首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The myelin and lymphocyte protein (MAL) is a tetraspan raft-associated proteolipid predominantly expressed by oligodendrocytes and Schwann cells. We show that genetic ablation of mal resulted in cytoplasmic inclusions within compact myelin, paranodal loops that are everted away from the axon, and disorganized transverse bands at the paranode--axon interface in the adult central nervous system. These structural changes were accompanied by a marked reduction of contactin-associated protein/paranodin, neurofascin 155 (NF155), and the potassium channel Kv1.2, whereas nodal clusters of sodium channels were unaltered. Initial formation of paranodal regions appeared normal, but abnormalities became detectable when MAL started to be expressed. Biochemical analysis revealed reduced myelin-associated glycoprotein, myelin basic protein, and NF155 protein levels in myelin and myelin-derived rafts. Our results demonstrate a critical role for MAL in the maintenance of central nervous system paranodes, likely by controlling the trafficking and/or sorting of NF155 and other membrane components in oligodendrocytes.  相似文献   

2.
As part of our attempts to understand principles that underly organism development, we have been studying the development of the rat optic nerve. This simple tissue is composed of three glial cell types derived from two distinct cellular lineages. Type-1 astrocytes appear to be derived from a monopotential neuroepithelial precursor, whereas type-2 astrocytes and oligodendrocytes are derived from a common oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell. Type-1 astrocytes modulate division and differentiation of O-2A progenitor cells through secretion of platelet-derived growth factor, and can themselves be stimulated to divide by peptide mitogens and through stimulation of neurotransmitter receptors. In vitro analysis indicates that many dividing O-2A progenitors derived from optic nerves of perinatal rats differentiate symmetrically and clonally to give rise to oligodendrocytes, or can be induced to differentiate into type-2 astrocytes. O-2Aperinatal progenitors can also differentiate to form a further O-2A lineage cell, the O-2Aadult progenitor, which has properties specialized for the physiological requirements of the adult nervous system. In particular, O-2Aadult progenitors have many of the features of stem cells, in that they divide slowly and asymmetrically and appear to have the capacity for extended self-renewal. The apparent derivation of a slowly and asymmetrically dividing cell, with properties appropriate for homeostatic maintenance of existing populations in the mature animal, from a rapidly dividing cell with properties suitable for the rapid population and myelination of central nervous system (CNS) axon tracts during early development, offers novel and unexpected insights into the possible origin of self-renewing stem cells and also into the role that generation of stem cells may play in helping to terminate the explosive growth of embryogenesis. Moreover, the properties of O-2Aadult progenitor cells are consistent with, and may explain, the failure of successful myelin repair in conditions such as multiple sclerosis, and thus seem to provide a cellular biological basis for understanding one of the key features of an important human disease.  相似文献   

3.
4.
5.
6.
7.
8.
Of all organs in mammals including humans, the brain has the most limited regenerative capacity after injury or damage. In spite of extensive efforts to treat ischemic/stroke injury of the brain, thus far no reliable therapeutic method has been developed. However, some molluscan species show remarkable brain regenerative ability and can achieve full functional recovery following injury. The terrestrial pulmonates are equipped with a highly developed olfactory center, called the procerebrum, which is involved in olfactory discrimination and odor-aversion learning. Recent studies revealed that the procerebrum of the land slug can spontaneously recover structurally and functionally relatively soon after injury. Surprisingly, no exogenous interventions are required for this reconstitutive repair. The neurogenesis continues in the procerebrum in adult slugs as in the hippocampus and the olfactory bulb of mammals, and the reconstitutive regeneration seems to be mediated by enhanced neurogenesis. In this review, we discuss the relationship between neurogenesis and the regenerative ability of the brain, and also the evolutionary origin of the brain structures in which adult neurogenesis has been observed.  相似文献   

