首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serial sampling of the cellular composition of bone marrow (BM) is a routine procedure critical to clinical hematology. This protocol describes a detailed step-by-step technical procedure for an analogous procedure in live mice which allows for serial characterization of cells present in the BM. This procedure facilitates studies aimed to detect the presence of exogenously administered cells within the BM of mice as would be done in xenograft studies for instance. Moreover, this procedure allows for the retrieval and characterization of cells enriched in the BM such as hematopoietic stem and progenitor cells (HSPCs) without sacrifice of mice. Given that the cellular composition of peripheral blood is not necessarily reflective of proportions and types of stem and progenitor cells present in the marrow, procedures which provide access to this compartment without requiring termination of the mice are very helpful. The use of femoral bone marrow aspiration is illustrated here for cytological analysis of marrow cells, flow cytometric characterization of the hematopoietic stem/progenitor compartment, and culture of sorted HSPCs obtained by femoral BM aspiration compared with conventional marrow harvest.  相似文献   

2.
Blood was drawn into heparinized tubes from any large vein and allowed to settle 2-3 hr at 3-5 C. The cell sample consisting of 1 ml drawn from the buffy coat and 2 ml from the plasma was planted in the following medium: Medium 199 (Difco), 10 ml; penicillin G sodium, 1000 USP units; dihydrostreptomycin, 1 mg; and Bacto-PHA-M (Difco), 0.2 ml. Incubation, with twice daily shaking, was at 37 C for 68-70 hr; colchicine to give 4 μ ml was then added and incubation continued for 3-4 hr. The bulk of the medium was removed by centrifugation, the cells washed once in Hanks' salt solution, centrifuged, and all but 0.5 ml of the fluid decanted; 1.5 ml of distilled water at 37 C was added, the cell suspension incubated at 37 C 5-15 min, followed by centrifugation and fixation in methanolacetic acid 3:1 (3 changes) as usual. Spreads were made by applying 4-5 drops of cell suspension to ice-cold slides and burning off the fixative. Giemsa stain was used. The method has proved very satisfactory for determining chromosome numbers in the domestic pig. This number, as determined in 690 cells from Poland China and Duroc gilts and crosses of these breeds was 38 in 611 (88.6%) of the cells.  相似文献   

3.
Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses.  相似文献   

4.
An abundance of mitotic cells, a rapid and uniform response of cells to mitotic inhibition, ease in obtaining a monolayer of cells, clear and well-spread chromosomes make the allantois an ideal tissue for squash preparations. After a 45 min incubation of each embryo, still in the shell, with 0.02 ml of 0.05% Colcemid, 4-day avian embryos were treated in distilled water for 15 min or in 0.9% sodium citrate for 30-60 min and then fixed for at least 1 hr in 1:3 acetic-alcohol. Squash preparations were made after immersion of the allantois in 45% acetic acid for 5-10 mm. Phase contrast microscopy could be used, or permanent preparations made by freezing, air-drying and staining. Staining with Gram's iodine for 4 min followed by 1% crystal violet in 95% ethanol for 3 min is recommended. The allantois is well suited for use in biology laboratories to demonstrate avian chromosomes in different stages of mitosis.  相似文献   

5.
A 44-year-old female was diagnosed in the chronic phase of chronic myelogenous leukemia (CML) and was confirmed to be Philadelphia chromosome positive by a bone marrow cytogenetic study. No additional cytogenetic abnormalities were found. The patient's cell counts were initially well controlled with hydrox-yurea. She then received an unrelated 6 of 6 HLA matched allo-geneic bone marrow transplant (BMT) from a male donor. The patient underwent myeloablative therapy with thiotepa and five fractions of total body radiation prior to the transplant. About four weeks after transplantation, the patient developed biopsy-proven graft-versus-host disease of the skin and GI tract. A blood sample was drawn at that time for cytogenetic analysis. Among 34 analyzed cells, 22 were normal male donor cells. The remaining 12 cells did not have the t(9;22), but had numerous structural abnormalities. While many cells were missing an X chromosome, other abnormalities, including deletions, rearrangements, dicentrics, acentric fragments, rings and marker chromosomes were non-clonal. No clinical evidence of progression from CML chronic phase was found, suggesting that the non-clonal abnor-malities were therapy related.  相似文献   

