首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ether-linked phosphatidylcholines 1-eicosyl-2-dodecyl-rac-glycero-3-phosphocholine (EDPC) and 1-dodecyl-2-eicosyl-rac-glycero-3-phosphocholine (DEPC) have been investigated by differential scanning calorimetry (DSC) and X-ray diffraction. DSC of hydrated EDPC shows a single endothermic transition at 34.8 degrees C (delta H = 11.2 kcal/mol) after storage at -4 degrees C while DEPC shows three endothermic transitions at 7.7 and approximately 9.0 degrees C (combined delta H approximately 0.4 kcal/mol) and at 25.2 degrees C (delta H = 4.7 kcal/mol). Both the single transition of EDPC and the two higher temperature transitions of DEPC are reversible, while the approximately 7.7 degrees C transition of DEPC increases in enthalpy on low-temperature incubation. At 23 degrees C, X-ray diffraction of hydrated EDPC shows a sharp reflection at 4.2 A together with lamellar reflections corresponding to a bilayer periodicity, d = 56.2 A. Electron density profiles derived from swelling experiments show a phosphate-phosphate intrabilayer distance, dp-p, of 36 A at all hydrations. This, together with calculated lipid thickness and molecular area considerations, suggests an interdigitated, three chains per head group, bilayer gel phase, L beta*, with no hydrocarbon chain tilt. This is structurally analogous to the bilayer gel phase of hydrated 18:0/10:0 ester PC [McIntosh, T. J., Simon, S. A., Ellington, J. C., Jr., & Porter, N. A. (1984) Biochemistry 23, 4038]. In contrast, DEPC at -4 degrees C shows an L beta' bilayer gel phase with tilted hydrocarbon chains (d = 61.1 A). However, this transforms above 9 degrees C to an interdigitated, triple-chain, L beta* bilayer gel phase (identical with that of EDPC) with d = 56.6 A and a phosphate-phosphate distance of 36 A. Above their respective chain melting transitions, Tm, EDPC and DEPC exhibit liquid-crystalline L alpha bilayer phases with d = 64.5 and 65.0 A at 55 and 45 degrees C, respectively. The ability of both EDPC and DEPC to form triple-chain interdigitated gel-state bilayers suggests that the conformational inequivalence at the sn-1 and sn-2 positions is less pronounced in the ether-linked PCs compared to the ester-linked PCs, where only one of the positional isomers, e.g., 18:0/10:0 PC but not 10:0/18:0 PC, forms the triple-chain structure (J. Mattai, unpublished results). Thus, a different conformation around the glycerol is predicted for ether-linked PC compared to ester-linked PC.  相似文献   

2.
The thermotropic properties and acyl chain packing characteristics of multilamellar dispersions of binary mixtures of 1-stearoyl-2-caprylphosphatidylcholine (C(18):C(10)PC), an asymmetric chain species, and dimyristoylphosphatidylcholine (C(14):C(14)PC), a symmetric chain lipid, were monitored by vibrational Raman spectroscopy. In order to examine each component of the binary mixture separately, the acyl chains of the symmetric chain species were perdeuterated. As shown by differential scanning calorimetry, the mismatch in the gel phase bilayer thickness between the two lipid components generates a lateral phase separation resulting in two distinct gel phases, G(I) and G(II), which coexist over much of the composition range. The Raman data demonstrate that the mixed interdigitated phase (three chains per headgroup), analogous to single component phase behavior, is retained when the C(18):C(10)PC component act as a host for the G(I) gel phase. In contrast, the C(18):C(10)PC molecules exhibit partial interdigitation (two chains per headgroup) when they are included as guests within the C(14):C(14)PC host matrix to form the G(II) gel phase. Compared to pure C(14):C(14)PC bilayers at equivalent reduced temperatures, the host G(II) gel phase C(14):C(14)PC molecules exhibit an increased acyl chain order, while for the host G(I) gel phase the C(14):C(14)PC lipid species show increased intrachain disorder.  相似文献   

