首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheng WF  Hung CH  Chai CY  Hsu KF  He L  Ling M  Wu TC 《Journal of virology》2001,75(5):2368-2376
Recently, self-replicating and self-limiting RNA vaccines (RNA replicons) have emerged as an important form of nucleic acid vaccines. Self-replicating RNA eventually causes lysis of transfected cells and does not raise the concern associated with naked DNA vaccines of integration into the host genome. This is particularly important for development of vaccines targeting proteins that are potentially oncogenic. However, the potency of RNA replicons is significantly limited by their lack of intrinsic ability to spread in vivo. The herpes simplex virus type 1 protein VP22 has demonstrated the remarkable property of intercellular transport and provides the opportunity to enhance RNA replicon vaccine potency. We therefore created a novel fusion of VP22 with a model tumor antigen, human papillomavirus type 16 E7, in a Sindbis virus RNA replicon vector. The linkage of VP22 with E7 resulted in a significant enhancement of E7-specific CD8+ T-cell activities in vaccinated mice and converted a less effective RNA replicon vaccine into one with significant potency against E7-expressing tumors. These results indicate that fusion of VP22 to an antigen gene may greatly enhance the potency of RNA replicon vaccines.  相似文献   

2.
Direct vaccination with mRNA encoding tumor antigens is a novel and promising approach in cancer immunotherapy. CureVac's mRNA vaccines contain free and protamine-complexed mRNA. Such two-component mRNA vaccines support both antigen expression and immune stimulation. These self-adjuvanting RNA vaccines, administered intradermally without any additional adjuvant, induce a comprehensive balanced immune response, comprising antigen specific CD4+ T cells, CD8+ T cells and B cells. The balanced immune response results in a strong anti-tumor effect and complete protection against antigen positive tumor cells. This tumor inhibition elicited by mRNA vaccines is a result of the concerted action of different players. After just two intradermal vaccinations, we observe multiple changes at the tumor site, including the up-regulation of many genes connected to T and natural killer cell activation, as well as genes responsible for improved infiltration of immune cells into the tumor via chemotaxis. The two-component mRNA vaccines induce a very fast and boostable immune response. Therefore, the vaccination schedules can be adjusted to suit the clinical situation. Moreover, by combining the mRNA vaccines with therapies in clinical use (chemotherapy or anti-CTLA-4 antibody therapy), an even more effective anti-tumor response can be elicited. The first clinical data obtained from two separate Phase I/IIa trials conducted in PCA (prostate cancer) and NSCLC (non-small cell lung carcinoma) patients have shown that the two-component mRNA vaccines are safe, well tolerated and highly immunogenic in humans.  相似文献   

3.
IL-10 signalling blockade by intra-peritoneal injection of anti-IL-10 receptor antibodies at the time of immunization enhances vaccine induced CD8+ T cell responses and promotes bacteria, parasitic and viral control. We now show that blockade of IL-10 signalling at the time of immunization enhances vaccine induced antigen specific CD8+ T cell responses to both dominant and subdominant CTL epitopes. Injection of anti-IL-10 receptor antibodies subcutaneous at the time of immunization also enhances CD8+ T cell responses. Furthermore, IL-10 signalling blockade at the time of a Human papillomavirus 16 E7 peptide/LPS immunization, prevents HPV16 E7 transformed TC-1 tumour growth in mice. Immunization in the presence of anti-IL-10R antibodies and Monophosphoryl lipid A, generates antigen specific CD8+ T cell responses similar to immunization with LPS. Our results suggest that immunization and IL-10 signalling blockade may provide a novel way for the development of therapeutic vaccines against cancer.  相似文献   

4.
Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP) vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+) and/or CD8(+) T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+) T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+) T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.  相似文献   