6.
目的:研究槲皮素对中国地鼠肺成纤维细胞、小鼠骨髓细胞和小鼠睾丸精母细胞染色体的影响.方法:采用80、40、20、10、5μg/mL 5个剂量组的槲皮素在有或无代谢活化条件下处理体外培养的中国地鼠肺成纤维细胞(CHL)3小时后更换新鲜培养液,恢复生长21小时后收获细胞制片.体内试验以10000、5000、2500mg/kg剂量的槲皮素给ICR小鼠灌胃后取股骨骨髓、两侧睾丸进行制片.观察槲皮素对三种哺乳动物细胞染色体的影响.结果:在有或无代谢活化条件下槲皮素在浓度>10μg/mL均能够诱导CHL细胞染色体断裂和交换等,染色体细胞畸变率显著增加(P<0.01);而槲皮素各剂量组未引起小鼠骨髓细胞染色体断片、交换、畸变细胞率显著增加,亦未引起小鼠睾丸精母细胞染色体断片、易位、畸变细胞率、常染色体单价体、性染色体单价体显著增加.结论:在本试验条件下槲皮素对体外哺乳动物细胞显示出明显致突变性,存在潜在的遗传毒性,对体内哺乳动物体细胞及生殖细胞染色体无明显损伤作用.  相似文献   

7.
Commonly used guidelines for the management of human immunodeficiency virus (HIV) infection (highly active antiretroviral therapy, HAART) include drug combinations such as tenofovir disoproxil fumarate (TDF) + lamivudine (3TC) and combivir [zidovudine (AZT) + 3TC] + efavirenz (EFV). These combinations may enhance the genotoxic effects induced by such drugs individually, since the therapy requires lifelong adherence and the drugs have unknown effects during treatment. Thus, the evaluation of the benefits and risks of HAART is of great importance. In order to assess the cytotoxic and genotoxic potential of three concentrations of each of the antiretroviral combinations TDF + 3TC (800 + 400, 1600 + 800, and 3200 + 1600 mg/kg body weight, BW) and combivir + EFV (200 + 100 + 400, 400 + 200 + 800, and 800 + 400 + 1600 mg/kg BW) after two exposure periods (24 h and 48 h), in the present study the in vivo comet assay (single-cell gel electrophoresis) and the mouse bone marrow micronucleus test were used. Neither TDF + 3TC nor combivir + EFV induced DNA damage at any concentrations tested after 24 h or 48 h using the comet assay. After 24 h, both combinations increased the micronucleus frequency at all concentrations tested. After 48 h, combivir + EFV increased the micronucleated polychromatic erythrocyte (MNPCE) frequency at the two highest concentrations tested. Polychromatic erythrocytes (PCE)/normochromatic erythrocytes (NCE) ratio was high for both combinations, suggesting that they can be mitogenic. Since genotoxicity may be related to carcinogenesis, it is necessary to conduct further studies to verify the long-term mutagenic effects of these drugs.  相似文献   

8.
JC virus (JCV), a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML). In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs) isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases and the opportunities for the use of this model in development of therapeutic strategies.  相似文献   

9.
Plasma is obtained from dog blood after 3 hr settling in a syringe. Portions of the plasma (0.5-1.0 ml) are added to 4 ml of a medium consisting of 17 parts of BME Spinner, 3 parts of calf serum, 0.5 parts of glutamine, 0.5 parts of penicillin-streptomycin, and 0.1-1.0 parts of Scarlet Runner bean phytohemagglutinin. Colchicine, 0.1 ml of 10:1 stock solution, is added after 72 hr and incubation continued for 2 hr, then centrifuged 5 min at 700 rev/min. The supernatant is discarded, 3 ml of distilled water added, and the cell suspension centrifuged again. The supernatant is discarded and the fixative, consisting of 45% glacial acetic acid allowed to act for 0.5 hr. Acetic-orcein stains of smears were very satisfactory.  相似文献   

10.
11.
12.
13.
Osteoclasts are highly specialized cells that are derived from the monocyte/macrophage lineage of the bone marrow. Their unique ability to resorb both the organic and inorganic matrices of bone means that they play a key role in regulating skeletal remodeling. Together, osteoblasts and osteoclasts are responsible for the dynamic coupling process that involves both bone resorption and bone formation acting together to maintain the normal skeleton during health and disease.As the principal bone-resorbing cell in the body, changes in osteoclast differentiation or function can result in profound effects in the body. Diseases associated with altered osteoclast function can range in severity from lethal neonatal disease due to failure to form a marrow space for hematopoiesis, to more commonly observed pathologies such as osteoporosis, in which excessive osteoclastic bone resorption predisposes to fracture formation.An ability to isolate osteoclasts in high numbers in vitro has allowed for significant advances in the understanding of the bone remodeling cycle and has paved the way for the discovery of novel therapeutic strategies that combat these diseases. Here, we describe a protocol to isolate and cultivate osteoclasts from mouse bone marrow that will yield large numbers of osteoclasts.  相似文献   

