首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Disulfide crosslinking via thiol-disulfide interchange was applied to quantitate the relative flexibility contributed by nicks and single-stranded gaps in an RNA structure. An RNA duplex comprised of three strands was constructed containing the disulfide crosslink precursors 1 and 2 at opposite ends of the duplex on opposite strands. The third strand was of varying length to yield a nick or single-stranded gaps of 1, 2, or 3 nt. Crosslinking rates Indicated relative flexibilities of the resulting two-helix junctions. Crosslinking in the nicked duplex occurred two orders of magnitude slower than in a duplex containing a 3-nt gap. Rates of crosslinking in duplexes with 3-and 2-nt gaps showed only modest dependence on the gap sequence. Many natural RNAs, including ribozymes, contain two-helix junctions related to the model system described here. The data suggest that two-helix junctions containing a nick in one strand will retain substantial rigidity, whereas one or more single-stranded nucleotides at a two-helix junction allow significant flexibility.  相似文献   

2.
A DNA molecule containing a gap (a missing phosphate) has been examined and compared to two other molecules of the same sequence, one containing a nick (a phosphorylated gap) and the other a normal duplex containing no break in the backbone. A second gapped sequence was also compared to a normal duplex of the same sequence. The molecules containing nicks or gaps were generated as dumbbell molecules, short helices closed by a loop at each end. The dumbbells were formed by the association of two hairpins with self-complementary dangling 5'-ends. Nuclear magnetic resonance was used to monitor the melting transition and to probe structural differences between molecules. Under the conditions used here no change in stability was observed upon phosphorylation of the gap. Structural changes upon phosphorylation of a gap or closure of a nick were minimal and were localized to the region immediately around the gap or nick. Two transitions can be observed as a gapped or nicked molecule melts, although the resolution of the two transitions varies with the salt concentration. At moderate to high salt (greater than or equal to 30 mM) the molecule melts essentially all at once. At low salt the two transitions occur at temperatures that differ by as much as 15 degrees C. In addition, comparison with other NMR melting studies indicates that the duplex formed by the overlap of the dangling ends of the hairpins is stabilized relative to a free duplex of the same sequence, probably by stacking onto the hairpin stem.  相似文献   

3.
The extracellular nucleases from Alteromonas espejiana BAL 31 can catalyze the endonucleolytic and/or exonucleolytic hydrolysis of duplex DNA in response to a variety of alterations, either covalent or noncovalent, in DNA structure. The nuclease can exist as at least two kinetically and molecularly distinct protein species. The two species that have been studied, called the 'fast' (F) and 'slow' (S) nucleases, both readily convert negatively supercoiled DNAs to linear duplex molecules and accomplish this conversion through the formation of a circular duplex intermediate containing usually a single interruption in one strand. It is further shown that most of these intermediates contain gaps arising from the removal in a processive manner of one or more nucleotide residues after the introduction of the initial strand break (nick). Considering only the intermediates with gaps, the average number of missing residues is 6.3 +/- 0.5 and 2.8 +/- 0.3, respectively, for DNA acted upon by the F and S enzymes independently of the extent of conversion of supercoiled DNA. The nicks and gaps are bounded by 3'-hydroxyl and 5'-phosphoryl termini. When singly nicked circular DNA is used as the substrate, conversion to the linear duplex form occurs predominantly through a gapped circular intermediate with the same average numbers, within experimental error, of missing nucleotides for the respective nuclease species as found when supercoiled DNA is the substrate. The conversion to linear duplex DNA is much slower when nicked circular DNA is the substrate compared to that found when supercoiled DNA is the starting material.  相似文献   

4.
An endonuclease associated with the core of Friend leukemia virus (FLV) has been purified more than 10(3)-fold by ion exchange chromatography and gel filtration. Its molecular weight was determined by gel filtration to be about 40,000. Divalent cations were required for the endonuclease to function and KCl concentrations above 50 mM inhibited the enzyme activity. In the presence of Mg++ the purified enzyme nicked preferentially supercoiled circular DNA duplexes and in most of these molecules only one single-stranded nick was introduced per strand. The regions into which the nick could be introduced appeared to be randomly distributed on the circular molecule. When Mn++ was substituted for Mg++ the number of nicks introduced into DNA by the purified enzyme was greatly increased, and both relaxed circular and linear DNA duplexes were nicked as well as supercoiled circular DNA duplexes. Prior to its purification, however, in the presence of Mn++ the endonuclease activity in the virus extract was able to differentiate between circular and linear DNA duplexes, since both supercoiled and relaxed circular duplexes were nicked much more readily than linear duplexes. Single-stranded DNA functioned poorly as a substrate for the purified enzyme.  相似文献   