5.
There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.  相似文献   

6.
Recombinant DNA vaccines are able to induce strong CD8+ T cell mediated immunity and have become increasingly attractive for the prevention and treatment of infectious diseases and cancer. Dendritic cells (DC), which critically control cellular immune responses, have been transduced with antigen ex vivo and used as 'nature's adjuvant' to enhance vaccine efficacy. The impact of the application route on the in vivo distribution of antigen and the stimulation of CD8+ T cells have been subjects of considerable debate. Here we report the construction of vectors expressing a fusion protein between EGFP, the H2-K(b)-binding peptide OVA(aa257-264) and green click beetle luciferase as a model antigen which allows for simultaneous quantitative assessment of antigen expression using fluorescence and bioluminescence imaging in correlation with CD8+ T cell stimulation in vivo. We applied this construct to evaluate DNA vaccination with recombinant adenoviral vectors, assess the impact of using cultured DC for vaccine delivery and investigate different application routes. Antigen expression was non-invasively followed in vivo by visualizing bioluminescence with an ultrasensitive CCD camera. CD8+ T cell stimulation was detected with H2-K(b)-OVA(aa257-264) tetramers. We found that intravenous injection of adenovirus-transduced DC stimulated the strongest OVA(aa257-264)-specific cytotoxic T-lymphocyte (CTL) responses although it delivered two orders of magnitude less antigen in vivo when compared to direct injection of recombinant adenovirus. We believe that our experimental approach has the potential to facilitate translational development of improved genetic immunization strategies targeting DC directly in vivo.  相似文献   

7.
Numerous studies have suggested that an effective Hepatitis C Virus (HCV) vaccine must induce strong cytotoxic and IFN-γ+ T cell responses targeting the non-structural region of the virus. Most importantly, these responses must be able to migrate into and remain functional within the liver, an organ known to cause T cell tolerance. Using three novel HCV DNA vaccines encoding non-structural proteins NS4B, NS5A and NS5B, we assessed the ability of peripheral immunization to induce functional intrahepatic immunity both in the presence and absence of cognate HCV antigen expression within the liver. We have shown that these constructs induced potent HCV-specific CD4+ and CD8+ T cell responses in the spleen of C57BL/6 mice and that these responses were detected within the liver following peripheral immunization. Additionally, using a transfection method to express HCV antigen within the liver, we showed that intrahepatic HCV-specific T cells remained highly functional within the liver and retained the ability to become highly activated as evidenced by upregulation of IFN-γ and clearance of HCV protein expressing hepatocytes. Taken together, these findings suggest that peripheral immunization can induce potent HCV-specific T cell responses able to traffic to and function within the tolerant environment of the liver.  相似文献   

8.
9.
CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs), these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.  相似文献   

10.
The use of dendritic cells (DC) for the development of therapeutic cancer vaccines is attractive because of their unique ability to present tumor epitopes via the MHC class I pathway to induce cytotoxic CD8+ T lymphocyte responses. C-Type membrane lectins, DC-SIGN and the mannose receptor (MR), present on the DC surface, recognize oligosaccharides containing mannose and/or fucose and mediate sugar-specific endocytosis of synthetic oligolysine-based glycoclusters. We therefore asked whether a glycotargeting approach could be used to induce uptake and presentation of tumor antigens by DC. To this end, we designed and synthesized glycocluster conjugates containing a CD8+ epitope of the Melan-A/Mart-1 melanoma antigen. These glycocluster-Melan-A conjugates were obtained by coupling glycosynthons: oligosaccharyl-pyroglutamyl-beta-alanine derivatives containing either disaccharides, a dimannoside (Manalpha-6Man) or lactoside, or a Lewis oligosaccharide, to Melan-A 16-40 peptide comprising the 26-35 HLA-A2 restricted T cell epitope, extended with an oligolysine stretch at the C-terminal end. We showed by confocal microscopy and flow cytometry that fluorescent-labeled Melan-A glycoclusters containing either dimannoside or Lewis oligosaccharide were taken up by DC and concentrated in acidic vesicles; conversely lactoside glycopeptides were not at all taken up. Furthermore, using surface plasmon resonance, we showed that dimannoside and Lewis-Melan-A conjugates bind MR and DC-SIGN with high affinity. DC loaded with these conjugates, but not with the lactose-Melan-A conjugate, led to an efficient presentation of the Melan-A epitope eliciting a CD8+ T-lymphocyte response. These data suggest that synthetically designed glycocluster-tumor antigen conjugates may induce antigen cross-presentation by DC and represent a promising tool for the development of tumor vaccines.  相似文献   

