首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
肝癌细胞-胞外基质粘附性与粘附识别序列的相关性   总被引:1,自引:0,他引:1  
以微管吸吮技术研究了人肝癌细胞在IV型胶原/层粘连蛋白(LN)/纤维连结蛋白(FN)裱衬表面的粘附性。进一步,用四种人工合成肽精-甘-天冬-丝(RGDS)、甘-精-甘-天冬-苏-脯GRGDTP)、酪-异亮-甘-丝-精(YIGSR0和半胱-天冬-脯-甘-酪-异亮-甘-丝-精(CDPGYIGSR)研究了肝癌细胞粘附性对两种粘附识别序列RGD和YIGSR的依赖性。为了归纳和整理实验结果,根据竞争性抑制的  相似文献   

2.
层粘连蛋白及其肽段对小鼠胚泡粘附和扩展的作用   总被引:7,自引:1,他引:6  
作为细胞外基质的主要成分之一的层粘连蛋白(LN),对小鼠胚泡的粘附、扩展有显著促进作用。LN分子上的一些活性位点对胚泡的粘附和扩展也具有一定的作用,含RGD位点序列的合成肽段RGDS对胚泡的粘附有促进作用;含YIGSR位点序列的合成肽段cYIGSR对胚泡的粘附和扩展均有促进作用;且RGDS和cYIGSR可以竞争性抑制LN对胚泡粘附和扩展的促进作用。以上结果表明LN对胚泡的作用是通过胚泡上不同的LN  相似文献   

3.
Synthesis of RGD containing peptides and their bioactivities   总被引:3,自引:0,他引:3  
RGDS, RGDV, and RGDF were used for the structural modification of YIGSR and YIGSK, the sequences involved in the development of metastasis disease. By use of a solution method, YIGSRRGDS, YIGSRRGDV, YIGSRRGDF, YIGSKRGDS, YIGSKRGDV, YIGSKRGDF, YIGSRYIGSK, and YIGSKYIGSR were prepared in good yield. The results of bioassay in vitro indicated that the target property of RGDS, RGDV, and RGDF to high affinity-receptors may be responsible for the enhanced anti-aggregation, anti-adhesion, and anti-invasion potency.  相似文献   

4.
You I  Kang SM  Byun Y  Lee H 《Bioconjugate chemistry》2011,22(7):1264-1269
Heparin immobilization on surfaces has drawn a great deal of attention because of its potential application in enhancing blood compatibility of various biomedical devices such as catheters, grafts, and stents. Existing methods for the heparin immobilization are based on covalent linkage formation and electrostatic interaction between substrates and heparin molecules. However, complicated multistep procedures and uncontrolled desorption of heparin are limitations of these methods. In this work, we report a new heparin derivative that exhibits robust adhesion on surfaces. The derivative, called hepamine, was prepared via conjugation of dopamine, a mussel-inspired adhesive moiety, onto a heparin backbone. Immersion of poly(urethane) substrates into an aqueous solution of hepamine resulted in robust heparin coating of the poly(urethane), the most widely used polymeric material for blood-contacting medical devices. The hepamine-coated poly(urethane) substrate showed significant inhibition of blood coagulation and platelet adhesion. The use of hepamine for surface modification is advantageous for several reasons: for example, no chemical pretreatment of the substrates is necessary, and surface functionalization is a simple, one-step procedure. Thus, the heparin immobilization method described herein is an excellent alternative approach for the introduction of heparin molecules onto surfaces.  相似文献   

5.
The ultimate goal in the design of biomimetic materials for use in tissue engineering as permanent or resorbable tissue implants is to generate biocompatible scaffolds with appropriate biomechanical and chemical properties to allow the adhesion, ingrowth, and survival of cells. Recent efforts have therefore focused on the construction and modification of biomimetic surfaces targeted to support tissue-specific cell functions including adhesion, growth, differentiation, motility, and the expression of tissue-specific genes. Four decades of extensive research on the structure and biological influence of the extracellular matrix (ECM) on cell behavior and cell fate have shown that three types of information from the ECM are relevant for the design of biomimetic surfaces: (1) physical properties (elasticity, stiffness, resilience of the cellular environment), (2) specific chemical signals from peptide epitopes contained in a wide variety of extracelluar matrix molecules, and (3) the nanoscale topography of microenvironmental adhesive sites. Initial physical and chemical approaches aimed at improving the adhesiveness of biomaterial surfaces by sandblasting, particle coating, or etching have been supplemented by attempts to increase the bioactivity of biomaterials by coating them with ECM macromolecules, such as fibronectin, elastin, laminin, and collagens, or their integrin-binding epitopes including RGD, YIGSR, and GFOGER. Recently, the development of new nanotechnologies such as photo- or electron-beam nanolithography, polymer demixing, nano-imprinting, compression molding, or the generation of TiO2 nanotubes of defined diameters (15–200 nm), has opened up the possibility of constructing biomimetic surfaces with a defined nanopattern, eliciting tissue-specific cellular responses by stimulating integrin clustering. This development has provided new input into the design of novel biomaterials. The new technologies allowing the construction of a geometrically defined microenvironment for cells at the nanoscale should facilitate the investigation of nanotopography-dependent mechanisms of integrin-mediated cell signaling.  相似文献   