5.
T4 RNA ligase 2 (Rnl2) exemplifies a family of RNA-joining enzymes that includes protozoan RNA-editing ligases. Rnl2 efficiently seals 3'-OH/5'-PO4 RNA nicks in either a duplex RNA or an RNA:DNA hybrid but cannot seal DNA nicks. RNA specificity arises from a requirement for at least two ribonucleotides immediately flanking the 3'-OH of the nick; the rest of the nicked duplex can be replaced by DNA. The terminal 2'-OH at the nick is important for the attack of the 3'-OH on the 5'-adenylated strand to form a phosphodiester, but dispensable for nick recognition and adenylylation of the 5'-PO4 strand. The penultimate 2'-OH is important for nick recognition. Stable binding of Rnl2 at a nick depends on contacts to both the N-terminal adenylyltransferase domain and its signature C-terminal domain. Nick sensing also requires adenylylation of Rnl2. These results provide insights to the evolution of nucleic acid repair systems.  相似文献   

6.
The anticancer drug, bleomycin, causes both single and double strand scission of duplex DNA in vitro, with double strand scission occurring in excess of that expected from the random accumulation of single strand nicks. The mechanism of the preferential double strand scission of DNA by bleomycin has been investigated through the synthesis of a series of double hairpin and linear oligonucleotides designed to contain a single nick-like structure at a defined site to serve as models of bleomycin-damaged duplex DNA. The 3' and/or 5' hydroxyls flanking the nick have been phosphorylated to model the increased negative charge at a bleomycin-generated nick. The ability of bleomycin to cleave the intact strand opposite the nick was then determined by autoradiography. The results demonstrate that phosphorylation at either the 3' or 5' hydroxyl, and especially when both sites are phosphorylated, strongly enhances selective cleavage by bleomycin of the opposite strand. These experiments indicate that bleomycin-mediated double strand scission is a form of self-potentiation in which the high affinity of bleomycin for the initially generated nicked sites leads to a greatly enhanced probability of scission of the strand opposite those sites.  相似文献   

7.
Chlorella virus PBCV-1 DNA ligase seals nicked duplex DNA substrates consisting of a 5'-phosphate-terminated strand and a 3'-hydroxyl-terminated strand annealed to a bridging template strand, but cannot ligate a nicked duplex composed of two DNAs annealed on an RNA template. Whereas PBCV-1 ligase efficiently joins a 3'-OH RNA to a 5'-phosphate DNA, it is unable to join a 3'-OH DNA to a 5'-phosphate RNA. The ligase discriminates at the substrate binding step between nicked duplexes containing 5'-phosphate DNA versus 5'-phosphate RNA strands. PBCV-1 ligase readily seals a nicked duplex DNA containing a single ribonucleotide substitution at the reactive 5'-phosphate end. These results suggest a requirement for a B-form helical conformation of the polynucleotide on the 5'-phosphate side of the nick. Single base mismatches at the nick exert disparate effects on DNA ligation efficiency. PBCV-1 ligase tolerates mismatches involving the 5'-phosphate nucleotide, with the exception of 5'-A:G and 5'-G:A mispairs, which reduce ligase activity by two orders of magnitude. Inhibitory configurations at the 3'-OH nucleotide include 3'-G:A, 3'-G:T, 3'-T:T, 3'-A:G, 3'-G:G, 3'-A:C and 3'-C:C. Our findings indicate that Chlorella virus DNA ligase has the potential to affect genome integrity by embedding ribonucleotides in viral DNA and by sealing nicked molecules with mispaired ends, thereby generating missense mutations.  相似文献   

8.
Three-strand oligonucleotide complexes are employed to assess the effect of base stacking and base pair mismatch on the relative thermodynamic stabilities of oligonucleotide duplexes. The melting behavior of three-strand oligonucleotide complexes incorporating nicks and gaps as well as internal single base mismatches is monitored using temperature-dependent optical absorption spectroscopy. A sequential three-state equilibrium model is used to analyze the measured melting profiles and evaluate thermodynamic parameters associated with dissociation of the complexes. The free-energy of stabilization of a nick complex compared to a gap complex due to base stacking is determined to be -1.9 kcal/mol. The influence of a mispaired base in these systems is shown to destabilize a nick complex by 3.1 kcal/mol and a gap complex by 2.8 kcal/mol, respectively.  相似文献   

