首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
The antiproliferative and immunosuppressivein vitro effects ofimmunocortin, a synthetic adrenocorticotropin-like (ACTH-like) decapeptide H-Val-Lys-Lys-Pro-Gly-Ser-Ser-Val-Lys-Val-OH, whose sequence corresponds to segment 11–20 of the variable part of the human IgG1 heavy chain, were studied. At concentrations of 10−11−10−7 M, immunocortin was found to inhibit the growth of the human MT-4 T-lymphoblastoid cell line, to suppress the blast transformation of thymocytes, and to decrease the spontaneous mobility of peritoneal macrophages and their bactericidal action toward the virulent strainSalmonella typhimurium 415. By using a125I-labeled “addressing” fragment of ACTH {[125I]ACTH (13–24)}, we showed that MT-4 cells express specific receptors for ACTH (K d 97 pM). Immunocortin and human ACTH (but not the heavy chain of IgG1) competitively inhibited the binding of [125I]ACTH-(13–24) to these receptors withK i1 of 0.38 andK i2 of 0.34 nM, respectively. Specific receptors for ACTH (K d 5.8 nM) on mouse thymocytes were detected and characterized. The unlabeled immunocortin was shown to compete with labeled ACTH-(13–24) for binding to these receptors (K i=1.8 nM), and this binding of immunocortin to receptors on thymocytes activates adenylate cyclase from these cells and increases the intracellular concentration of cAMP.  相似文献   

2.
Influence of the ACTH-like peptide H-Val-Lys-Lys-Pro-Gly-Ser-Ser-Val-Lys-Val-OH corresponding to the sequence 11-20 of the variable part of human immunoglobulin G1 (IgG1) heavy chain on growth of MT-4 human T-lymphoblastoid cell line was investigated. It was found that the ACTH-like peptide at concentration range 10(-11) -10(-7) M inhibits the proliferation of MT-4 cells. Labeled ACTH 'address segment' [(125)I]ACTH (13-24) was used to establish that MT-4 cells express specific receptors for ACTH (K(d) = 97 pM). The ACTH-like peptide and human ACTH (but not IgG1 heavy chain) were shown to compete with [(125)I]ACTH (13-24) for binding to these receptors (K(i1) = 0.38 nM and K(i2) = 0.34 nM).  相似文献   

3.
The effect of immunocortin, an ACTH-like decapeptide VKKPGSSVKV corresponding to the 11-20 sequence of the variable part of the human IgG1 heavy chain on the content of 11-hydroxycorticosteroids (CS) in rat adrenal glands and blood serum in vivo was studied. An intramuscular injection of immunocortin at a dose of 10 microg/kg was found in an hour to induce a twofold decrease in CS content in the adrenal glands and a 1.8-fold increase in the blood serum CS content. At the same time, an immunocortin dose of 100 microg/kg exerted practically no effect on the CS content and its dose of 1000 microg/kg increased the CS content both in adrenal glands and in blood serum by 1.6 and 2.2 times, respectively. Four hours after the injection of any of the three doses of immunocortin, the CS content in adrenal glands did not differ from the control value, and after 24 h the content decreased threefold. Immunocortin was shown to be bound by the ACTH receptors in the membranes of the rat adrenal cortex with a high affinity and specificity (inhibiting the specific binding of 125I-labeled ACTH-(11-24) peptide with Ki of 1.2 nM).  相似文献   

4.
The synthetic ACTH-like decapeptide H-Val-Lys-Lys-Pro-Gly- Ser-Ser-Val-Lys-Val-OH, corresponding to amino acid residues 11-20 of the variable part of the human IgG1 heavy chain (referred to as immunocortin) was found to have an immunosuppressive effect on cells in vitro: it inhibits blast transformation of mouse thymocytes and reduces spontaneous motility of mouse peritoneal macrophages as well as their bactericidal activity against the virulent bacterial strain Salmonella typhimurium 415. Tritium-labeled immunocortin binds with high affinity to ACTH receptors on thymocytes and macrophages (Kd 2. 1 and 2.5 nM, respectively) and activates adenylate cyclase in these cells. Thus, the interaction of immunocortin with the target cell includes the following main steps: binding to the receptor, activation of adenylate cyclase, and elevation of the intracellular content of cAMP.  相似文献   

