首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA barcoding is an effective approach for species identification and for discovery of new and/or cryptic species. Sanger sequencing technology is the method of choice for obtaining standard 650 bp cytochrome c oxidase subunit I (COI) barcodes. However, DNA degradation/fragmentation makes it difficult to obtain a full-length barcode from old specimens. Mini-barcodes of 130 bp from the standard barcode region have been shown to be effective for accurate identification in many animal groups and may be readily obtained from museum samples. Here we demonstrate the application of an alternative sequencing technology, the four-enzymes single-specimen pyrosequencing, in rapid, cost-effective mini-barcode analysis. We were able to generate sequences of up to 100 bp from mini-barcode fragments of COI in 135 fresh and 50 old Lepidoptera specimens (ranging from 53-97 year-old). The sequences obtained using pyrosequencing were of high quality and we were able to robustly match all the tested pyro-sequenced samples to their respective Sanger-sequenced standard barcode sequences, where available. Simplicity of the protocol and instrumentation coupled with higher speed and lower cost per sequence than Sanger sequencing makes this approach potentially useful in efforts to link standard barcode sequences from unidentified specimens to known museum specimens with only short DNA fragments.  相似文献   

3.
Molecular sexing is becoming an essential technique in understanding the sexual structure and dynamics of natural populations. Herein, we report on a triple-primer PCR method based on the last introns of the ZFX/Y alleles for sex identification in Bovidae, and its successful application to five endangered caprine species. The male samples generated a ~230 bp ZFX-specific fragment and a ~140 bp ZFY-specific fragment, and the female samples only generated the ~230 bp fragment. This method is very sensitive to the Y-linked fragment, thus effectively avoiding false negatives. Genomic DNA extracted from well preserved tissues, non-invasive samples and smoked meat are all usable for analysis with this method.  相似文献   

4.
The Argentine ant, Linepithema humile (Mayr, 1868), native to the Paraguay River in South America, was first discovered in Korea in 2019. With increasing reports of L. humile, its genetic variation according to domestic growth colonies and its effects on the domestic ecosystem should be studied. Here, the genomes of L. humile specimens found at three locations in Busan were analyzed for genetic changes. First, morphological observation of L. humile samples collected from the three sites showed no phenotypic differences among them. Next, single-nucleotide polymorphism (SNP)/insertion and deletion (INDEL) analyses on the genomic DNA from the three groups showed that in the 1-NIE sample, the most frequent mutations were G → A and C → T. The mutations A → C and T → G were confirmed in the 14-NIE and 19-NIE samples. Although the number of SNPs in the N section was small, sequences of 4681 bp (1-NIE), 4217 bp (14-NIE) and 4631 bp (19-NIE) in length were identified. From the INDEL length distribution of the three samples, most changes were associated with insertions and deletions of 1–2 bp. However, no heterogeneity was found in the population samples analyzed based on SNP data. Comparative analysis of the SNPs investigated revealed that 760 819 (11.72%) of the total 6 492 517 SNPs were found in common, demonstrating that the three groups analyzed had different genetic backgrounds. Overall, we have developed a method for analyzing the genetic diversity of L. humile invading the Republic of Korea, precisely classified its genetic characteristics and obtained genomic data on interspecies mutations, according to the local environment.  相似文献   

5.
Noninvasive genetic sampling of faecal pellets can be a valuable method for monitoring rare and cryptic wildlife populations, like the pygmy rabbit (Brachylagus idahoensis). To investigate this method's efficiency for pygmy rabbit monitoring, we evaluated the effect of sample age on DNA degradation in faecal pellets under summer field conditions. We placed 275 samples from known individuals in natural field conditions for 1–60 days and assessed DNA quality by amplifying a 294‐base‐pair (bp) mitochondrial DNA (mtDNA) locus and five nuclear DNA (nDNA) microsatellite loci (111–221 bp). DNA degradation was influenced by sample age, DNA type, locus length and rabbit sex. Both mtDNA and nDNA exhibited high PCR success rates (94.4%) in samples <1 day old. Success rates for microsatellite loci declined rapidly from 80.0% to 42.7% between days 5 and 7, likely due to increased environmental temperature. Success rates for mtDNA amplification remained higher than nDNA over time, with moderate success (66.7%) at 21 days. Allelic dropout rates were relatively high (17.6% at <1 day) and increased to 100% at 60 days. False allele rates ranged from 0 to 30.0% and increased gradually over time. We recommend collecting samples as fresh as possible for individual identification during summer field conditions. Our study suggests that this method can be useful for future monitoring efforts, including occupancy surveys, individual identification, population estimation, parentage analysis and monitoring of genetic diversity both of a re‐introduced population in central Washington and across their range.  相似文献   