3.
J Mingins  D Stigter    K A Dill 《Biophysical journal》1992,61(6):1603-1615
We study the lateral headgroup interactions among phosphatidylcholine (PC) molecules and among phosphatidylethanolamine (PE) molecules in monolayers and extend our previous models. In this paper, we present an extensive set of pressure-area isotherms and surface potential experiments on monolayers of phospholipids ranging from 14 to 22 carbons in length at the n-heptane/water interface, over a wide range of temperature, salt concentration, and pH on the acid side. The pressure data presented here are a considerable extension of previous data (1) to higher surface densities, comprehensively checked for monolayer loss, and include new data on PE molecules. We explore surface densities ranging from extremely low to intermediate, near to the main phase transition, in which range the surface pressures and potentials are found to be independent of the chain length. Thus, these data bear directly on the headgroup interactions. These interactions are observed to be independent of ionic strength. PC and PE molecules differ strongly in two respects: (a) the lateral repulsion among PC molecules is much stronger than for PE, and (b) the lateral repulsion among PC molecules increases strongly with temperature whereas PE interactions are almost independent of temperature. Similarly, the surface potential for PC is found to increase with temperature whereas for PE it does not. In this and the following paper we show that these data from dilute to semidilute monolayers are consistent with a theoretical model that predicts that, independent of coverage, for PC the P-N+ dipole is oriented slightly into the oil phase because of the hydrophobicity of the methyl groups, increasingly so with temperature, whereas for PE the P-N+ dipole is directed into the water phase.  相似文献   

4.
We explore the effects of alcohols on fluid lipid bilayers using a molecular theory with a coarse-grained model. We show that the trends predicted from the theory in the changes in area per lipid, alcohol concentration in the bilayer, and area compressibility modulus, as a function of alcohol chain length and of the alcohol concentration in the solvent far from the bilayer, follow those found experimentally. We then use the theory to study the effect of added alcohol on the lateral pressure profile across the membrane, and find that added alcohol reduces the surface tensions at both the headgroup/solvent and headgroup/tailgroup interfaces, as well as the lateral pressures in the headgroup and tailgroup regions. These changes in lateral pressures could affect the conformations of membrane proteins, providing a nonspecific mechanism for the biological effects of alcohols on cells.  相似文献   

5.
The headgroup conformation of the phospholipid dipalmitoyl-glycero-phosphocholine (DPPC) in monolayers at the air/water interface has been studied by neutron reflection in the fluid like liquid-expanded (LE) and in the crystal like solid (S) phase. Information on the headgroup conformation in the two phases has been obtained by scattering contrast variation of the lipid monolayer using four differently deuterated species of DPPC: perdeuterated, chain perdeuterated, choline group perdeuterated and selectively headgroup deuterated. Since the measurements were done mainly on a subphase of null reflecting water (i.e. water scattering contrast matched to the air) there is no subphase contribution to reflectivity and the simplest one layer model can be employed for the data analysis, thus minimising the number of free parameters. A remarkable change of the headgroup orientation was observed between the LE and the S phase. We found that the phosphate-nitrogen dipole of the DPPC headgroup exhibits an in-plane orientation with respect to the monolayer in the LE phase but it assumes a more parallel orientation to the surface normal at lateral pressures above 30 mN/m (S phase). Moreover, this conformational change is accompanied by a significant alteration of the headgroup hydration.Abbreviations DPPC Dipalmitoyl-Phosphatidylcholine - DMPC Dimyristoyl-Phosphatidylcholine - DPPE Dipalmitoyl-Phosphatidylethanolamine - DMPE Dimyristoyl-Phosphatidylethanolamine - DMPA Dimyristoyl-Phosphatic Acid - DMPG Dimyristoyl-Phosphatidylglycerol Correspondence to: T M. Bayed  相似文献   

6.
The interaction between the plant hormone, indole-3-acetic acid (IAA), and phosphatidylcholines (PC) of varying acyl chain length has been studied by monitoring the IAA-induced changes in 1H-NMR chemical shifts of lipid headgroup -+N(CH3)3 protons. For PCs in both micellar and vesicle bilayer systems these shifts increase with chain length although for the latter the magnitude of the shifts decreases with an increase in chain unsaturation. In systems composed of mixtures of pure PCs the headgroup -+N(CH3)3 resonance for each phospholipid is shifted by IAA to different extents, indicating that IAA is able to distinguish between individual PCs in mixtures. In di-C12PC and di-C14PC, but not di-C10PC vesicle systems, the -+N(CH3)3 resonance is split into two components reflecting differences in packing of the inside and outside lamellae. This splitting is altered by IAA indicating that IAA interacts differently with the inside and outside PC molecules.  相似文献   