9.
Contiguous stacking hybridization of oligodeoxyribonucleotides with DNA as template was investigated using three types of complexes: oligonucleotide contiguously stacked with the stem of the preformed minihairpin (complexes I), oligonucleotide tandems containing two (complexes II) or three (complexes III) short oligomers with a common DNA template. Enthalpy Delta H degrees and entropy Delta S degrees of the coaxial stacking of adjacent duplexes were determined for GC/G*pC, GT/A*pC, AC/G*pT, AT/A*pT, CT/A*pG, AG/C*pT, AA/T*pT and TT/A*pA nicked (*) dinucleotide base pairs. The maximal efficiency of co-operative interaction was found for the GC/G*pC interface (Delta G degrees(NN/N*pN)=-2.7 kcal/mol) and the minimal one for the AA/T*pT interface (Delta G degrees(NN/N*pN)=-1.2 kcal/mol) at 37 degrees C. As a whole, the efficiency of the base pairs interaction Delta G degrees(NN/N*pN) in the nick is not lower than that within the intact DNA helix (Delta G degrees(NN/NN)).These observed Delta G degrees(NN/N*pN) values are proposed may include the effect of the partial removal of fraying at the adjacent helix ends additionally to the effect of the direct stacking of the terminal base pairs in the duplex junction (Delta G degrees(NN/NN). The thermodynamic parameters have been found to describe adequately the formation of all tandem complexes of the II and III types with oligonucleotides of various length and hybridization properties. The performed thermodynamic analysis reveals features of stacking oligonucleotide hybridization which allow one to predict the temperature dependence of association of oligonucleotides and the DNA template within tandem complexes as well as to determine optimal concentration for formation of these complexes characterized by high co-operativity level.  相似文献   

10.
Using synthetic DNA constructs in vitro, we find that human DNA polymerase beta effectively catalyzes CAG/CTG triplet repeat expansions by slippage initiated at nicks or 1-base gaps within short (14 triplet) repeat tracts in DNA duplexes under physiological conditions. In the same constructs, Escherichia coli DNA polymerase I Klenow Fragment exo(-) is much less effective in expanding repeats, because its much stronger strand displacement activity inhibits slippage by enabling rapid extension through two downstream repeats into flanking non-repeat sequence. Polymerase beta expansions of CAG/CTG repeats, observed over a 32-min period at rates of approximately 1 triplet added per min, reveal significant effects of break type (nick versus gap), strand composition (CTG versus CAG), and dNTP substrate concentration, on repeat expansions at strand breaks. At physiological substrate concentrations (1-10 microm of each dNTP), polymerase beta expands triplet repeats with the help of weak strand displacement limited to the two downstream triplet repeats in our constructs. Such weak strand displacement activity in DNA repair at strand breaks may enable short tracts of repeats to be converted into longer, increasingly mutable ones associated with neurological diseases.  相似文献   

11.
Abstract

Three-strand oligonucleotide complexes are employed to assess the effect of base stacking and base pair mismatch on the relative thermodynamic stabilities of oligonucleotide duplexes. The melting behavior of three-strand oligonucleotide complexes incorporating nicks and gaps as well as internal single base mismatches is monitored using temperature-dependent optical absorption spectroscopy. A sequential three-state equilibrium model is used to analyze the measured melting profiles and evaluate thermodynamic parameters associated with dissociation of the complexes. The free-energy of stabilization of a nick complex compared to a gap complex due to base stacking is determined to be ?1.9 kcal/mol. The influence of a mispaired base in these systems is shown to destabilize a nick complex by 3.1 kcal/mol and a gap complex by 2.8 kcal/mol, respectively.  相似文献   

12.
The human mismatch repair pathway is competent to correct DNA mismatches in a strand-specific manner. At present, only nicks are known to support strand discrimination, although the DNA end within the active site of replication is often proposed to serve this role. We therefore tested the competence of DNA ends or gaps to direct mismatch correction. Eight G.T templates were constructed which contained a nick or gap of 4, 28, or approximately 200 nucleotides situated approximately 330 bp away in either orientation. A competition was established in which the mismatch repair machinery had to compete with gap-filling replication and ligation activities for access to the strand discontinuity. Gaps of 4 or 28 nucleotides were the most effective strand discrimination signals for mismatch repair, whereas double strand breaks did not direct repair to either strand. To define the minimal spatial requirements for access to either the strand signal or mismatch site, the nicked templates were linearized close to either site and assayed. As few as 14 bp beyond the nick supported mismatch excision, although repair synthesis failed using 5'-nicked templates. Finally, asymmetric G.T templates with a remote nick and a nearby DNA end were repaired efficiently.  相似文献   