14.
陈静  沈红  赵勇 《中国实验动物学报》2010,18(1):9-12,I0003
目的通过小鼠骨髓细胞剔除Smad3基因,观察小鼠病理变化以及免疫T细胞状态。方法将Smad3基因剔除Smad3-/-)的小鼠骨髓细胞和野生型(Smad3+/+)小鼠骨髓细胞分别移植给60Co射线照射GFP小鼠。观察骨髓移植后GFP小鼠体征变化,第6周处死小鼠,取肠道固定,HE染色观察其病理变化,流式细胞技术检测淋巴结中T细胞变化。结果移植Smad3-/-骨髓细胞的GFP小鼠逐渐消瘦,大肠出现炎症;淋巴结中活化型的CD4+CD62LloT细胞增多。结论骨髓细胞TGF-β信号受阻,可导致小鼠患炎症疾病,引起免疫T细胞活化。  相似文献   

15.
Extramedullary hematopoiesis has been shown to contribute to the pathogenesis of a variety of diseases including cardiovascular diseases. In this process, the spleen is seeded with mobilized bone marrow cells that augment its hematopoietic ability. It is unclear whether these immigrant cells that are produced/reprogrammed in spleen are similar or different from those found in the bone marrow. To begin to understand this, we investigated the relative potency of adult splenocytes per se to repopulate bone marrow of lethally-irradiated mice and its functional consequences in atherosclerosis. The splenocytes were harvested from GFP donor mice and transplanted into myeloablated wild type recipient mice without the inclusion of any bone marrow helper cells. We found that adult splenocytes repopulated bone marrow of myeloablated mice and the transplanted cells differentiated into a full repertoire of myeloid cell lineages. The level of monocytes/macrophages in the bone marrow of recipient mice was dependent on the cell origin, i.e., the donor splenocytes gave rise to significantly more monocytes/macrophages than the donor bone marrow cells. This occurred despite a significantly lower number of hematopoietic stem cells being present in the donor splenocytes when compared with donor bone marrow cells. Atherosclerosis studies revealed that donor splenocytes displayed a similar level of atherogenic and atheroprotective activities to those of donor bone marrow cells. Cell culture studies showed that the phenotype of macrophages derived from spleen is different from those of bone marrow. Together, these results demonstrate that splenocytes can seed bone marrow of myeloablated mice and modulate atherosclerosis. In addition, our study shows the potential of splenocytes for therapeutic interventions in inflammatory disease.  相似文献   

16.
Exposure to arsenic on a regular basis, mainly through drinking water, agricultural pesticide, and sometimes therapeutic dose, results in various diseases of different tissues including the bone marrow hematopoietic system. Hematopoiesis is a dynamic process by which bone marrow (BM) hematopoietic stem/progenitor cells (HSPCs) generate a relatively constant pool of functionally mature blood cells by the support of microenvironmental components. The present study has been aimed to understand stem cell microenvironmental status during arsenic toxicity and the consequent reflection of dysregulation involving the hematopoietic machinery in experimental mice. Swiss albino mice were experimentally exposed to 10 μg arsenic trioxide/g body weight through oral gavage and 5 μg arsenic trioxide/g body weight intraperitoneally for a period of 30 days. Altered hemogram values in peripheral blood reflected the impaired hematopoiesis which was further validated by the reduced BM cellularity along with the deviated BM cell morphology as observed by scanning electron microscopy post arsenic exposure. The stromal cells were unable to establish a healthy matrix and the sustainability of hematopoietic progenitors was drastically affected in arsenic-exposed mouse groups, as observed in in vitro explant culture. The inability of stromal cells to establish supportive matrix was also explained by the decreased adherent colony formation in treated animals. Furthermore, the flow cytometric characterization of CXCR4+ and Sca-1+ CD44+ receptor expressions confirmed the dysregulation in the hematopoietic microenvironment. Thus, considering the importance of microenvironment in the maintenance of HSPC, it can be concluded that arsenic toxicity causes microenvironmental damage, leading to niche derangement and impaired hematopoiesis.  相似文献   