6.
The biological activity of the amino acid sequence consisting of the immediate carboxyl terminus side of the Arg-Gly-Asp-Ser (RGDS) amino acid sequence in the cell-binding domain of intact fibronectin (FN) molecules was examined using synthetic peptides [RGDS, Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP), Arg-Gly-Asp-Ser-Pro-Ala-Ser-Ser-Lys-Pro (RGDSPASSKP), Pro-Ala (PA), Pro-Ala-Ser (PAS), Pro-Ala-Ser-Ser (PASS), and Pro-Ala-Ser-Ser-Lys (PASSK)]. These peptides were applied to the primary mesenchyme cells (PMCs) of the sea urchin, Clypeaster japonicus. In vitro immunohistochemistry indicated that the binding of exogenous FN to the PMC surface was inhibited by the peptides RGDSPASSKP and PASS, but not by RGDS, GRGDSP, PA, or PAS. PASS and RGDS introduced into the blastocoel also inhibited PMC migration in vivo. FN-promoted PMC migration in vitro was also inhibited by PASS and RGDS. The present results indicate that the PASS peptide inhibits FN binding to the PMC surface and promotes PMC migration, suggesting that the FN molecule uses the PASS amino acid sequence to bind to the PMC surface and to promote PMC migration in the blastocoel.  相似文献   

7.
In this study, specific interactions between immobilized RGDS (Arg-Gly-Asp-Ser) cell adhesion peptides and cell integrin receptors located on cell membranes are controlled in vitro using stimuli-responsive polymer surface chemistry. Temperature-responsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) (P(IPAAm-co-CIPAAm)) copolymer grafted onto tissue culture grade polystyrene (TCPS) dishes permits RGDS immobilization. These surfaces facilitate the spreading of human umbilical vein endothelial cells (HUVECs) without serum depending on RGDS surface content at 37 degrees C (above the lower critical solution temperature, LCST, of the copolymer). Moreover, cells spread on RGDS-immobilized surfaces at 37 degrees C detach spontaneously by lowering culture temperature below the LCST as hydrated grafted copolymer chains dissociate immobilized RGDS from cell integrins. These cell lifting behaviors upon hydration are similar to results using soluble RGDS in culture as a competitive substitution for immobilized ligands. Binding of cell integrins to immobilized RGDS on cell culture substrates can be reversed spontaneously using mild environmental stimulation, such as temperature, without enzymatic or chemical treatment. These findings are important for control of specific interactions between proteins and cells, and subsequent "on-off" regulation of their function. Furthermore, the method allows serum-free cell culture and trypsin-free cell harvest, essentially removing mammalian-sourced components from the culture process.  相似文献   

8.
Specific binding of antimicrobial peptides to titanium (Ti) surfaces may serve to prevent biofilm formation, leading to a reduction in peri-implantitis. This study evaluated the binding behavior of conjugated molecules consisting of antimicrobial and hexapeptidic Ti-binding peptides (minTBP-1) using the quartz crystal microbalance (QCM-D) technique, and investigated the effect of modification of Ti surfaces with these peptides on the bioactivity of Porphyromonas gingivalis. Four kinds of peptide were prepared: histatin 5 (DSHAKRHHGYKRKFHEKHHSHRGY), minTBP-1 + histatin 5 (RKLPDAPDSHAKRHHGYKRKFHEKHHSHRGY), lactoferricin (FQWQRNMRKVR), and minTBP-1 + lactoferricin (RKLPDAPGGFQWQRNMRKVR). The QCM-D analysis demonstrated that significantly larger increases in peptide adsorption were observed in the conjugated peptides than in antimicrobial peptides alone. In addition, ATP activity in P. gingivalis in peptide-modified specimens significantly decreased compared to that in the Ti control. These results indicate that surface modification with conjugated molecules consisting of antimicrobial and Ti-binding peptides is a promising method for reduction of biofilm formation on Ti surfaces.  相似文献   