6.
7.
The aim of this study was to develop a cost-effective genotyping method using high-quality DNA for human identification. A total of 21 short tandem repeats (STRs) and amelogenin were selected, and fluorescent fragments at 22 loci were simultaneously amplified in a single-tube reaction using locus-specific primers with 24-base universal tails and four fluorescent universal primers. Several nucleotide substitutions in universal tails and fluorescent universal primers enabled the detection of specific fluorescent fragments from the 22 loci. Multiplex polymerase chain reaction (PCR) produced intense FAM-, VIC-, NED-, and PET-labeled fragments ranging from 90 to 400 bp, and these fragments were discriminated using standard capillary electrophoretic analysis. The selected 22 loci were also analyzed using two commercial kits (the AmpFLSTR Identifiler Kit and the PowerPlex ESX 17 System), and results for two loci (D19S433 and D16S539) were discordant between these kits due to mutations at the primer binding sites. All genotypes from the 100 samples were determined using 2.5 ng of DNA by our method, and the expected alleles were completely recovered. Multiplex 22-locus genotyping using four fluorescent universal primers effectively reduces the costs to less than 20% of genotyping using commercial kits, and our method would be useful to detect silent alleles from commercial kit analysis.  相似文献   

8.
Yang G  Wang S  Wei H  Ping J  Liu J  Xu L  Zhang W 《Biotechnology letters》2012,34(4):721-728
Synthesis of long DNA fragments is often associated with mutations and requires multiple DNA manipulation steps. A novel DNA synthesis method, referred to as patch oligodeoxynucleotide synthesis (POS) to assembly long DNA fragments is presented here. This method involves connection of two types of oligodeoxynucleotides: long constructional oligonucleotides (COs) and short patch oligonucleotides (POs). Long COs were connected by a ligase with the aid of POs, which were complementary to both adjacent COs to help remove secondary structures during assembly. The partial double-stranded DNA template that was formed was then amplified by PCR. Accordingly, we synthesized SV40 polyadenylation signal sequences (187 bp), a codon-optimized yellow fluorescent protein gene (678 bp), and Rattus norvegicus catenin β1 (2,352 bp). This presented method can be broadly applied to synthesize DNA fragments of varying lengths with great convenience.  相似文献   

9.
The integration and structure of a transgene locus can have profound effects on the level and stability of transgene expression. We screened 28 transgenic birch (Betula platyphylla Suk.) lines transformed with an insect-resistance gene (bgt) using Agrobacterium tumefaciens. Among the transgenic plants, the copy number of transgene varied from one to four. A rearrangement or partial deletion had occurred in the process of T-DNA integration. T-DNA repeat formation, detected by reverse primer PCR, was found among randomly screened transgenic lines. Sequencing of the junctions between the T-DNA inserts revealed deletions of 19–589 bp and an additional 45 bp filler DNA sequence was inserted between the T-DNA repeats at one junction. Micro-homologous sequences (1–6 bp) were observed in the junctions between the T-DNA inserts. Using SiteFinding-PCR, a relatively high percentage of AT value was found for the flanking regions. Deletion of the right border repeat was observed in 12/18 of the T-DNA/plant junctions analyzed. The number of nucleotides deleted varied from 3 to 712. Deletions of 17–89 bp were observed in all left T-DNA/plant junctions analyzed. A vector backbone DNA sequence in the transgene loci was also detected using primer pairs outside the left and right T-DNA borders. Approximately 89.3% of the lines contained some vector backbone DNA. These observations revealed that it is important to check the specificity of the integration. A mechanism of T-DNA transport and integration is proposed for this long-lived tree species.  相似文献   