17.
SR-BI deficient mice that are also hypomorphic for apolipoprotein E expression develop diet induced occlusive coronary artery atherosclerosis, myocardial infarction and early death. To test the role of SR-BI in bone marrow derived cells, we used bone marrow transplantation to generate SR-BI-null; apoE-hypomorphic mice in which SR-BI expression was restored solely in bone marrow derived cells. SR-BI-null; apoE-hypomorphic mice were transplanted with SR-BI+/+apoE-hypomorphic, or control, autologous SR-BI-null; apoE-hypomorphic bone marrow. Four weeks later, mice were fed a high-fat, high-cholesterol, cholate-containing diet to induce coronary artery atherosclerosis. Mice transplanted with autologous bone marrow developed extensive aortic atherosclerosis and severe occlusive coronary artery atherosclerosis after 4 weeks of feeding. This was accompanied by myocardial fibrosis and increased heart weights. In contrast, restoration of SR-BI expression in bone marrow derived-cells reduced diet induced aortic and coronary artery atherosclerosis, myocardial fibrosis and the increase in heart weights in SR-BI-null; apoE-hypomorphic mice. Restoration of SR-BI in bone marrow derived cells did not, however, affect steady state lipoprotein cholesterol levels, but did reduce plasma levels of IL-6. Monocytes from SR-BI-null mice exhibited a greater capacity to bind to VCAM-1 and ICAM-1 than those from SR-BI+/+ mice. Furthermore, restoration of SR-BI expression in bone marrow derived cells attenuated monocyte recruitment into atherosclerotic plaques in mice fed high fat, high cholesterol cholate containing diet. These data demonstrate directly that SR-BI in bone marrow-derived cells protects against both aortic and CA atherosclerosis.  相似文献   

18.
目的研究小鼠腹腔注射紫杉醇对体外骨髓细胞诱导分化巨噬细胞的影响。方法小鼠连续5d腹腔注射紫杉醇,无菌制备骨髓细胞,用含巨噬细胞集落刺激因子(M-CSF)的RPMI1640培养液培养骨髓细胞,通过流式细胞仪对其诱导分化的巨噬细胞表面分子、吞噬功能进行分析。结果紫杉醇明显降低小鼠骨髓细胞数量,但骨髓细胞体外诱导分化成巨噬细胞的数量明显增加;F4/80^+巨噬细胞中CD80、CD14表面分子表达升高,而I-A^d表达降低;紫杉醇处理组诱导分化的巨噬细胞吞噬鸡红细胞的能力提高。结论结果提示紫杉醇可能具有调节巨噬细胞表面分子的表达和吞噬功能。  相似文献   

19.
Myeloid derived suppressor cells (MDSCs) from tumor-bearing mice are important negative regulators of anti-cancer immune responses, but the role for immature myeloid cells (IMCs) in non-tumor-bearing mice in the regulation of immune responses are poorly described. We studied the immune-suppressive activity of IMCs from the bone marrow (BM) of C57Bl/6 mice and the mechanism(s) by which they inhibit T–cell activation and proliferation. IMCs, isolated from BM by high-speed FACS, inhibited mitogen-induced proliferation of CD4+ and CD8+ T-cells in vitro. Cell-to-cell contact of T-cells with viable IMCs was required for suppression. Neither neutralizing antibodies to TGFβ1, nor genetic disruption of indolamine 2,3-dioxygenase, abrogated IMC-mediated suppressive activity. In contrast, suppression of T-cell proliferation was absent in cultures containing IMCs from interferon-γ (IFN-γ) receptor KO mice or T-cells from IFN-γ KO mice (on the C57Bl/6 background). The addition of NO inhibitors to co-cultures of T-cells and IMC significantly reduced the suppressive activity of IMCs. IFN-γ signaling between T-cells and IMCs induced paracrine Nitric Oxide (NO) release in culture, and the degree of inhibition of T-cell proliferation was proportional to NO levels. The suppressive activity of IMCs from the bone marrow of tumor-free mice was comparable with MDSCs from BALB/c bearing mice 4T1 mammary tumors. These results indicate that IMCs have a role in regulating T-cell activation and proliferation in the BM microenvironment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号