首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D B Pribor 《Cryobiology》1975,12(4):309-320
Human erythrocytes washed with phosphate buffered saline (PBS) were frozen for 1 or 16 min at temperatures ranging from ?10 to ?80 °C. Red cell suspensions contained either no protective agent or various concentrations of dimethylsulfoxide (DMSO) or glycerol. The similarities between cryoprotection by DMSO and glycerol reinforce Rapatz and Luyet's classification of cryoprotective agents into three types and support Mazur's two-factor theory of cryoprotection. However, there are important differences between the cryoprotective effects of DMSO and glycerol. The most noteworthy is that for all concentrations of DMSO a 16-min freezing exposure was equal to or more damaging than a 1-min exposure; the converse was true for 11.8 and 17.7% glycerol solutions. This and other differences suggest that the general mechanism of freeze-thaw damage and cryoprotection is more complex than described by Mazur's two-factor theory. Likewise cryoprotective agents cannot be consistently classified into two or three types. A multifactor theory was suggested as a more extensive model for understanding freeze-thaw damage and cryoprotection. The major new contribution of this theory is the idea of biological interaction. This latter refers to solutes in conjunction with various factors which disturb the steady state of the cell membrane. The change in the membrane may be reversible or irreversible depending upon the circumstances.  相似文献   

2.
The linear isobole that is commonly used as a reference for the study of interaction is derived from the interaction of an agent with itself. It is shown that the general use of the linear isobole in the study of the combined effects of mixtures of agents implies interaction between the agents whether the dose-effect curves of the agents are the same or not. It is difficult to generalize the interaction between two doses of the same agent to the interaction between two doses of different agents with different action mechanisms without the use of a mechanistic model. Predictions using non-interaction defined as independent action are generally different from those using linear isobole. A simple mechanistic framework based on the concept of common intermediate lesions is introduced in this paper to relate these two methods used for the analysis of synergism and antagonism. In this framework of lesion development, two agents that have no common intermediate lesion in their action will be non-interactive (referred to as independent action). When the two agents share a common intermediate, it is shown that the combined effect will follow the linear isobole (referred to as common action). This simple framework of analysis is applicable to the general study of interaction between two agents with different types of dose-effect curves.  相似文献   

3.
We have measured freeze-thaw damage to isolated spinach (Spinacia oleracea L.) chloroplast thylakoid membranes in the presence of different galactose-specific seed lectins to determine whether the binding of proteins to the membrane surface can lead to cryoprotection. Of the seven lectins investigated, five were protective to different degrees and two showed no measurable effect. Protection was afforded by a reduction of the solute permeability of the membranes. This reduced the solute influx during freezing and thereby osmotic rupture of the thylakoid vesicles during thawing. Using model membranes and fluorescently labeled lectins, we could show that the proteins bound exclusively to the digalactosyl lipids in the membranes. Binding was a prerequisite for the protective effect, because the presence of up to 5 mM galactose in the samples completely inhibited both binding of the lectins to thylakoid and model membranes and cryoprotection. The degree of binding was, in contrast, not related to the cryoprotective efficiency of different lectins; cryoprotection was a function of the hydrophobicity of the proteins.  相似文献   

4.
Statistical potentials for fold assessment   总被引:3,自引:0,他引:3       下载免费PDF全文
A protein structure model generally needs to be evaluated to assess whether or not it has the correct fold. To improve fold assessment, four types of a residue-level statistical potential were optimized, including distance-dependent, contact, Phi/Psi dihedral angle, and accessible surface statistical potentials. Approximately 10,000 test models with the correct and incorrect folds were built by automated comparative modeling of protein sequences of known structure. The criterion used to discriminate between the correct and incorrect models was the Z-score of the model energy. The performance of a Z-score was determined as a function of many variables in the derivation and use of the corresponding statistical potential. The performance was measured by the fractions of the correctly and incorrectly assessed test models. The most discriminating combination of any one of the four tested potentials is the sum of the normalized distance-dependent and accessible surface potentials. The distance-dependent potential that is optimal for assessing models of all sizes uses both C(alpha) and C(beta) atoms as interaction centers, distinguishes between all 20 standard residue types, has the distance range of 30 A, and is derived and used by taking into account the sequence separation of the interacting atom pairs. The terms for the sequentially local interactions are significantly less informative than those for the sequentially nonlocal interactions. The accessible surface potential that is optimal for assessing models of all sizes uses C(beta) atoms as interaction centers and distinguishes between all 20 standard residue types. The performance of the tested statistical potentials is not likely to improve significantly with an increase in the number of known protein structures used in their derivation. The parameters of fold assessment whose optimal values vary significantly with model size include the size of the known protein structures used to derive the potential and the distance range of the accessible surface potential. Fold assessment by statistical potentials is most difficult for the very small models. This difficulty presents a challenge to fold assessment in large-scale comparative modeling, which produces many small and incomplete models. The results described in this study provide a basis for an optimal use of statistical potentials in fold assessment.  相似文献   