10.
The aim of this study was to use polymerase chain reaction (PCR) by amplifying DNA from bovine (Bos taurus) fetal cells recovered through uterine puncture and subsequent amniotic fluid aspiration and to compare the effectiveness of the PCR method with amniotic dihydrotestosterone (DHT) levels in gender determination. Amniotic DHT levels between sexes were significantly higher in males than in females in all periods except the period 91 to 120 d. The differences among the amniotic DHT levels at different gestation periods (61 to 90, 91 to 120, 121 to 150, 151 to 180, 181 to 210 d) were not significant in females but were significant in males in the period 61 to 90 d compared with three other periods. Sensitivity was equal to 97.8% (95% CI = 88.2% to 99.6%), and specificity was equal to 85.4% (95% CI = 80.0% to 97.6%). These two values correspond with a cutoff of DHT in amniotic fluid. Distributions of the two sex groups were classified according to the 192.1 pg/mL cutoff value. A total of 93 amniotic fluid samples were examined by PCR analysis. The sex determination of 91 samples by PCR and electrophoresis was in agreement with the visual sexes of the fetuses. In two amniotic fluid samples, DNA was not isolated, and thus no sex determination was made. Fetal gender was correctly identified by PCR in 44 of 45 males and in 47 of 48 females. In PCR, one band (at the length of 102 bp) and two bands (at the lengths of 102 and 226 bp) were observed respectively for female and male fetuses. It may be concluded that the levels of amniotic DHT and PCR might be used for embryo sexing in pregnant cows.  相似文献   

11.
Escherichia coli HUαβ, a major nucleoid-associated protein, organizes chromosomal DNA and facilitates numerous DNA transactions. Using isothermal titration calorimetry, fluorescence resonance energy transfer and a series of DNA lengths (8 bp, 15 bp, 34 bp, 38 bp and 160 bp) we established that HUαβ interacts with duplex DNA using three different nonspecific binding modes. Both the HU to DNA molar ratio ([HU]/[DNA]) and DNA length dictate the dominant HU binding mode. On sufficiently long DNA (≥ 34 bp), at low [HU]/[DNA], HU populates a noncooperative 34 bp binding mode with a binding constant of 2.1 ± 0.4 × 106 M− 1, and a binding enthalpy of + 7.7 ± 0.6 kcal/mol at 15 °C and 0.15 M Na+. With increasing [HU]/[DNA], HU bound in the noncooperative 34 bp mode progressively converts to two cooperative (ω∼20) modes with site sizes of 10 bp and 6 bp. These latter modes exhibit smaller binding constants (1.1 ± 0.2 × 105 M− 1 for the 10 bp mode, 3.5 ± 1.4 × 104 M− 1 for the 6 bp mode) and binding enthalpies (4.2 ± 0.3 kcal/mol for the 10 bp mode, − 1.6 ± 0.3 kcal/mol for the 6 bp mode). As DNA length increases to 34 bp or more at low [HU]/[DNA], the small modes are replaced by the 34 bp binding mode. Fluorescence resonance energy transfer data demonstrate that the 34 bp mode bends DNA by 143 ± 6° whereas the 6 bp and 10 bp modes do not. The model proposed in this study provides a novel quantitative and comprehensive framework for reconciling previous structural and solution studies of HU, including single molecule (force extension measurement), fluorescence, and electrophoretic gel mobility-shift assays. In particular, it explains how HU condenses or extends DNA depending on the relative concentrations of HU and DNA.  相似文献   

12.
Historical and other poor‐quality samples are often necessary for population genetics, conservation, and forensics studies. Although there is a long history of using mtDNA from such samples, obtaining and genotyping nuclear loci have been considered difficult and error‐prone at best, and impossible at worst. The primary issues are the amount of nuclear DNA available for genotyping, and the degradation of the DNA into small fragments. Single nucleotide polymorphisms offer potential advantages for assaying nuclear variation in historical and poor‐quality samples, because the amplified fragments can be very small, varying little or not at all in size between alleles, and can be amplified efficiently by polymerase chain reaction (PCR). We present a method for highly multiplexed PCR of SNP loci, followed by dual‐fluorescence genotyping that is very effective for genotyping poor‐quality samples, and can potentially use very little template DNA, regardless of the number of loci to be genotyped. We genotyped 19 SNP loci from DNA extracted from modern and historical bowhead whale tissue, bone and baleen samples. The PCR failure rate was < 1.5%, and the genotyping error rate was 0.1% when DNA samples contained > 10 copies/µL of a 51‐bp nuclear sequence. Among samples with ≤ 10 copies/µL DNA, samples could still be genotyped confidently with appropriate levels of replication from independent multiplex PCRs.  相似文献   