9.
Heparin and related glycosaminoglycans are potent inhibitors of both in vivo and in vitro smooth muscle cell (SMC) proliferation. We have found that epidermal growth factor (EGF) reverses the antiproliferative effects of heparin. Other known SMC mitogens, including platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), and thrombin, were unable to prevent heparin action. The EGF specificity was further demonstrated by developing a biological growth assay in which EGF or PDGF, at concentrations as low as 1 ng/ml, stimulated SMC growth in the absence of other serum components. Under these conditions, EGF, but not PDGF, suppressed heparin inhibition as well. The ability of EGF to reverse heparin inhibition was only observed when mitogen and glycosaminoglycan were added to SMC at similar times. If SMC were pretreated with heparin for 48 hours prior to EGF addition, the protective effects of EGF were lost. Heparin did not directly prevent 125I-EGF or platelet-derived EGF-like peptides from binding to the EGF receptor on SMC. However, cultures that were pretreated with heparin for 48 hours bound 49% less 125I-EGF than cultures that had been pretreated with the mucopolysaccharide for only 2 hours or that had not been preexposed to heparin. In previous studies, we have established that heparin exerts its maximal inhibitory activity after a 48-hour treatment of SMC (Reilly et al. 1986). Taken together, these data suggest that heparin may exert its antiproliferative potential by slowly and specifically altering SMC response to EGF-like mitogens of platelet origin.  相似文献   

10.
The synthetic peptides Gly-Arg-Gly-Asp-Tyr and Gly-Tyr-Ile-Gly-Ser-Arg-Tyr, which contain Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR), the ligands for two important classes of cell adhesion receptors, were covalently coupled to a nonadhesive modified glass surface by the N-terminal Gly. The N-terminal Gly served as a spacer, and the C-terminal Y served as a site for radioiodination. These modified substrates supported the adhesion and spreading of cultured human foreskin fibroblasts (HFFs) independently of adsorbed proteins and, it was demonstrated that a covalently immobilized YIGSR-containing peptide has biological activity. The surface concentration of grafted peptide on the glass was measured by 125I radio-labeling and was 12.1 pmol/cm2. HFFs spread on both immobilized peptide substrates, but at much slower rates on grafted YIGSR glass surfaces than on the RGD-containing substrates. Cells formed focal contacts on the RGD-derivatized substrates in the presence or absence of serum. Focal contacts formed on the YIGSR-grafted surfaces only when serum was present in the medium and had morphologies different from those observed on the RGD-containing substrates. Serum influenced the organization of microfilaments and the extent of spreading of adherent cells, although adsorption of adhesion proteins was minimal on all substrates. This derivatization method produced chemically stable substrates which may be useful in studying receptor-mediated cell adhesion, as the quantity of peptide available at the surface may be precisely measured and controlled.  相似文献   

11.
Amphiregulin (AR) and heparin-binding EGF-like growth factor (HB-EGF) are two recently identified members of the EGF family. Both AR and HB-EGF share with EGF the ability to interact with the type-1 EGF receptor; however, AR and HB-EGF differ from EGF in that both of these mitogens bind to heparin while EGF does not. To determine whether interactions with heparin-like molecules on the cell surface influence binding of AR and HB-EGF with EGF receptors and the subsequent mitogenic activity exerted by these growth factors, murine AKR-2B and Balb/MK-2 cells were treated with either an inhibitor of proteoglycan sulfation (chlorate) or a heparin antagonist (hexadimethrine). As expected, neither treatment significantly altered the specific binding of 125I-EGF on AKR-2B cells. Interestingly, treatment with either chlorate or hexadimethrine inhibited the ability of AR to compete with 125I-EGF for cell surface binding and also attenuated AR-mediated DNA synthesis. Thus, as has been suggested for other heparin-binding growth factors such as basic fibroblast growth factor (bFGF), the interaction of AR with an EGF-binding receptor appears to be facilitated by interaction with cell-associated sulfated glycosami-noglycans or proteoglycans. Unexpectedly, however, neither chlorate nor hexadimethrine treatment caused an inhibition of HB-EGF-induced mitogenic activity. Chlorate treatment did not significantly alter the ability of HB-EGF to compete with 125I-EGF for cell surface binding sites, however, heparin and hexadimethrine reduced the ability of HB-EGF to compete for 125I-EGF binding. These results suggest that, in AKR-2B cells, HB-EGF may mediate its mitogenic response at least in part through a receptor which appears to be selective for HB-EGF and permits HB-EGF-mediated mitogenic responses in the presence of hexadimethrine or heparin. Finally, hexadimethrine inhibited the specific binding and mitogenic activity of bFGF, suggesting that this cationic polymer can function as an antagonist of heparin-binding mitogens other than AR. © 1995 Wiley-Liss, Inc.  相似文献   