9.
Remyelination is a regenerative process in the central nervous system (CNS) that produces new myelin sheaths from adult stem cells. The decline in remyelination that occurs with advancing age poses a significant barrier to therapy in the CNS, particularly for long-term demyelinating diseases such as multiple sclerosis (MS). Here we show that remyelination of experimentally induced demyelination is enhanced in old mice exposed to a youthful systemic milieu through heterochronic parabiosis. Restored remyelination in old animals involves recruitment to the repairing lesions of blood-derived monocytes from the young parabiotic partner, and preventing this recruitment partially inhibits rejuvenation of remyelination. These data suggest that enhanced remyelinating activity requires both youthful monocytes and other factors, and that remyelination-enhancing therapies targeting endogenous cells can be effective throughout life.  相似文献   

10.
Ptpmeg is a cytoplasmic tyrosine phosphatase containing FERM and PDZ domains. Drosophila Ptpmeg and its vertebrate homologs PTPN3 and PTPN4 are expressed in the nervous system, but their developmental functions have been unknown. We found that ptpmeg is involved in neuronal circuit formation in the Drosophila central brain, regulating both the establishment and the stabilization of axonal projection patterns. In ptpmeg mutants, mushroom body (MB) axon branches are elaborated normally, but the projection patterns in many hemispheres become progressively abnormal as the animals reach adulthood. The two branches of MB alpha/beta neurons are affected by ptpmeg in different ways; ptpmeg activity inhibits alpha lobe branch retraction while preventing beta lobe branch overextension. The phosphatase activity of Ptpmeg is essential for both alpha and beta lobe formation, but the FERM domain is required only for preventing alpha lobe retraction, suggesting that Ptpmeg has distinct roles in regulating the formation of alpha and beta lobes. ptpmeg is also important for the formation of the ellipsoid body (EB), where it influences the pathfinding of EB axons. ptpmeg function in neurons is sufficient to support normal wiring of both the EB and MB. However, ptpmeg does not act in either MB or EB neurons, implicating ptpmeg in the regulation of cell-cell signaling events that control the behavior of these axons.  相似文献   

11.
成体哺乳动物中枢神经损伤后早期轴突再生失败的一个主要原因是由于髓磷脂抑制分子的存在。Nogo、髓磷脂相关糖蛋白以及少突胶质细胞髓磷脂糖蛋白等神经再生抑制因子的发现,大大促进了中枢神经再生分子机制的研究。它们均能独立通过Nogo-66受体产生对轴突再生的抑制效应,髓磷脂抑制分子及其信号转导机制的研究日益成为中枢神经再生的研究热点,髓磷脂及其信号转导分子特别是Nogo-66受体、p75神经营养素受体成为损伤后促进轴突再生、抑制生长锥塌陷的主要治疗靶点。抑制上述抑制因子及相关受体NgR或p75NTR可能有助于中枢神经损伤的修复,围绕这些抑制因子及其相关受体介导的信号转导途径,人们提出了多种治疗中枢神经损伤的新思路,其中免疫学方法尤其受到关注。  相似文献   

12.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

13.
NMDA受体与中枢神经系统发育   总被引:9,自引:0,他引:9  
中枢神经系统兴奋性氨基酸离子型受体-NMDA受体,是由NMDAR1和NMDAR2两个亚单位共同构成的受体通道复合体。NMDA受本激活后可引起神经元细胞对Na^+,K^+和Ca^2+通透性增强,产生兴奋性突触后电位,在中枢神经发育的过程中,NMDA受体通过不同亚型的选择性表达,改变自身的结构和功能,进而影响NMDA受体介导的Ca^2+内流,调节神经元内Ca^2+依赖的第二信使系统,最终实现对中枢神经  相似文献   

14.
Ubiquitin conjugation typically requires three classes of enzyme: E1, E2, and E3. A fourth type of enzyme (E4), however, was recently shown to be required for the degradation of certain types of substrate in yeast. We previously identified UFD2a (also known as E4B) as an E4 in mammals. UFD2a is exclusively expressed in cardiac muscle during mouse embryonic development, but it is abundant in neurons of adult mice and is implicated in the pathogenesis of neurodegenerative disease. The precise physiological function of this enzyme has remained largely unknown, however. Here, we show that mice lacking UFD2a die in utero, manifesting marked apoptosis in the developing heart. Polyubiquitylation activity for an E4 substrate was greatly reduced in Ufd2a(-/-) mouse embryonic fibroblasts. Furthermore, Ufd2a(+/-) mice displayed axonal dystrophy in the nucleus gracilis, as well as degeneration of Purkinje cells accompanied by endoplasmic reticulum stress. These animals also developed a neurological disorder. UFD2a thus appears to be essential for the development of cardiac muscle, as well as for the protection of spinocerebellar neurons from degeneration induced by endoplasmic reticulum stress.  相似文献   