13.
为了避免四酶焦测序体系中由于三磷酸腺苷双磷酸酶(apyrase)造成的测序结果偏差, 文章建立了一种定量性能好的无三磷酸腺苷双磷酸酶的三酶焦测序体系。方法是将生物素修饰的DNA模板、荧光素酶和ATP硫酸化酶固定在磁性微球表面进行焦测序反应, 当加入一种dNTP进行焦测序反应完后, 采用磁性分离技术, 除去焦测序反应产生的ATP和剩余的dNTP, 然后加入另一种dNTP进行测序, 按同样的方法去除影响下一轮测序反应的成分, 实现循环测序。此体系能准确判读待测DNA的碱基序列, 且可定量测定单核苷酸序列多态性(SNP)中两种等位基因型的相对比值。文章成功检测了16例正常人和8例唐氏综合征患者样本中21号染色体上两个杂合率较高位点(rs1042917和 rs4818219)的等位基因型比值, 所得结果能够明确说明待测样本中来自于父方和母方的21号染色体数目是否相等。该法具有良好的定量性能, 适合于SNP等位基因型的定量分析, 可以用于唐氏综合征的快速检测。  相似文献   

14.
DNA restriction fragment polymorphism technologies such as amplified ribosomal DNA restriction analysis (ARDRA) and terminal restriction fragment length polymorphism (T-RFLP) have been widely used in investigating microbial community structures. However, these methods are limited due to either the low resolution or sensitivity. In this study, a fluorophore-ribosomal DNA restriction typing (f-DRT) approach is developed for structural profiling of microbial communities. 16S rRNA genes are amplified from the community DNA and digested by a single restriction enzyme Msp I. All restriction fragments are end-labeled with a fluorescent nucleotide Cy5-dCTP via a one-step extension reaction and detected with an automated DNA sequencer. All 50 predicted restriction fragments between 100 and 600 bp were detected when twelve single 16S rRNA gene sequences were analyzed using f-DRT approach; 92% of these fragments were determined with accuracy of ±2 bp. In the defined model communities containing five components with different ratios, relative abundance of each component was correctly revealed by this method. The f-DRT analysis also showed structural shifts of intestinal microbiota in carcinogen-treated rats during the formation of precancerous lesions in the colon, as sensitive as multiple digestion-based T-RFLP analysis. This study provides a labor and cost-saving new method for monitoring structural shifts of microbial communities.  相似文献   

15.
Quantitative and qualitative measurements of DNA were used to compare faecal sample storage in ethanol and silica with a novel method (two‐step) in which samples are soaked in ethanol and then desiccated with silica. Silica‐preserved samples had the lowest DNA concentrations. The two‐step method yielded significantly more DNA in high quality samples (average DNA concentrations > 100 pg/µL with all storage methods). However, for lower quality samples, the ethanol and two‐step methods performed similarly. The amounts and rates of sample degradation were not strongly affected by storage method and neither was the percentage of target DNA (< 1%) obtained from the samples.  相似文献   

16.
Trinucleotide repeats are common within gene coding regions and could serve as beacons to locate genes. Five of the most common trinucleotide repeats in an Actinidia (kiwifruit) expressed sequence tag (EST) database were found to be (ACC)4, (CAC)4, (CCA)4, (CTC)4, and (TGG)4. These repeats, with or without an artificial 5′-end tail, were tested by vectorette PCR against genomic DNA from Actinidia chinensis. Eighty-nine randomly selected clones showed an average insert size of 383 bp, with a maximum of 1,151 bp and a minimum of 78 bp. Two-thirds of the clones contained the artificial tail attached to the trinucleotide, showing a slight advantage of possessing such a tail during annealing and amplification. The sequences were searched against the Actinidia EST database and GenBank. Of the 89 clones, 33 had a significant hit (expect value < e−15). Twenty-four of those clones matched an Actinidia EST. Twenty-one clones contained one or more simple sequence repeats. This methodology can be applied by conventional cloning and sequencing methods or by high throughput pyrosequencing technologies to develop genetic markers and also for gene mining in species with little or no genetic/genomic resources.  相似文献   

17.
Marfan syndrome has been associated with approximately 562 mutations in the fibrillin-1 (FBN1) gene. Mutation scanning of the FBN1 gene with DNA direct sequencing is time-consuming and expensive because of its large size. This study analyzed the diagnostic value of high-resolution melting analysis as an alternative method for scanning of the FBN1 gene. A total of 75 polymerase chain reaction (PCR) amplicons (179-301 bp, average 256 bp) that covered the complete coding regions and splicing sites were evaluated on the 96-well LightCycler system. Melting curves were analyzed as fluorescence derivative plots (−dF/dT vs. temperature). To determine the sensitivity of this method, a total of 82 samples from patients with Marfan syndrome and 50 unaffected individuals were analyzed. All mutations reported in this study had been confirmed previously by direct sequencing analysis. Melting analysis identified 48 heterozygous variants. The variant c.3093 G>T (exon 25) was incorrectly identified by melting curve analysis. The sensitivity of the technique in this sample was 98.78% (81/82). This study demonstrated that high-resolution melting analysis is a reliable gene scanning method with greater speed than DNA sequencing. Our results support the use of this technology as an alternative method for the diagnosis of Marfan syndrome as well as its suitability for high-throughput mutation scanning of other large genes.  相似文献   