11.
The outcome of antigen recognition by naive CD8+ cytotoxic T lymphocytes (CTLs) in the periphery is orchestrated by CD4+ T-helper cells, and can either lead to priming or tolerization. The presence of T-helper cells favors the induction of CTL immunity, whereas the absence of T-helper cells can result in CTL tolerance. The action of T helper cells in CTL priming is mediated by CD40-CD40 ligand interactions. We demonstrate here that triggering of CD40 in vivo can considerably enhance the efficacy of peptide-based anti-tumor vaccines. The combination of a tolerogenic peptide vaccine containing a minimal essential CTL epitope with an activating antibody against CD40 converts tolerization into strong CTL priming. Moreover, CD40 ligation can provide an already protective tumor-specific peptide vaccine with the capacity to induce therapeutic CTL immunity in tumor-bearing mice. These findings indicate that the CD40-CD40 ligand pair can act as a 'switch', determining whether naive peripheral CTLs are primed or tolerized, and support the clinical use of CD40-stimulating agents as components of anti-cancer vaccines.  相似文献   

12.
Listeria monocytogenes is a gram-positive bacteria and human pathogen widely used in cancer immunotherapy because of its capacity to induce a specific cytotoxic T cell response in tumours. This bacterial pathogen strongly induces innate and specific immunity with the potential to overcome tumour induced tolerance and weak immunogenicity. Here, we propose a Listeria based vaccination for melanoma based in its tropism for these tumour cells and its ability to transform in vitro and in vivo melanoma cells into matured and activated dendritic cells with competent microbicidal and antigen processing abilities. This Listeria based vaccination using low doses of the pathogen caused melanoma regression by apoptosis as well as bacterial clearance. Vaccination efficacy is LLO dependent and implies the reduction of LLO-specific CD4+ T cell responses, strong stimulation of innate pro-inflammatory immune cells and a prevalence of LLO-specific CD8+ T cells involved in tumour regression and Listeria elimination. These results support the use of low doses of pathogenic Listeria as safe melanoma therapeutic vaccines that do not require antibiotics for bacterial removal.  相似文献   

13.
Because DNA vaccines on their own tend to induce weak immune responses in humans, adjuvant methods are needed in order to improve their efficacy. The co-stimulatory molecules 4-1BBL, OX40L, and CD70 have been shown to induce strong T cell activities; therefore, in this study, we investigated whether they may be used as molecular adjuvants for a hepatitis B surface antigen (HBsAg) DNA vaccine (pcDS2) in eliciting strong cellular and memory responses. Compared to mice immunized with pcDS2 alone, addition of the co-stimulatory molecules increased T cell proliferation and an HBsAg-specific antibody response that was marked with a higher ratio of IgG2a/IgG1. Importantly, pcDS2 plus these co-stimulatory molecules elicited a higher level of IFN-gamma and IL-4 in CD4(+) T cells and a higher level of IFN-gamma in CD8(+) T cells. In addition, a significantly robust antigen-specific cytotoxic T lymphocyte (CTL) response and the production of long-term memory CD8(+) T cells were also observed in the groups immunized with pcDS2 plus 4-1BBL, OX40L, or CD70. Consistently, as late as 100 days after immunization, upregulated expressions of BCL-2, Spi2A, IL-7Ra, and IL-15Ra were still observed in mice immunized with pcDS2 plus these co-stimulatory molecules, suggesting the generation of memory T cells in these groups. Together, these results suggest that the co-stimulatory molecules 4-1BBL, OX40L, or CD70 can enhance the immunogenicity of HBsAg DNA vaccines, resulting in strong humoral, cellular, and memory responses. This approach may lead to an effective therapeutic vaccine for chronic hepatitis B virus (HBV) infection.  相似文献   

14.
We have previously demonstrated the ability of the vaccine vectors based on replicon RNA of the Australian flavivirus Kunjin (KUN) to induce protective antiviral and anticancer CD8+ T-cell responses using murine polyepitope as a model immunogen (I. Anraku, T. J. Harvey, R. Linedale, J. Gardner, D. Harrich, A. Suhrbier, and A. A. Khromykh, J. Virol. 76:3791-3799, 2002). Here we showed that immunization of BALB/c mice with KUN replicons encoding HIV-1 Gag antigen resulted in induction of both Gag-specific antibody and protective Gag-specific CD8+ T-cell responses. Two immunizations with KUNgag replicons in the form of virus-like particles (VLPs) induced anti-Gag antibodies with titers of > or =1:10,000. Immunization with KUNgag replicons delivered as plasmid DNA, naked RNA, or VLPs induced potent Gag-specific CD8+ T-cell responses, with one immunization of KUNgag VLPs inducing 4.5-fold-more CD8+ T cells than the number induced after immunization with recombinant vaccinia virus carrying the gag gene (rVVgag). Two immunizations with KUNgag VLPs also provided significant protection against challenge with rVVgag. Importantly, KUN replicon VLP vaccinations induced long-lasting immune responses with CD8+ T cells able to secrete gamma interferon and to mediate protection 6 to 10 months after immunization. These results illustrate the potential value of the KUN replicon vectors for human immunodeficiency virus vaccine design.  相似文献   