5.
The synthetic peptide SLTCLVKGFY, corresponding to the 364-373 amino acid sequence of the human IgG heavy chain (Immunorphin), was found to compete with [125I] beta-endorphin for binding by high-affinity receptors on T lymphocytes isolated from the blood of healthy donors (Ki 0.6 nM). The fragments 3-10, 4-10, 5-10, and 6-10 of Immunorphin also inhibited the binding (Ki 2.2, 3.4, 8.0, and 15 nM, respectively). Specificity of these receptors was studied: they turned out to be insensitive to naloxone and, therefore, are not opioid. The Kd values of the specific binding of 125I-labeled Immunorphin and its 6-10 fragment to the receptor were found to be 7.4 and 36.3 nM, respectively.  相似文献   

6.
Tritium-labeled synthetic fragments of human adrenocorticotropic hormone (ACTH) [3H]ACTH (11-24) and [3H]ACTH (15-18) with a specific activity of 22 and 26 Ci/mmol, respectively, were obtained. It was found that [3H]ACTH (11-24) binds to membranes of the rat adrenal cortex with high affinity and high specificity (Kd 1.8 +/- 0.1 nM). Twenty nine fragments of ACTH (11-24) were synthesized, and their ability to inhibit the specific binding of [3H]ACTH (11-24) to adrenocortical membranes was investigated. The shortest active peptide was found to be an ACTH fragment (15-18) (KKRR) (Ki 2.3 +/- 0.2 nM), whose [3H] labeled derivative binds to rat adrenocortical membranes (Kd 2.1 +/- 0.1 nM) with a high affinity. The specific binding of [3H]ACTH-(15-18) was inhibited by 100% by unlabeled ACTH (11-24) (Ki 2.0 +/- 0.1 nM). ACTH (15-18) in the concentration range of 1-1000 nM did not affect the adenylate cyclase activity of adrenocortical membranes and, therefore, is an antagonist of the ACTH receptor.  相似文献   

7.
The effect of immunocortin, an ACTH-like decapeptide VKKPGSSVKV corresponding to the 11–20 sequence of the variable part of the human IgG1 heavy chain on the content of 11-hydroxycorticosteroids (CS) in rat adrenal glands and blood serum in vivo was studied. An intramuscular injection of immunocortin at a dose of 10 g/kg was found in an hour to induce a twofold decrease in CS content in the adrenal glands and a 1.8-fold increase in the blood serum CS content. At the same time, an immunocortin dose of 100 g/kg exerted practically no effect on the CS content and its dose of 1000 g/kg increased the CS content both in adrenal glands and in blood serum by 1.6 and 2.2 times, respectively. Four hours after the injection of any of the three doses of immunocortin, the CS content in adrenal glands did not differ from the control value, and after 24 h the content decreased threefold. Immunocortin was shown to be bound by the ACTH receptors in the membranes of the rat adrenal cortex with a high affinity and specificity (inhibiting the specific binding of 125I-labeled ACTH-(11–24) peptide with K i of 1.2 nM).  相似文献   

8.
In an effort to investigate the presence of adrenocorticotropic hormone (ACTH) receptors on rat lymphocytes, cells were separated by a panning procedure into T and B cell populations. By using the radiolabeled ACTH agonist, (125I-Tyr23) phenylalanine2-norleucine4-ACTH1-24, substantial numbers of ACTH binding sites were detected on T and B lymphocytes, but not on thymocytes. Scatchard analysis revealed two types of binding sites on each cell population, one with Kd1 = 0.088 +/- 0.025 nM and one with Kd2 = 4.2 +/- 0.6 nM; however, the absolute number of binding sites per cell was different. B lymphocytes expressed approximately three times the number of Kd1 binding sites per cell when compared with T lymphocytes. However, ACTH receptor expression by these cell populations was not static as suggested by the ability to induce receptor expression via mitogens. B or T cells and thymocytes stimulated with the mitogens LPS or Con A, respectively, substantially increased their number of Kd1 binding sites per cell (approximately three-fold). Even more dramatic increases in Kd1 receptor expression (approximately 100-fold) were observed when comparing "normal" and stimulated thymocytes. To demonstrate that these ACTH binding sites were in fact functional, cAMP levels were measured in lymphocytes 10 min after exposure to varying concentrations of ACTH. Dose-dependent increases in cAMP levels were observed, with significant stimulation occurring with as little as 0.1 nM ACTH added. Taken together, these studies demonstrate the presence of functional ACTH receptors on normal, rat T and B lymphocytes.  相似文献   