7.
The effects of increased unsaturation in the sn-2 fatty acyl chain of phosphatidylcholines (PCs) on the lipid lateral diffusion have been investigated by pulsed-field gradient NMR. Macroscopically oriented bilayers containing a monosaturated PC, egg sphingomyelin, and cholesterol (CHOL) have been studied at temperatures between 0 degrees C and 60 degrees C, and the number of double bonds in the PC was one, two, four, or six. For PC bilayers, with and without the incorporation of egg sphingomyelin and CHOL, the lateral diffusion increased with increasing number of double bonds, as a consequence of the increased headgroup area caused by the unsaturation. Addition of CHOL caused a decrease in lipid diffusion due to the condensing effect of CHOL on the headgroup area. Phase separation into large domains of liquid-disordered and liquid-ordered phases were observed in the ternary systems with PCs containing four and six double bonds, as evidenced by the occurrence of two lipid diffusion coefficients. PC bilayers with one or two double bonds appear homogeneous on the length scales probed by the experiment, but the temperature dependence of the diffusion suggests that small domains may be present also in these ternary systems.  相似文献   

8.
Recent studies of five different phosphatidylcholine/phosphatidylcholine (PC/PC) systems indicate that binary mixtures of phosphatidylcholines in which one component has a normalized chain length difference (delta C/CL) in the range of 0.09-0.40 and the other a delta C/CL in the range of 0.42-0.57 exhibit the phase behavior of a eutectic system. Here, delta C is the effective chain-length difference between the two acyl chains, and CL is the effective length of the longer of the two acyl chains for the same lipid molecule in the gel state. In each mixture, gel phase immiscibility occurs over a wide compositional range due to the difference in the gel phase acyl chain packing properties of each component. Although the mixtures differ in the location of their eutectic horizontal, with respect to temperature, all have a similar eutectic point that occurs at a composition of approximately 40 mol percent of the component with the delta C/CL value in the range of 0.42-0.57. Here, we extend these studies by systematically modifying the headgroup of C(17):C(17)PC and then analyzing the mixing behavior of the modified lipid with C(22):C(12)PC using DSC. Progressive demethylation of the C(17):C(17)PC headgroup leads to an increase in gel phase immiscibility and a decrease in the amount of C(22):C(12)PC that comprises the eutectic composition. The temperature defining the location of the eutectic horizontal, however, remains virtually unchanged in all three phase diagrams. Our results suggest that the eutectic composition is influenced by changes in gel phase acyl chain packing that are dependent on headgroup-headgroup interactions. In contrast, the eutectic nature of the phase diagram and the location of its solidus line are properties of acyl chain interactions that are independent of phospholipid headgroup-headgroup interactions.  相似文献   

9.
Mixed-chain phosphatidylcholine bilayers: structure and properties   总被引:10,自引:0,他引:10  
J Mattai  P K Sripada  G G Shipley 《Biochemistry》1987,26(12):3287-3297
Calorimetric and X-ray diffraction data are reported for two series of saturated mixed-chain phosphatidylcholines (PCs), 18:0/n:0-PC and n:0/18:0-PC, where the sn-1 and sn-2 fatty acyl chains on the glycerol backbone are systematically varied by two methylene groups from 18:0 to 10:0 (n = 18, 16, 14, 12, or 10). Fully hydrated PCs were annealed at -4 degrees C and their multilamellar dispersions characterized by differential scanning calorimetry and X-ray diffraction. All mixed-chain PCs form low-temperature "crystalline" bilayer phases following low-temperature incubation, except 18:0/10:0-PC. The subtransition temperature (Ts) shifts toward the main (chain melting) transition temperature (Tm) as the sn-1 or sn-2 fatty acyl chain is reduced in length; for the shorter chain PCs (18:0/12:0-PC, 12:0/18:0-PC, and 10:0/18:0-PC), Ts is 1-2 degrees C greater than Tm, and the subtransition enthalpy (delta Hs) is much greater than for the longer acyl chain PCs. Tm decreases with acyl chain length for both series of PCs except 18:0/10:0-PC, while for the positional isomers, n:0/18:0-PC and 18:0/n:0-PC, Tm is higher for the isomer with the longer acyl chain in the sn-2 position of the glycerol backbone. The conversion from the crystalline bilayer Lc phase to the liquid-crystalline L alpha phase with melted hydrocarbon chains occurs through a series of phase changes which are chain length dependent. For example, 18:0/18:0-PC undergoes the phase changes Lc----L beta'----P beta'----L alpha, while the shorter chain PC, 10:0/18:0-PC, is directly transformed from the Lc phase to the L alpha phase. However, normalized enthalpy and entropy data suggest that the overall thermodynamic change, Lc----L alpha, is essentially chain length independent. On cooling, the conversion to the Lc phases occurs via bilayer gel phases, L beta', for the longer chain PCs or through triple-chain interdigitated bilayer gel phases, L beta, for the shorter chain PC 18:0/12:0-PC and possibly 10:0/18:0-PC. Molecular models indicate that the bilayer gel phases for the more asymmetric PC series, 18:0/n:0-PC, must undergo progressive interdigitation with chain length reduction to maintain maximum chain-chain interaction. The L beta phase of 18:0/10:0-PC is the most stable structure for this PC below Tm. The formation and stability of the triple-chain structures can be rationalized from molecular models.  相似文献   