15.
Liposomal delivery of CTL epitopes to dendritic cells   总被引:5,自引:0,他引:5  
The induction of strong and long lasting T-cell response, CD4+ or CD8+, is a major requirement in the development of efficient vaccines. An important aspect involves delivery of antigens to dendritic cells (DCs) as antigen presenting cells (APCs) for the induction of potent antigen-specific CD8+ T lymphocyte (CTLs) responses. Protein or peptide-based vaccines become an attractive alternative to the use of live cell vaccines to stimulate CTL responses for the treatment of viral diseases or malignancies. However, vaccination with proteins or synthetic peptides representing discrete CTL epitopes have failed in most instances due to the inability for exogenous antigens to be properly presented to T cells via major histocompatibility complex (MHC) class I molecules. Modern vaccines, based on either synthetic or natural molecules, will be designed in order to target appropriately professional APCs and to co-deliver signals able to facilitate activation of DCs. In this review, we describe the recent findings in the development of lipid-based formulations containing a combination of these attributes able to deliver tumor- or viral-associated antigens to the cytosol of DCs. We present in vitro and pre-clinical studies reporting specific immunity to viral, parasitic infection and tumor growth.  相似文献   

16.
Recently, self-replicating RNA vaccines (RNA replicons) have emerged as an effective strategy for nucleic acid vaccine development. Unlike naked DNA vaccines, RNA replicons eventually cause lysis of transfected cells and therefore do not raise the concern of integration into the host genome. We evaluated the effect of linking human papillomavirus type 16 E7 as a model Ag to Mycobacterium tuberculosis heat shock protein 70 (HSP70) on the potency of Ag-specific immunity generated by a Sindbis virus self-replicating RNA vector, SINrep5. Our results indicated that this RNA replicon vaccine containing an E7/HSP70 fusion gene generated significantly higher E7-specific T cell-mediated immune responses in vaccinated mice than did vaccines containing the wild-type E7 gene. Furthermore, our in vitro studies demonstrated that E7 Ag from E7/HSP70 RNA replicon-transfected cells can be processed by bone marrow-derived dendritic cells and presented more efficiently through the MHC class I pathway than can wild-type E7 RNA replicon-transfected cells. More importantly, the fusion of HSP70 to E7 converted a less effective vaccine into one with significant potency against E7-expressing tumors. This antitumor effect was dependent on NK cells and CD8(+) T cells. These results indicated that fusion of HSP70 to an Ag gene may greatly enhance the potency of self-replicating RNA vaccines.  相似文献   

17.
CD8+ T cells are essential for host defense to Mycobacterium tuberculosis (Mtb) infection and identification of CD8+ T cell epitopes from Mtb is of importance for the development of effective peptide-based diagnostics and vaccines. We previously demonstrated that the secreted 10-KDa culture filtrate protein (CFP10) from Mtb is a potent CD8+ T cell antigen but the repertoire and dominance pattern of human CD8 epitopes for CFP10 remained poorly characterized. In the present study, we undertook to define immunodominant CD8 epitopes involved in CFP10 using a panel of CFP10-derived 13–15 amino acid (aa) peptides overlapping by 11 aa. Four peptides in CFP10 were observed to induce significant CD8+ T cell responses and we further determined the size of the epitopes involved in each individual peptide tested. Four 9 aa CD8 epitopes were finally identified and deleting a single amino acid from the N or C terminus of either peptide markedly reduced IFN-γ production, suggesting that they are minimum of CD8 epitopes. In the individuals tested, each epitope represented a single immunodominant response in CD8+ T cells. The epitope-specific CD8+ T cells displayed effector or effector memory phenotypes and could upregulate the expression of CD107a/b upon antigen stimulation. In addition, we found that epitope-specific CD8+ T cells shared biased usage of T cell receptor (TCR) variable region of β chain (Vβ) 12, 9, 7.2 or Vβ4 chains. As judged from HLA-typing results and using bioinformatics technology for prediction of MHC binding affinity, we found that the epitope-specific CD8+ T cells are all restricted by HLA-B alleles. Our findings suggest that the four epitopes in CFP10 recognized by CD8+ T cells might be of importance for the development of Mtb peptide-based vaccines and for improved diagnosis of TB in humans.  相似文献   