5.
The ability of certain organophosphorus (OP) compounds to inhibit acetylcholinesterase (AChE) has made them useful for industrial (insecticides) and military (nerve agents) purposes. We have previously published a single compartment mathematical model of the interactions between OP nerve agents and the enzymes affected by these agents. That model, which could be used to predict the LD50 of seven nerve agents in rats, has been extended to include the protective actions of stoichiometric and catalytic OP-scavenger enzymes (delivered as pretreatments) so that protective ratios attributable to the scavengers may be predicted. Prediction of expected human protection from in vitro rate constant and initial enzyme level measurements is the ultimate goal for this work. The enhanced model predicts the LD50 from rate constants of the OP agent's binding reactions with AChE, carboxylesterase (CaE) and a stoichiometric scavenger (S); a first-order OP elimination rate (including a contribution due to a catalytic scavenger); and whole body estimates of AChE, CaE and S. The ratio of the scavenger-treated LD50 estimate to the scavenger-free LD50 estimate provided a theoretical expression describing the scavenger's contributions to the protective ratio. Published in vivo protective ratios for two stoichiometric scavengers (fetal bovine serum AChE and human utyrylcholinesterase) against challenge by several OP agents in mice were compared with ratios predicted by the model. A linear regression analysis of in vivo protective ratios in mice versus the ratios predicted by the model from the in vitro measurements resulted in an R(2) value of 0.902. The catalytic scavenger portion of the theory could not be validated due to a lack of published data. We conclude that the one-compartment model can be used to make reasonable estimates of the protective ratio attributable to stoichiometric scavengers, but can make no conclusions regarding the ability of the model to predict catalytic scavenger protection ratios.  相似文献   

6.
One of the future goals in ligament reconstruction is to prevent graft deterioration after transplantation. The aim of this study is to clarify whether an administration of TGF-beta1 and EGF significantly affect biomechanical properties of the in situ frozen-thawed anterior cruciate ligament (ACL), an ACL autograft model, and to elucidate whether the timing of this administration may influence its effect. Rabbits were randomly divided into 4 groups after the freeze-thaw treatment with liquid nitrogen was applied to the right knee. In 2 groups, 4-ng TGF-beta1 and 100-ng EGF mixed with 0.2-ml fibrin sealant were applied around the ACL at 3 and 6 weeks after the treatment, respectively. In the remaining two groups, only 0.2-ml fibrin sealant was applied around the ACL at 3 and 6 weeks, respectively. In each group, all animals were sacrificed at 12 weeks after the freeze-thaw treatment. These growth factors applied at 3 weeks significantly inhibited not only the increase of water content and the cross-sectional area of the ACL but also reduction of the tensile strength and the tangent modulus of the ACL (p<0.0001), which were induced by the freeze-thaw treatment. However, the application at 6 weeks did not significantly affect the changes of these parameters after the treatment. This study demonstrated that the timing of administration of TGF-beta and EGF after the freeze-thaw treatment significantly influences its effect on the biomechanical properties of the frozen-thawed ACL.  相似文献   