12.
The involvement of embryonic cell surface proteoglycans in the attachment and outgrowth of cultured mouse embryos has been investigated. Several lines of evidence indicate that periimplantation stage blastocysts express heparin/heparan sulfate proteoglycans on their cell surfaces that can mediate embryo attachment and trophoblast outgrowth on a variety of matrices. First, in the presence of soluble heparin, the rate at which embryos attach and outgrow on laminin, fibronectin, or monolayers of uterine epithelial cells is reduced considerably. In the case of fibronectin, the rate of outgrowth in the presence of the heparin is slower than in the presence of the Arg-Gly-Asp-Ser-containing peptide that is recognized by a fibronectin receptor. Embryos also attach and exhibit a limited ability to outgrow on platelet factor IV, a heparin binding protein that does not possess the additional binding domains of laminin or fibronectin. Attachment on platelet factor IV is inhibited by heparin. Second, cell surface digestion of attachment-component embryos with heparinase, but not chondroitinase ABC, slows the rate of outgrowth on tissue culture plates in the presence of serum. Third, selective staining for sulfated molecules on the trophectoderm surface of periimplantation stage embryos indicates that such molecules are abundant and uniformly distributed on these cell surfaces. Last, heparin/heparan sulfate proteoglycans are detected as major cell surface components of embryos using vectorial labeling with lactoperoxidase and Na125I. Collectively, these data indicate that heparin/heparan sulfate-bearing molecules have a direct role in attachment and outgrowth of implantation stage blastocysts.  相似文献   

13.
Enhancing factor (EF), a mouse intestinal phospholipase A2 (PLA2), has been isolated and characterized. EF increases the binding of epidermal growth factor (EGF) to A431 cells almost two-fold by interacting with EGF. EF binds to a 100 kDa cell surface receptor and brings about an increase in the binding of EGF. In the present study we demonstrate that EF is a heparin binding protein and at the time of iodination of EF, the heparin binding site of EF has to be protected. Heparin inhibits the enhancing activity of EF as well as the binding of labelled EF to A431 cells. Inhibition of binding of EF to cells by heparin indicates that heparin binding region forms at least part of the receptor binding domain. These data suggest that the receptor for EF on the cell surface could be a heparin sulphate proteoglycan.  相似文献   

14.
The specificity, affinity and stoichiometry of the interaction between avidin and glycosaminoglycans (GAGs) have been investigated using heparin-coated microtiter-plate assays, a filter binding assay and surface plasmon resonance (SPR) analysis using a BIAcore 2000 biosensor. Avidin binds heparin and heparan sulfate, and chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate or hyaluronan were unable to compete for binding. Highest-affinity binding was observed with heparin, and weaker binding was seen when using heparan sulfate or low molecular weight heparin preparations. This indicated that only specific polysaccharide structures tightly interact with avidin. Approximately two avidin molecules bind to each heparin molecule with an overall affinity of 160 nM. The interaction is pH dependent, increasing five-fold upon decreasing the pH from 7.5 to 5.5, while binding was negligible at pH 9. We demonstrate the potential of fluorescent avidin derivatives as a tool for the detection of heparin and heparan sulfates on surfaces by application to both heparin immobilized on polystyrene plates and heparan sulfate on cell surfaces.  相似文献   

15.
Wu ZZ  Li P  Huang QP  Qin J  Xiao GH  Cai SX 《Biorheology》2003,40(4):489-502
A micropipette technique was used to investigate the effects of four synthetic peptides, YIGSR, CDPGYIGSR, RGDS and GRGDTP, on the adhesion of hepatocellular carcinoma (HCC) cells onto type IV collagen/laminin/fibronectin coated surfaces. Adhesion of HCC cells to laminin was found to be YIGSR- or CDPGYIGSR-dependent while that to fibronectin and type IV collagen was RGDS- or GRGDTP-dependent. The reduction in adhesion strengths of HCC cells was slight to moderate (up to 55%), and was dependent on the peptide concentration. The decrease in adhesion strengths was reversed by an increase in ligand coating concentration and was compromised by prolonged interaction of the cells with the surfaces. These results suggested that the inhibition was due to competitive retardation rather than to a blockade of adhesion strengthening. A simple asymptotic function was adopted to fit the correlation between the mean of cell adhesion strengths and peptide concentration within defined concentration ranges. Regression analysis showed that cell adhesion strengths appeared to approach a plateau with increasing concentration of the inhibitory peptides, which was not always uniform over the entire concentration range tested. Further reduction in adhesion strengths was observed at higher peptide concentrations. It is suggested that the constants obtained by fitting over a low peptide concentration range might be kinetically representative of the inhibition during early events of adhesion or attachment.  相似文献   