13.
An endonuclease activity shown to be associated with Friend leukemia virus has been characterized using double-stranded phi X174 DNA as substrate. In the presence of Mg2+, the endonuclease activity was able to convert supercoiled circular DNA duplexes to the relaxed form by introducing single-stranded nicks into the DNA. Most of the nicked DNA duplexes contained only one nick per strand, since unit length DNA was the predominant species obtained when the nicked DNA was analyzed by alkaline sucrose gradient centrifugation. The regions into which the nick could be introduced were evenly distributed around the circular DNA molecule. When Mn2+ was substituted for Mg2+ in the reaction mixture, the number of nicks introduced into circular DNA duplexes by the virus associated endonuclease was greatly increased. In contrast to circular duplexes, linear duplexes and single-stranded DNA functioned poorly as substrates for the virus-associated enzyme. The Friend leukemia virus-associated endonuclease activity is with respect to these characteristics very similar to the endonuclease activity associated with the p32 protein of the avian myeloblastosis virus [1]. The molecular weight of the Friend leukemia virus endonuclease was estimated by gel filtration on a Sephacryl S-200 column to be about 45 000.  相似文献   

14.
Phosphate-methylated (P.M.) DNA possesses a very high affinity for complementary natural DNA, as a result of the absence of interstrand electrostatic repulsions. In this study, a model system phosphate-methylated d[Cn] with natural d(Gk) (n less than k) is chosen for an investigation of the thermodynamic properties that determine duplex stability. The enthalpy change of a melting transition is shown to be considerably larger than is observed for corresponding natural DNA duplexes. It is found that delta Hn0 of GG/CC nearest neighbor pairwise interaction equals -15.6 kcal/mol, compared to -11.0 kcal/mol for the natural analog. The entropy change is strongly dependent on the length of the natural DNA strand and the number of phosphate-methylated DNA oligomers hybridized. The results are explained by means of a model in which a cooperative effect for subsequent hybridizations of phosphate-methylated DNA oligomers is assumed, thus giving additional stability.  相似文献   

15.
Mammalian mismatch repair (MMR) systems respond to broad ranges of DNA mismatches and lesions. Kinetic analyses of MMR processing in vitro have focused on base mismatches in a few sequence contexts, because of a lack of general and quantitative MMR assays and because of the difficulty of constructing a multiplicity of MMR substrates, particularly those with DNA lesions. We describe here simple and efficient construction of 11 different MMR substrates, by ligating synthetic oligomers into gapped plasmids generated using sequence-specific N.BstNBI nicking endonuclease, then using sequence-specific nicking endonuclease N.AlwI to introduce single nicks for initiation of 3' to 5' or 5' to 3' excision. To quantitatively assay MMR excision gaps in base-mispaired substrates, generated in human nuclear extracts lacking exogenous dNTPs, we used position- and strand-specific oligomer probes. Mispair-provoked excision along the shorter path from the pre-existing nick toward the mismatch, either 3' to 5' or 5' to 3', predominated over longer path excision by roughly 10:1 to 20:1. MMR excision was complete within 7 min, was highly specific (90:1) for the nicked strand, and was strongly mispair-dependent (at least 40:1). Nonspecific (mismatch-independent) 5' to 3' excision was considerably greater than nonspecific 3' to 5' excision, especially at pre-existing gaps, but was not processive. These techniques can be used to construct and analyze MMR substrates with DNA mismatches or lesions in any sequence context.  相似文献   