9.
Crude membranes (20,000 times g pellet) prepared from human, rat, and ovine adrenals bind 125-I-corticotropin-(1-24)-tetracosapeptide (125-I-ACTH-1-24) and degrade unbound hormone. The degradation is dependent on temperature and the concentration of membrane proteins. The degradation of 125-I-[9-tryptophan(o-nitrophenylsulfenyl)]-corticotropin-(1-24)-tetracosapeptide (125-I-NPS-ACTH-1-24) is similar to 125-I-ACTH-1-24, but that of 125-I-corticotropin-(11-24)-tetradecapeptide (125-I-ACTH-1-24 is inhibited by ACTH-1-24 and corticotropin-(1-10)-decapeptide (ACTH-1-10), but ACTH-11-24 at the same molar concentration has no effect. On the other hand, the degradation of 125-I-ACTH-11-24 is protected by ACTH-11-24 and ACTH-1-24, but not by ACTH-1-10. This suggests two systems of degradation, one will have the NH-2-terminal sequence of ACTH-1-24 as substrate, and the other the 11-24 COOH-terminal sequence. The main label product from the degradation of the 125-I-ACTH-1-24 and 125-I-ACTH-11-24 behaves as [125-I]monoiodotyrosine on Sephadex G-50 and paper chromatography. The independence of ACTH binding to its receptor and degradation is demonstrated by the following facts. (a) Calcium and pancreatic trypsin inhibitor completely inhibit the binding at concentrations when the degradation is not altered; (b) the sequences of peptides of ACTH which inhibit the binding and degradation of 125-I-ACTH-1-24 are different.  相似文献   

10.
High and low molecular weight kininogens (HK and LK) are able to bind to platelets to inhibit thrombin binding to and activation of platelets. The heavy chain domain on the kininogens that contains these functions has been determined. Domain 3 (D3) but not domains 1 or 2, completely inhibited 125I-HK binding to platelets (Ki = 24 +/- 7 nM, n = 4). 125I-D3 specifically bound to unstimulated platelets and human umbilical vein endothelial cells. On platelets, it was blocked by unlabeled D3 and HK but not prekallikrein, factor XII, C1s, or C1 inhibitor. Further, one monoclonal antibody (HKH13) directed to kininogens' D3 blocked 125I-HK and 125I-D3 binding to platelets. The binding of 125I-D3 to platelets was fully reversible by addition of 35 molar excess of unlabeled D3. D3 binding to platelets was saturable with an apparent Kd of 39 +/- 8 nM (n = 4) and 1227 +/- 404 binding sites/platelet. D3, like HK and LK, inhibited thrombin-induced platelet activation by preventing thrombin binding to platelets. Another monoclonal antibody (HKH12), directed to D3, which did not block HK binding to platelets, reduced HK's ability to inhibit 125I-alpha-thrombin binding. This result suggests that the region on D3 that inhibits 125I-alpha-thrombin binding to platelets is different from that which directly binds to platelets. These studies indicate that D3 of the kininogens contains both a binding region for platelets and endothelial cells and another region that inhibits thrombin-induced platelet activation.  相似文献   