7.
8.
Summary Platelet interactions with cultured bovine endothelial cells were studied following freeze-thaw damage or detergent tratment. Platelets from whole blood, platelet-rich plasma, or gel-filtered plasma did not interact directly with freeze-thaw-damaged endothelial cells. Freezing and thawing did result in the exposure of an extracellular matrix located beneath the cells, which proved very thrombogenic. Platelets from all sources attached to both microfilament and amorphous components of the extracellular matrix, although only platelets from whole blood demonstrated aggregation and extensive pseudopodia formation. Treatment of cells with Triton-X detergent resulted in exposure of an intracellular cytoskeleton. Most platelets attached to the cytoskeleton were located near the cell border and had one or more pseudopodia either in contact with extracellular or intracellular material. Adhesion of platelets to the extra-cellular matrix may represent platelet-collagen or plateletfibronectin interactions since both are produced by an incorporated into the extracellular matrix. Platelet interaction with endothelial cytoskeletons may represent contact of pseudopodia with the now exposed matrix located beneath the cells. The possibility that platelets also adhered to intra-cellular components could not be eliminated. These findings are in agreement with data from a freeze-thaw injury model of perfused aorta. In addition, they tend to indicate that physical insult is not sufficient to induce platelet interaction with the endothelial surface, but that chemical modification enhances platelet deposition. Disclaimer. The views of the author do not purport to reflect the positions of the Department of the Army or the Department of Defense. (Para. 4-3, AR 360-5).  相似文献   

9.
The successful freeze preservation of mammalian cells and tissues usually requires the presence of high concentrations of cryoprotective agents (CPAs) such as glycerol, ethylene glycol, or dimethylsulfoxide. Unfortunately, the addition of these permeable agents to cells and tissues prior to freezing and their removal after thawing has been documented to be as damaging as the freeze-thaw process itself. This damaging process has been hypothesized to result from the drastic alterations in cell size caused by the osmotic stresses usually imposed upon cells during the introduction and removal of the cryoprotectants. Consequently, on the basis of a nonequilibrium thermodynamic model for the transport of water and a permeable CPA across cell membranes, a method has been developed to minimize these potentially lethal transient changes in cell size. This method involves the simultaneous variation of both the extracellular CPA and electrolyte or osmotic extender osmolalities in a balance, prescribed manner so that both the cellular water content and the total intracellular ionic strength remain constant as the intracellular CPA osmolarity is either raised or lowered. The theoretical analysis indicates that many of the resulting protocols are practical from the clinical point of view.  相似文献   

10.
Suman Mahan and co-authors review the strategies applied to develop improved vaccines for Cowdria ruminantium infections (heartwater). Inactivated vaccines using cell-cultured C. ruminantium organisms combined with an adjuvant are capable of protecting goats, sheep and cattle against lethal C. ruminantium challenge. Immune responses induced with this vaccine, or after recovery from infection, target outer membrane proteins of C. ruminantium, in particular the major antigenic protein 1 (MAP-1). Genetic immunizations with the gene encoding MAP-1 induce protective T helper cell type 1 responses against lethal challenge in a mouse model. Similarly, homologues of MAP-1 in other phylogenetically and antigenically related ehrlichial agents such as Anaplasma marginale and Ehrlichia chaffeensis are also targets of protective responses. Given the antigenic similarities between the related ehrlichial agents, common strategies of vaccine development could be applied against these agents that cause infections of importance in animals and humans.  相似文献   

11.
Within the framework of an informational approach and the statistical method of comparison of qualitative parameters, a systemic factor is proposed, that is, the difference between entropy functions of hydrogen and carbon in the molecular structure that permits to reliably distinguish highly radioprotective agents among a series of drugs. A limiting factor (hydrophobicity) that restricts the manifestation of radioprotective properties of potential radioprotectors is considered. A relationship between toxic properties of the protective agents and their structure is discussed.  相似文献   

12.
H. A. Saroff 《Biopolymers》1973,12(3):599-610
The energy of interaction is developed for three of the models applied to the action of hemoglobin. Evaluation of an energy of interaction requires a model defining the unperturbed or statistical process from which the real system is derived. The shape of a ligand binding curve by itself does not yield an energy of interaction since a steepened ligand binding curve may result from either a negative or positive energy of interaction.  相似文献   