16.
Underwinding of DNA associated with duplex-duplex pairing by RecA protein   总被引:3,自引:0,他引:3  
Homologous pairing between gapped circular and partially homologous form I DNA, catalyzed by Escherichia coli RecA protein, leads to the formation of nascent synaptic joints between regions of duplex DNA. These duplex-duplex interactions result in underwinding of the form I DNA, as detected by a topoisomerase assay. Underwound DNA species have been studied with regard to their formation, stability, and topological requirements. The synaptic joints are short-lived and of low frequency compared with those formed between single-stranded and duplex DNA. Measurement of the degree of underwinding indicates joints 300-400 base pairs in length, in which the two DNA molecules are presumed to be interwound within the RecA-nucleoprotein filament. Underwound DNA was not detected in reactions between gapped DNA and partially homologous nicked circular or relaxed covalently closed DNA. We have also investigated the requirements for the initiation of strand exchange. Previous results have shown that strand exchange requires a homologous 3'-terminus complementary to the gapped region. We now show that the minimum length of overlap required for efficient initiation of strand exchange is one to two turns of DNA within the RecA-DNA nucleoprotein filament.  相似文献   

17.
A putative role for mammalian polynucleotide kinases that possess both 5'-phosphotransferase and 3'-phosphatase activity is the restoration of DNA strand breaks with 5'-hydroxyl termini or 3'-phosphate termini, or both, to a form that supports the subsequent action of DNA repair polymerases and DNA ligases, i.e. 5'-phosphate and 3'-hydroxyl termini. To further assess this possibility, we compared the activity of the 3'-phosphatase of purified calf thymus polynucleotide kinase towards a variety of substrates. The rate of removal of 3'-phosphate groups from nicked or short (1 nt) gapped sites in double-stranded DNA was observed to be similar to that of 3'-phosphate groups from single-stranded substrates. Thus this activity of polynucleotide kinase does not appear to be influenced by steric accessibility of the phosphate group. We subsequently demonstrated that the concerted reactions of polynucleotide kinase and purified human DNA ligase I could efficiently repair DNA nicks possessing 3'-phosphate and 5'-hydroxyl termini, and similarly the combination of these two enzymes together with purified rat DNA polymerase beta could seal a strand break with a 1 nt gap. With a substrate containing a nick bounded by 3'- and 5'-OH termini, the rate of gap filling by polymerase beta was significantly enhanced in the presence of polynucleotide kinase and ATP, indicating the positive influence of 5'-phosphorylation. The reaction was further enhanced by addition of DNA ligase I to the reaction mixture. This is due, at least in part, to an enhancement by DNA ligase I of the rate of 5'-phosphorylation catalyzed by polynucleotide kinase.  相似文献   

18.
Using gapped circular DNA and homologous duplex DNA cut with restriction nucleases, we show that E. coli RecA protein promotes strand exchanges past double-strand breaks. The products of strand exchange are heteroduplex DNA molecules that contain nicks, which can be sealed by DNA ligase, thereby effecting the repair of double-strand breaks in vitro. These results show that RecA protein can promote pairing interactions between homologous DNA molecules at regions where both are duplex. Moreover, pairing leads to strand exchanges and the formation of heteroduplex DNA. In contrast, strand exchanges are unable to pass a double-strand break in the gapped substrate. This apparent paradox is discussed in terms of a model for RecA-DNA interactions in which we propose that each RecA monomer contains two nonequivalent DNA-binding sites.  相似文献   

19.
Preparations of circular plasmid DNA in either supercoiled or nicked circular form often are contaminated with undesired linear DNA fragments arising from shearing/degradation of chromosomal DNA or linearization of plasmid DNA itself. We report a simple enzymatic method, using a combination of λ exonuclease and RecJf, for the selective removal of linear DNA from such mixtures. λ exonuclease digests one strand of linear duplex DNA in the 5′ to 3′ direction, whereas RecJf, a single-strand-specific exonuclease, digests the remaining complementary single strand into mononucleotides. This combination of exonucleases can remove linear DNA from a mixture of linear and supercoiled DNA, leaving the supercoiled form intact. Furthermore, the inability of λ exonuclease to initiate digestion at nicks or gaps enables the removal of undesired linear DNA when nicked circular DNA has been enzymatically prepared from supercoiled DNA. This method can be useful in the preparation of homogeneous circular plasmid DNA required for therapeutic applications and biophysical studies.  相似文献   

20.
Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bind specifically to nicked DNA over intact duplex DNA. One of these modules comprises the zinc finger domain and DNA-binding domain, which function together as a single DNA binding unit. The catalytic core of ligase III is the second DNA nick-binding module. Both binding modules are required for ligation of blunt ended DNA substrates. Although the zinc finger increases the catalytic efficiency of nick ligation, it appears to occupy the same binding site as the DNA ligase III catalytic core. We present a jackknife model for ligase III that posits conformational changes during nick sensing and ligation to extend the versatility of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号