11.
The inhibition of the binding of 125I-labeled Clostridium botulinum type C neurotoxin to synaptosomes by unlabeled toxin indicated that there were two kinds of receptors on the synaptosomal membrane. The dissociation constants (Kd) were calculated as 79 pM and 35 nM from the concentration of unlabeled toxin that induced half-displacement of bound 125I-toxin. These values agree satisfactorily with the values obtained from direct binding experiments (Agui, T, Syuto, B., Oguma, K., Iida, H., & Kubo, S. (1983) J. Biochem. 94, 521-527). The inhibition of the binding of 125I-toxin to synaptosomes and N-acetylneuraminyl(alpha 2-3)galactosyl(beta 1-3)N-acetylgalactosaminyl(beta 1-4) [N-acetylneuraminyl(alpha 2-8) N-acetylneuraminyl(alpha 2-3)]galactosyl(beta 1-4)glucosyl(beta 1-1)ceramide (GT1b) by unlabeled heavy chain indicated that heavy chain facilitates the binding of toxin to synaptosomes and GT1b. The synaptosomal and heavy chain complex Kd values were estimated as 12 nM and 24 microM. Monoclonal antibodies C-9 and CA-12 recognized the binding sites to GT1b and synaptosomes, respectively. Antigenic determinants against the two antibodies are presumably partially overlapping, and the overlapping area seems to be essential to the reaction between toxin and C-9 antibody.  相似文献   

12.
In the present investigation the interaction of a novel selective NMDA receptors agonist, N-phthalamoyl-L-glutamic acid (PhGA), with the synaptic membranes preparation of human hippocampus was examined against NMDA. It was established that there are two binding sites of 3H-L-Glu, Kd1 = 0.35 +/- 0.11 nM, Bmax1 = 6.5 +/- 2.3 pmol/mg and Kd2 = 51 +/- 12 nM, Bmax2 = 98 +/- 17 pmol/mg. The inhibition constants (Ki) were calculated for NMDA and PhGA and were equal: Ki(NMDA) = 19 microM, Ki (PhGA) = 13 microM, respectively. It was concluded that PhGA is the partial agonist of the NMDA receptors.  相似文献   

13.
The tritium-labeled dipeptide bestim (gamma-D-Glu-L-Trp) with a specific activity of 45 Ci/mmol was obtained by high-temperature solid-state catalytic isotope exchange. It was found that [3H]bestim binds with a high affinity to murine peritoneal macrophages (Kd 2.1 +/- 0.1 nM) and thymocytes (Kd 3.1 +/- 0.2 nM), as well as with plasma membranes isolated from these cells (Kd 18.6 +/- 0.2 and 16.7 +/- 0.3 nM, respectively). The specific binding of [3H]bestim to macrophages and thymocytes was inhibited by the unlabeled dipeptide thymogen (L-Glu-L-Trp) (Ki 0.9 +/- 0.1 and 1.1 +/- 0.1 nM, respectively). After treatment with trypsin, macrophages and thymocytes lost the ability to bind [3H]bestim. Bestim in the concentration range of 10(-10) to 10(-6) M reduced the adenylate cyclase activity in the membranes of murine macrophages and thymocytes.  相似文献   

14.
Receptors for vasoactive intestinal peptide (VIP) have been characterized in rat lymphoid cells. The interaction of [125I] VIP with blood mononuclear cells was rapid, reversible, specific and saturable. At apparent equilibrium, the binding of [125I] VIP was competitively inhibited by native VIP in the 0.01-100 nM range concentration. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.050 +/- 0.009 nM and a low binding capacity (2.60 +/- 0.28 fmol/10(6) cells), and a low-affinity class with a Kd = 142 +/- 80 nM and a high binding capacity (1966 +/- 330 fmol/10(6) cells). Secretin, glucagon, insulin and somatostatin did not show any effect at a concentration as high as 100 nM. With spleen lymphoid cells, stoichiometric studies were performed. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.100 +/- 0.033 nM and a low binding capacity (4.60 +/- 1.07 fmol/10(6) cells), and low-affinity class with a Kd = 255 +/- 110 nM and high binding capacity (2915 +/- 1160 fmol/10(6) cells). With thymocytes, no binding was obtained under different conditions.  相似文献   