15.
Summary After cutting a neck connective of Schistocerca gregaria, only 2% of the axons on each side of the lesion degenerate. The remainder show reactive changes, which last for approximately one week at 28° C. There is no morphological change in either of the pro/mesothoracic connectives after injury to the neck connective. Phagocytes invade the stumps, but attack only degenerating cells, and are absent by Day 7.Regeneration from the connective stumps begins a week after injury; a functional link may be formed by Day 10, but by Day 23 the new connective cannot function adequately for the locust's survival, if the undamaged connective is then cut.The chief morphological changes in the reactive axoplasm are increases in the number of mitochondria, neurotubules, vesicles and vacuoles. These changes appear to be a local response, and not to be influenced by the neuron cell bodies. Some glial cytoplasm (presumably enucleated), degenerates rapidly after injury, and replacement begins by Day 5. Tracheoles, never seen in normal connectives appear in the reactive connective from Days 3–8, this is interpreted as a migration from the ganglion in response to oxygen deficiency in the connective.The results are discussed in relationship to previous work.This work was supported by a Study and Serve grant from the British Government, and a grant from the Worshipful Company of Goldsmiths.I wish to acknowledge the help and advice given to me by Dr. C. H. F. Rowell.  相似文献   

16.
17.
Retinoic acid (RA) is involved in the induction of neural differentiation, motor axon outgrowth and neural patterning. Like other developmental molecules, RA continues to play a role after development has been completed. Elevated RA signalling in the adult triggers axon outgrowth and, consequently, nerve regeneration. RA is also involved in the maintenance of the differentiated state of adult neurons, and disruption of RA signalling in the adult leads to the degeneration of motor neurons (motor neuron disease), the development of Alzheimer's disease and, possibly, the development of Parkinson's disease. The data described here strongly suggest that RA could be used as a therapeutic molecule for the induction of axon regeneration and the treatment of neurodegeneration.  相似文献   

18.
中枢神经系统轴突再生抑制蛋白   总被引:1,自引:0,他引:1  
Hu JG  Lu PH  Xu XM 《生理科学进展》2004,35(4):311-315
中枢神经系统 (CNS)轴突再生的主要障碍之一是存在抑制再生的蛋白 ,迄今 ,已在少突胶质细胞 /髓鞘中相继发现至少三个重要的轴突再生抑制蛋白 ,即髓鞘相关糖蛋白 (MAG)、Nogo A和少突胶质细胞 /髓鞘糖蛋白 (OMgp)。最近的研究又证实 ,这三个不同的抑制成分可能主要通过与一个共同的受体Nogo6 6受体 (NgR)结合而发挥作用。这些研究成果扩充了对CNS损伤后轴突再生障碍的理解 ,也为探讨CNS损伤的治疗新策略提供了新的思路。  相似文献   

19.
Retinal axons in Drosophila make precise topographic connections with their target cells in the optic lobe. Here we investigate the role of the Netrins and their receptor Frazzled in the establishment of retinal projections. We find that the Netrins, although expressed in the target, are not required for retinal projections. Surprisingly, Frazzled, found on both retinal fibers and target cells, is required in the target for attracting retinal fibers, while playing at best a redundant role in the retinal fibers themselves; this finding demonstrates that target attraction is necessary for topographic map formation. Finally, we show that Frazzled is not required for the differentiation of cells in the target. Our data suggest that Frazzled does not function as a Netrin receptor in attracting retinal fibers to the target; nor does it seem to act as a homotypic cell adhesion molecule. We favor the possibility that Frazzled in the target interacts with a component on the surface of retinal fibers, possibly another Netrin receptor.  相似文献   

20.
哺乳动物中枢神经组织的再生与移植   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号