16.
Effective surface modification with biocompatible molecules is known to be effective in reducing the life‐threatening risks related to artificial cardiovascular implants. In recent strategies in regenerative medicine, the enhancement and support of natural repair systems at the site of injury by designed biocompatible molecules have succeeded in rapid and effective injury repair. Therefore, such a strategy could also be effective for rapid endothelialization of cardiovascular implants to lower the risk of thrombosis and stenosis. To achieve this enhancement of the natural repair system, a biomimetic molecule that mimics proper cellular organization at the implant location is required. In spite of the fact that many reported peptides have cell‐attracting properties on material surfaces, there have been few peptides that could control cell‐specific adhesion. For the advanced cardiovascular implants, peptides that can mimic the natural mechanism that controls cell‐specific organization have been strongly anticipated. To obtain such peptides, we hypothesized the cellular bias toward certain varieties of amino acids and examined the cell preference (in terms of adhesion, proliferation, and protein attraction) of varieties and of repeat length on SPOT peptide arrays. To investigate the role of specific peptides in controlling the organization of various cardiovascular‐related cells, we compared endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs). A clear, cell‐specific preference was found for amino acids (longer than 5‐mer) using three types of cells, and the combinational effect of the physicochemical properties of the residues was analyzed to interpret the mechanism. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
A novel thermoresponsive aqueous antithrombogenic coating material comprising a heparin bioconjugate with a six-branched, star-shaped poly(2-(dimethylaminoethyl)methacrylate) (6B-PDMAEMA), which has both thermoresponsive and cationic characters, was developed to reduce the thrombogenic potential of blood-contacting materials such as synthetic polymers or tissue-engineered tissues in cardiovascular devices. 6B-PDMAEMA with M(n) of ca. 24 kDa was designed as a prototype compound by initiator-transfer agent-terminator (iniferter)-based living radical photopolymerization from hexakis(N,N-diethyldithiocarbamylmethyl)benzene. Bioconjugation of heparin with 6B-PDMAEMA occurred as soon as both aqueous solutions were simply mixed to form particles. The particle size at 25 °C was less than several hundred nanometers in diameter under a heparin/6B-PDMAEMA mixing weight ratio of over 2.5. The particles were very stable because of the prevention of hydrolysis of 6B-PDMAEMA in its bioconjugated form. Because the lower critical solution temperature of the bioconjugate ranges from approximately 20 to 36 °C for the formation of microparticles, the coating could be done in an aqueous solution at low temperatures. The excellent adsorptivity and high durability of the coating above 37 °C was demonstrated on silicone and polyethylene films by surface chemical compositional analysis. Blood coagulation was significantly reduced on the bioconjugate-coated surfaces. Therefore, the thermoresponsive bioconjugate developed here appears to satisfy the initial requirements for a biocompatible aqueous coating material.  相似文献   

18.
The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC‐based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV, or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS, and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1255–1264, 2013  相似文献   

19.
A class of high-affinity binding sites that preferentially bind heparin/heparan sulfate have been identified on the external surfaces of mouse uterine epithelial cells cultured in vitro. [3H]Heparin binding to these surfaces was time-dependent, saturable, and was blocked specifically by the inclusion of unlabeled heparin or endogenous heparan sulfate in the incubation medium. A variety of other glycosaminoglycans did not compete for these binding sites. The presence of sulfate on heparin influenced, but was not essential for, recognition of the polysaccharide by the cell surface binding sites. [3H]-Heparin bound to the cell surface was displaceable by unlabeled heparin, but not chondroitin sulfate. Treatment of intact cells on ice with trypsin markedly reduced [3H]heparin binding, indicating that a large fraction of the surface binding sites were associated with proteins. Scatchard analyses revealed a class of externally disposed binding sites for heparin/heparan sulfate exhibiting an apparent Kd of approximately 50 nM and present at a level of 1.3 x 10(6) sites per cell. Approximately 9-14% of the binding sites were detectable at the apical surface of cells cultured under polarized conditions in vitro. Detachment of cells from the substratum with EDTA stimulated [3H]heparin binding to cell surfaces. These observations suggested that most of the binding sites were basally distributed and were not primarily associated with the extracellular matrix. Collectively, these observations indicate that specific interactions with heparin/heparan sulfate containing molecules can take place at both the apical and basal cell surfaces of uterine epithelial cells. This may have important consequences with regard to embryo-uterine and epithelial-basal lamina interactions.  相似文献   

20.
In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号