13.
《Biotechnology advances》2017,35(2):323-336
Cryopreservation has utility in clinical and scientific research but implementation is highly complex and includes labor-intensive cell-specific protocols for the addition/removal of cryoprotective agents and freeze-thaw cycles. Microfluidic platforms can revolutionize cryopreservation by providing new tools to manipulate and screen cells at micro/nano scales, which are presently difficult or impossible with conventional bulk approaches. This review describes applications of microfluidic tools in cell manipulation, cryoprotective agent exposure, programmed freezing/thawing, vitrification, and in situ assessment in cryopreservation, and discusses achievements and challenges, providing perspectives for future development.  相似文献   

14.
Objectives: We aimed at extending the Natural and Orthogonal Interaction (NOIA) framework, developed for modeling gene-gene interactions in the analysis of quantitative traits, to allow for reduced genetic models, dichotomous traits, and gene-environment interactions. We evaluate the performance of the NOIA statistical models using simulated data and lung cancer data. Methods: The NOIA statistical models are developed for additive, dominant, and recessive genetic models as well as for a binary environmental exposure. Using the Kronecker product rule, a NOIA statistical model is built to model gene-environment interactions. By treating the genotypic values as the logarithm of odds, the NOIA statistical models are extended to the analysis of case-control data. Results: Our simulations showed that power for testing associations while allowing for interaction using the NOIA statistical model is much higher than using functional models for most of the scenarios we simulated. When applied to lung cancer data, much smaller p values were obtained using the NOIA statistical model for either the main effects or the SNP-smoking interactions for some of the SNPs tested. Conclusion: The NOIA statistical models are usually more powerful than the functional models in detecting main effects and interaction effects for both quantitative traits and binary traits.  相似文献   

15.
The nonionic surfactant Pluronic F-68 polyol is commonly used to protect cultured animal cells from the detrimental effects of sparging. In this study we investigated the structural features of the Pluronic F-68 molecule responsible for this protective behavior. Poly(oxyethylene)-poly(oxypropylene) block copolymer polyols of various molecular weights and percentages of hydrophobe (poly(oxypropylene], including both Pluronic and reverse Pluronic polyols, were considered. The potential toxicity of these agents was examined in the absence of sparging (i.e., in spinner flasks) by using the attachment-independent Sf9 insect cell line as a model system. Each polyol resulted in one of three distinct types of behavior in these spinner flask experiments: (1) cells lysed at an exponential rate, (2) inhibition of cell growth (i.e., no net cell growth), or (3) uninhibited cell growth. It was then shown that all of the Pluronic and reverse Pluronic polyols that did not inhibit cell growth provided protection from sparging in the bioreactors used in this study; thus, finding a polyol that protected cells was synonymous with finding one that did not inhibit cell growth. The ability of these polyols to protect animal cells in sparged bioreactors was found to correlate well with the hydrophilic-lipophilic balance (HLB). Those polyols with the largest HLB values were found to be protective agents. These poly(oxyethylene)-poly(oxypropylene) polyols were also shown to be more effective protective agents than pure poly(oxyethylene); thus, the presence of the hydrophobe (poly(oxypropylene] is important in their ability to serve as protective agents.  相似文献   