15.
The kininogens, high molecular weight kininogen (HK) and low molecular weight kininogen (LK), are multifunctional, single-gene products that contain bradykinin and identical amino-terminal heavy chains. Studies were performed to determine if LK would bind directly to platelets. 125I-LK specifically bound to gel-filtered platelets in the presence of 50 microM Zn2+. HK effectively competed with 125I-LK for the same binding site (Ki = 27 +/- 9 nM, n = 5). Similarly, the Ki for LK inhibition of 125I-LK binding was 12 +/- 1 nM (n = 3). Albumin, fibrinogen, factor XIII, and kallikrein did not inhibit 125I-LK binding to unstimulated platelets. 125I-LK (66 kDa) was not cleaved upon binding to platelets. The binding of 125I-LK to unstimulated platelets was found to be fully reversible by the addition of a 50 molar excess of unlabeled LK at both 10 and 20 min. LK binding to platelets was saturable with an apparent Kd of 27 +/- 2 nM (mean +/- S.E., n = 9) and 647 +/- 147 binding sites/platelet. Both LK and HK at plasma concentrations inhibited thrombin-induced platelet aggregation. LK and HK at about 5% of plasma concentration also inhibited thrombin-induced secretion of both stirred and unstirred platelets. Both kininogens were found to be noncompetitive inhibitors of proteolytically active thrombin binding to platelets. The kininogens did not inhibit D-phenylalanyl-prolyl-arginine chloromethyl ketone-treated thrombin from binding to platelets. These studies indicated that both kininogens have a region on their heavy chain which allows them to bind to platelets. Further, kininogen binding by its heavy chain modulates thrombin activation of platelets since it prevents proteolytically active thrombin from binding to its receptor.  相似文献   

16.
We have demonstrated specific, high affinity binding of a biologically active Tyr23-monoiodinated derivative of ACTH, [125I][Phe2,Nle4]ACTH 1-24, in rat brain homogenates. Similarly, in metabolically inhibited and noninhibited rat whole brain slices there is a specific "binding-sequestration" process that is dependent on time, protein concentration, and pH. In homogenates, binding curves were best described by a two-site model and provided the following parameters: Kd1 = 0.65 +/- 0.47 nM, Bmax1 = 21 +/- 41 fmol/mg protein; Kd2 = 97 +/- 48 nM, Bmax2 = 3.5 +/- 1.8 pmol/mg protein. In metabolically viable brain slices, concentration-competition curves of [125I][Phe2,Nle4]ACTH 1-24 binding-sequestration can be described by three components (Kd1 = 14 +/- 24 nM, Bmax1 = 50 +/- 95 fmol/mg protein; Kd2 = 2.4 +/- 1.9 microM, Bmax2 = 44 +/- 49 pmol/mg protein; Kd3 = 0.16 +/- 1.0 mM, Bmax3 = 5.3 +/- 54 nmol/mg protein). Metabolic inhibition, by removal of glucose and addition of 100 microM ouabain, abolishes the lowest affinity, highest capacity binding-sequestrian component only (Kd1 = 7.1 +/- 14 nM, Bmax1 = 8.7 +/- 16 fmol/mg protein; Kd2 = 7.4 +/- 4.49 microM, Bmax2 = 37 +/- 27 pmol/mg protein). The two binding-sequestration parameter estimates obtained from metabolically inhibited tissue slices are not significantly different from those of the two higher affinity components obtained with noninhibited tissue. Thus, metabolic inhibition permits demonstration of ACTH receptor binding only, unconfounded by sequestration or internalization of ligand:receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Two monoiodinated derivatives of glucagon were prepared by lactoperoxidase catalyzed iodination followed by separation on reverse-phase high-performance liquid chromatography. The purified (Tyr-10) and (Tyr-13)-mono-125I-labeled glucagon isomers were characterized and studied with respect to their binding to the receptors of isolated intact rat hepatocytes. The extent of steady-state binding to cellular receptor sites differed for the two labeled glucagon tracers at 37 degrees C as well as at 15 degrees C with (Tyr-10)-mono-125I-glucagon displaying higher receptor binding. The apparent equilibrium constants, Kd,app at 37 degrees C are 3.6 +/- 0.4 nM (mean +/- S.E. of three independent experiments) for the tyrosine-13-labeled tracer and 5.9 +/- 0.6 nM for the tyrosine-10-labeled glucagon with native glucagon as competitor. Since the observed Kd in the competition assay is a function of the true Kd values of the monoiodinated radioactive glucagon isomers and native glucagon, the dissociation constants were also measured with chemically identical tracer and competitor. Under these conditions, we obtained Kd values of 1.3 +/- 0.2 nM for the tyrosine-10-labeled analog and 2.0 +/- 0.2 nM for the tyrosine-13-labeled glucagon isomers confirming the higher receptor binding affinity of (Try-10)-mono-125I-glucagon. All competition curves fit the mathematical expression for a model of non-cooperative binding to a single class of receptors.  相似文献   

