporation of AA into phospholipid and consequently, a perturbation in the ratio of unsaturated to saturated fatty acids. We also find evidence of a compensatory cellular mechanism that alters the ratio of endogenously synthesized fatty acids and tends to reduce the membrane-perturbing effect of AA.  相似文献   

16.
Human platelets containing granule-bound [14C]serotonin were permeabilized, equilibrated at 0 degrees C with ATP and with various Ca2+ buffers and guanine nucleotides, and then incubated at 25 degrees C with or without a stimulatory agonist. Ca2+ alone induced the ATP-dependent secretion of [14C]serotonin (50% at a pCa of 5.1) but the sensitivity of secretion to Ca2+ was greatly enhanced by guanine nucleotides [6-fold by 100 microM GTP, 100-fold by 100 microM guanyl-5'-yl imidodiphosphate and greater than 500-fold by 100 microM guanosine 5'-O-(3-thiotriphosphate)] or by stimulatory agonists (10-fold by 2 units thrombin/ml and 4-fold by 1 microM 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine). When both GTP and a stimulatory agonist were added, they had synergistic effects on secretion. Cyclic GMP and GMP acted similarly to GTP. The effects of all these guanine nucleotides were inhibited by guanosine 5'-O-(2-thiodiphosphate), whereas those of stimulatory agonists were not. Our results demonstrate the presence in platelets of guanine nucleotide-dependent and independent mechanisms regulating the sensitivity of secretion to Ca2+.  相似文献   

17.
18.
Abstract. Cultivars of hexaploid wheat ( Triticum aestivum cvs. Chinese Spring or PI 178704) and derivatives containing chromosomes from both a cultivar and a wild, salt-tolerant species ( Lophopyrum elongatum or L. ponticum ) were compared to determine differences in growth, ion transport and ion accumulation under salt-stress. Two experiments were conducted in which plants were grown under saline and non-saline conditions and harvested at various lime intervals throughout ontogeny. Under salt-stress the growth rate of the cultivars, as compared to the growth rate of the derivatives, decreased more rapidly later in development. Transport rates from root to shoot of Na+ and Cl reached higher levels in the cultivars. The cultivars accumulated more Na+ and Cl and relatively less K+ in the shoot. The K+/Na+ ratio was higher in the derivatives than in the cultivars from which they were derived. The addition of chromosomes from Lophopyrum species into wheat altered ion accumulation, growth rates, and ion transport rates from root to shoot.  相似文献   

19.
The highly homologous ERM (ezrin/radixin/moesin) proteins, molecular cross-linkers which connect the cell membrane with the underlying cytoskeleton, have molecular weights of 81, 80 and 78 kDa respectively. We present data which shows significant variation in the molecular weight and presence of multiple forms of ERM proteins in different cell lines, such that specific antibodies to each protein are essential for unambiguous detection. Biochemical fractionation of MDCK cells demonstrates that although the individual ERM fractionation patterns are unaltered by cell density, the multiple forms of moesin each associate with different subcellular fractions. Since ERM proteins can exist in dormant or active conformations corresponding to their phosphorylation state, we propose that the partitioning of ERM proteins between subcellular compartments may depend on their activation status. In addition, we show that when the co-localization between ezrin and F-actin is disrupted by cytochalasin D, MDCK cells undergo a dramatic morphology change during which long, branching, ezrin-rich protrusions are formed. Consistent with other workers, our data suggest that maintenance of ezrin:F-actin interactions are required for the maintenance of normal cellular morphology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号