18.
Stripping of conifer tree bark by Asian black bears (Ursus thibetanus) has been observed in parts of Japan. To identify and characterize the bears exhibiting this behavior, we performed a genetic analysis using DNA extracted from the hairs left on damaged trees. We analyzed 219 samples of bear hair collected from damaged trees at 33 sites and 64 tissue samples from captured bears as controls by using ten microsatellite DNA loci, ca. 706 bp of the mitochondrial DNA d-loop region, and the amelogenin locus. Sixteen bears were identified; some of them had damaged trees at more than one site. bark-stripping and the captured bears. Spatial autocorrelation analysis for increasing distance class revealed a significantly positive genetic correlation coefficient within 40 km among the bark-stripping bears (P < 0.05). Relatedness among the bark-stripping bears was higher than among the captured bears when the distance between bears was within 25 km. We concluded that bark-stripping behavior is associated with relatedness.  相似文献   

19.
Heterogeneous DNA methylation leads to difficulties in accurate detection and quantification of methylation. Methylation-sensitive high resolution melting (MS-HRM) is unique among regularly used methods for DNA methylation analysis in that heterogeneous methylation can be readily identified, although not quantified, by inspection of the melting curves. Bisulfite pyrosequencing has been used to estimate the level of heterogeneous methylation by quantifying methylation levels present at individual CpG dinucleotides. Sequentially combining the two methodologies using MS-HRM to screen the amplification products prior to bisulfite pyrosequencing would be advantageous. This would not only replace the quality control step using agarose gel analysis prior to the pyrosequencing step but would also provide important qualitative information in its own right. We chose to analyze DAPK1 as it is an important tumor suppressor gene frequently heterogeneously methylated in a number of malignancies, including chronic lymphocytic leukemia (CLL). A region of the DAPK1 promoter was analyzed in ten CLL samples by MS-HRM. By using a biotinylated primer, bisulfite pyrosequencing could be used to directly analyze the samples. MS-HRM revealed the presence of various extents of heterogeneous DAPK1 methylation in all CLL samples. Further analysis of the biotinylated MS-HRM products by bisulfite pyrosequencing provided quantitative information for each CpG dinucleotide analyzed, and confirmed the presence of heterogeneous DNA methylation. Whereas each method could be used individually, MS-HRM and bisulfite pyrosequencing provided complementary information for the assessment of heterogeneous methylation.Key words: MS-HRM, pyrosequencing, digital PCR, heterogeneous DNA methylation, DAPK1, chronic lymphocytic leukemia  相似文献   

20.
《Epigenetics》2013,8(4):500-507
Heterogeneous DNA methylation leads to difficulties in accurate detection and quantification of methylation. Methylation-sensitive high resolution melting (MS-HRM) is unique among regularly used methods for DNA methylation analysis in that heterogeneous methylation can be readily identified, although not quantified, by inspection of the melting curves. Bisulfite pyrosequencing has been used to estimate the level of heterogeneous methylation by quantifying methylation levels present at individual CpG dinucleotides. Sequentially combining the two methodologies using MS-HRM to screen the amplification products prior to bisulfite pyrosequencing would be advantageous. This would not only replace the quality control step using agarose gel analysis prior to the pyrosequencing step but would also provide important qualitative information in its own right. We chose to analyze DAPK1 as it is an important tumor suppressor gene frequently heterogeneously methylated in a number of malignancies, including chronic lymphocytic leukemia (CLL). A region of the DAPK1 promoter was analyzed in ten CLL samples by MS-HRM. By using a biotinylated primer, bisulfite pyrosequencing could be used to directly analyze the samples. MS-HRM revealed the presence of various extents of heterogeneous DAPK1 methylation in all CLL samples. Further analysis of the biotinylated MS-HRM products by bisulfite pyrosequencing provided quantitative information for each CpG dinucleotide analyzed, and confirmed the presence of heterogeneous DNA methylation. Whereas each method could be used individually, MS-HRM and bisulfite pyrosequencing provided complementary information for the assessment of heterogeneous methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号