16.
The ability of cells to survive freezing and thawing is expected to depend on the physiological conditions experienced prior to freezing. We examined factors affecting yeast cell survival during freeze-thaw stress, including those associated with growth phase, requirement for mitochondrial functions, and prior stress treatment(s), and the role played by relevant signal transduction pathways. The yeast Saccharomyces cerevisiae was frozen at -20 degrees C for 2 h (cooling rate, less than 4 degrees C min-1) and thawed on ice for 40 min. Supercooling occurred without reducing cell survival and was followed by freezing. Loss of viability was proportional to the freezing duration, indicating that freezing is the main determinant of freeze-thaw damage. Regardless of the carbon source used, the wild-type strain and an isogenic petite mutant ([rho 0]) showed the same pattern of freeze-thaw tolerance throughout growth, i.e., high resistance during lag phase and low resistance during log phase, indicating that the response to freeze-thaw stress is growth phase specific and not controlled by glucose repression. In addition, respiratory ability and functional mitochondria are necessary to confer full resistance to freeze-thaw stress. Both nitrogen and carbon source starvation led to freeze-thaw tolerance. The use of strains affected in the RAS-cyclic AMP (RAS-cAMP) pathway or supplementation of an rca1 mutant (defective in the cAMP phosphodiesterase gene) with cAMP showed that the freeze-thaw response of yeast is under the control of the RAS-cAMP pathway. Yeast did not adapt to freeze-thaw stress following repeated freeze-thaw treatment with or without a recovery period between freeze-thaw cycles, nor could it adapt following pretreatment by cold shock. However, freeze-thaw tolerance of yeast cells was induced during fermentative and respiratory growth by pretreatment with H2O2, cycloheximide, mild heat shock, or NaCl, indicating that cross protection between freeze-thaw stress and a limited number of other types of stress exists.  相似文献   

17.
18.
The aim of cryosurgery is to kill cells within a closely defined region maintained at a predetermined low temperature. To effectively kill cells, it is important to be able to predict and control the cooling rate over some critical range of temperatures and freezing states in order to regulate the spatial extent of injury during any freeze-thaw protocol. The objective of manipulating the freezing parameters is to maximize the destruction of cancer cells within a defined spatial domain while minimizing cryoinjury to the surrounding healthy tissue. An analytical model has been developed to study the rate of cell destruction within a liver tumor undergoing a freeze-thaw cryosurgical process. Temperature transients in the tumor undergoing cryosurgery have been quantitatively investigated. The simulation is based on solving the transient bioheat equation using the finite volume scheme for a single or multiple-probe geometry. Simulated results show good agreement with experimental data obtained from in vivo clinical study. The calibrated model has been employed to study the effects of different freezing rates, freeze-thaw cycle(s), and multi-probe freezing on cell damage in a liver tumor. The effectiveness of each treatment protocol is estimated by generating the cell survival-volume signature and comparing the percentage of cell damaged within the ice-ball. Results from the model show that employing freeze-thaw cycles has the potential to enhance cell destruction within the cancerous tissue. Results from this study provide the basis for designing an optimized cryosurgical protocol which incorporates thermal effects and the extent of cell destruction within tumors.  相似文献   

19.
The purpose of this study was to investigate the effects of the freeze-thaw procedure on the ultrastructural features of human thyroid cells. Four different stages of thyroid cell preparation were compared: (1) fresh surgical tissue, serving as control, (2) cell suspension before freezing, (3) cell suspension after thawing, and (4) monolayer cell culture, obtained from cells after thawing. Electron microscopic examination of cells from each stage showed that the freeze-thaw procedure used caused only minor intracellular alterations restricted to mitochondria. Some of these organelles showed low-amplitude swelling or occasionally appeared condensed. These ultrastructural changes were not paralleled by a decrease in the vitality or sensitivity of the cryopreserved cells to stimulating agents.  相似文献   

20.
Cell-surface receptors are the most common target for therapeutic drugs. The design and optimization of next generation synthetic drugs require a detailed understanding of the interaction with their corresponding receptors. Mathematical approximations to study ligand-receptor systems based on reaction kinetics strongly simplify the spatial constraints of the interaction, while full atomistic ligand-receptor models do not allow for a statistical many-particle analysis, due to their high computational requirements. Here we present a generic coarse-grained model for ligand-receptor systems that accounts for the essential spatial characteristics of the interaction, while allowing statistical analysis. The model captures the main features of ligand-receptor kinetics, such as diffusion dependence of affinity and dissociation rates. Our model is used to characterize chimeric compounds, designed to take advantage of the receptor over-expression phenotype of certain diseases to selectively target unhealthy cells. Molecular dynamics simulations of chimeric ligands are used to study how selectivity can be optimized based on receptor abundance, ligand-receptor affinity and length of the linker between both ligand subunits. Overall, this coarse-grained model is a useful approximation in the study of systems with complex ligand-receptor interactions or spatial constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号