18.
In vitro interaction of ACTH with rat brain muscarinic receptors   总被引:1,自引:0,他引:1  
ACTH-(1-24) inhibits the in vitro binding of the muscarinic antagonist [3H]QNB to membranes from rat brain. The magnitude of inhibition is dependent on the concentration of ACTH-(1-24). Kinetic analysis indicates a pure competitive inhibition which is suggestive of a reversible interaction of ACTH with muscarinic receptors. A mechanism involving an interaction of ACTH-(1-24) with the phospholipid core of the receptors is suggested. Structure activity studies point to a relation with reported effects of intracerebroventricularly administered ACTH on the turnover rate of acetylcholine and the ACTH-induced stretching and yawning syndrome.  相似文献   

19.
We studied the specific binding of 125I-labeled bioactive recombinant human erythropoietin (Epo) to human bone marrow mononuclear cells (BMNC) obtained from normal subjects. The 125I-labeled Epo bound specifically to the BMNC. Scatchard analysis of the data showed two classes of binding sites; one high affinity (Kd 0.07 nM) and the other low affinity (Kd 0.38 nM). The number of Epo binding sites per BMNC was 46 +/- 16 high-affinity receptors and 91 +/- 51 low-affinity receptors. The specific binding was displaced by unlabeled Epo, but not by other growth factors. Receptor internalization was observed significantly at 37 degrees C, but was prevented by the presence of 0.2% sodium azide. These findings indicate that human BMNC possess two classes of specific Epo receptors with characteristics of a hormone-receptor association.  相似文献   

20.
Characteristics of Non-opioid β-Endorphin Receptor   总被引:4,自引:0,他引:4  
Tritium-labeled selective agonist of non-opioid beta-endorphin receptor, the decapeptide immunorphine ([3H]SLTCLVKGFY) with specific activity of 24 Ci/mmol has been prepared. By its use, non-opioid beta-endorphin receptors were revealed and characterized on mouse peritoneal macrophages and rat myocardium, spleen, adrenal, and brain membranes. The non-opioid beta-endorphin receptor of macrophages has in addition to immunorphine (Kd of the [3H]immunorphine-receptor complex was 2.4 +/- 0.1 nM) and beta-endorphin (Ki of the [3H]immunorphine specific binding was 2.9 +/- 0.2 nM) a high affinity for Fc-fragment of human IgG1, pentarphine (VKGFY), cyclopentarphine [cyclo(VKGFY)], and [Pro3]pentarphine (VKPFY) (Ki values were 0.0060 +/- 0.0004, 2.7 +/- 0.2, 2.6 +/- 0.2, and 2.8 +/- 0.2 nM, respectively) and is insensitive to naloxone and [Met5]enkephalin (Ki > 100 microM). Treatment of macrophages with trypsin resulted in the loss of their ability for the specific binding of [3H]immunorphine. Values of the specific binding of 8.4 nM [3H]immunorphine to rat adrenal, spleen, myocardium, and brain membranes were determined to be 1146.0 +/- 44.7, 698.6 +/- 28.1, 279.1 +/- 15.4, and 172.2 +/- 1.8 fmol/mg protein, respectively. Unlabeled beta-endorphin, pentarphine, [Pro3]pentarphine, cyclopentarphine, cyclodipentarphine [cyclo(VKGFYVKGFY)], and Fc-fragment of IgG1 inhibited the binding of [3H]immunorphine to membranes from these organs. No specific binding of [3H]immunorphine to rat liver, lung, kidney, and intestine membranes was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号