18.
The chemotherapeutic drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA) inhibits intratumoural blood flow, causing hypoxia, haemorrhagic necrosis, vascular collapse and tumour cell death. Production of TNF-alpha and IFN is also induced, causing local inflammation and activation of immune cells including CD8+ T cells. We used the tumour cell line LL-LCMV, which expresses the gp33 epitope of lymphocytic choriomeningitis virus in a non-immunogenic form, to investigate whether tumour cell death caused by treatment with DMXAA may improve the success of tumour immunotherapy mediated by CD8+ T cells. Treatment with DMXAA was effective at reducing the size of LL-LCMV tumours. However, compared to normal mice, tumour reduction was no more marked or sustained in mice carrying high numbers of naive, tumour-specific CD8+ T cells. The antitumour effect of activated CD8+ T cells was also not affected by DMXAA treatment. Tumour-specific CD8+ T cells activated in vivo by immunization with dendritic cells and specific tumour peptide antigen, or generated in vitro and adoptively transferred into tumour-bearing mice by i.v. injection, did not improve or sustain the reduction in tumour size induced by DMXAA treatment. We conclude that the presence of high numbers of naive CD8+ T cells, or immunotherapies leading to CD8+ T-cell activation, do not synergize with the tumour cell death and local inflammation induced by DMXAA treatment. It is possible that this lack of synergism may result from both treatments inducing activation of CD8+ T cells and that treatments that activate different populations of immune cells may achieve better success.  相似文献   

19.
Myeloid antigen-presenting cells (APC) are known to cross-present exogenous antigen on major histocompatibility class I molecules to CD8+ T cells and thereby induce protective immunity against infecting microorganisms. Here we report that liver sinusoidal endothelial cells (LSEC) are organ-resident, non-myeloid APC capable of cross-presenting soluble exogenous antigen to CD8+ T cells. Though LSEC employ similar molecular mechanisms for cross-presentation as dendritic cells, the outcome of cross-presentation by LSEC is CD8+ T cell tolerance rather than immunity. As uptake of circulating antigens into LSEC occurs efficiently in vivo, it is likely that cross-presentation by LSEC contributes to CD8+ T cell tolerance observed in situations where soluble antigen is present in the circulation.  相似文献   

20.
The development of effective anti-cancer vaccines requires precise assessment of vaccine-induced immunity. This is often hampered by low ex vivo frequencies of antigen-specific T cells and limited defined epitopes. This study investigates the applicability of modified, in vitro-transcribed mRNA encoding a therapeutically relevant tumour antigen to analyse T cell responses in cancer patients. In this study transfection of antigen presenting cells, by mRNA encoding the tumour antigen NY-ESO-1, was optimised and applied to address spontaneous and vaccine-induced T cell responses in cancer patients. Memory CD8+ T cells from lung cancer patients having detectable humoral immune responses directed towards NY-ESO-1 could be efficiently detected in peripheral blood. Specific T cells utilised a range of different T cell receptors, indicating a polyclonal response. Specific killing of a panel of NY-ESO-1 expressing tumour cell lines indicates recognition restricted to several HLA allelic variants, including a novel HLA-B49 epitope. Using a modified mRNA construct targeting the translated antigen to the secretory pathway, detection of NY-ESO-1-specific CD4+ T cells in patients could be enhanced, which allowed the in-depth characterisation of established T cell clones. Moreover, broad CD8+ and CD4+ T cell responses covering multiple epitopes were detected following mRNA stimulation of patients treated with a recombinant vaccinia/fowlpox NY-ESO-1 vaccine. This approach allows for a precise monitoring of responses to tumour antigens in a setting that addresses the breadth and magnitude of antigen-specific T cell responses, and that is not limited to a particular combination of known epitopes and HLA-restrictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号