10.
The self-assembled supramolecular structures of diacylphosphatidylcholine (diC(n)PC), diacylphosphatidylethanolamine (diC(n)PE), diacylphosphatidyglycerol (diC(n)PG), and diacylphosphatidylserine (diC(n)PS) were investigated by (31)P nuclear magnetic resonance (NMR) spectroscopy as a function of the hydrophobic acyl chain length. Short-chain homologs of these lipids formed micelles, and longer-chain homologs formed bilayers. The shortest acyl chain lengths that supported bilayer structures depended on the headgroup of the lipids. They increased in the order PE (C(6)) < PC (C(9)) < or = PS (C(9) or C(10)) < PG (C(11) or C(12)). This order correlated with the effective headgroup area, which is a function of the physical size, charge, hydration, and hydrogen-bonding capacity of the four headgroups. Electrostatic screening of the headgroup charge with NaCl reduced the effective headgroup area of PS and PG and thereby decreased the micelle-to-bilayer transition of these lipid classes to shorter chain lengths. The experimentally determined supramolecular structures were compared to the assembly states predicted by packing constraints that were calculated from the hydrocarbon-chain volume and effective headgroup area of each lipid. The model accurately predicted the chain-length threshold for bilayer formation if the relative displacement of the acyl chains of the phospholipid were taken into account. The model also predicted cylindrical rather than spherical micelles for all four diacylphospholipid classes and the (31)P-NMR spectra provided evidence for a tubular network that appeared as an intermediate phase at the micelle-to-bilayer transition. The free energy of micellization per methylene group was independent of the structure of the supramolecular assembly, but was -0.95 kJ/mol (-0.23 kcal/mol) for the PGs compared to -2.5 kJ/mol (-0.60 kcal/mol) for the PCs. The integral membrane protein OmpA did not change the bilayer structure of thin (diC(10)PC) bilayers.  相似文献   

11.
Neurotensin (NT) and neuromedin N (NN) are generated by endoproteolytic cleavage of a common precursor molecule, pro-NT/NN. To gain insight into the role of prohormone convertases PC1, PC2, and PC7 in this process, we investigated the maturation of pro-NT/NN in the brain of PC7 (PC7-/-), PC2 (PC2-/-), and/or PC1 (PC1+/- and PC2-/-; PC1+/-) knock down mice. Inactivation of the PC7 gene was without effect, suggesting that this convertase is not involved in the processing of pro-NT/NN. By contrast, there was a 15% decrease in NT and a 50% decrease in NN levels, as measured by radioimmunoassay, in whole brain extracts from PC2 null as compared with wild type mice. Using immunohistochemistry, we found that this decrease in pro-NT/NN maturation products was uneven and that it was most pronounced in the medial preoptic area, lateral hypothalamus, and paraventricular hypothalamic nuclei. These results suggest that PC2 plays a critical role in the processing of pro-NT/NN in mouse brain and that its deficiency may be compensated to a regionally variable extent by other convertases. Previous data have suggested that PC1 might be subserving this role. However, there was no change in the maturation of pro-NT/NN in the brain of mice in which the PC1 gene had been partially inactivated, implying that complete PC1 knock down may be required for loss of function.  相似文献   

12.
The lamellar gel to lamellar liquid-crystalline (Lbeta/Lalpha) and lamellar liquid-crystalline to inverted hexagonal (Lalpha/H(II)) phase transitions of a number of phosphatidylethanolamines (PEs) and diacyl-alpha-D-glucosyl-sn-glycerols (alpha-D-GlcDAGs) containing linear saturated, linear unsaturated, branched or alicyclic hydrocarbon chains of various lengths were examined by differential scanning calorimetry and low-angle X-ray diffraction. As reported previously, for each homologous series of PEs or alpha-D-GlcDAGs, the Lbeta/Lalpha phase transition temperatures (Tm) increase and the Lalpha/H(II) phase transition temperatures (Th) decrease with increases in hydrocarbon chain length. The Tm and the especially the Th values for the PEs are higher than those of the corresponding alpha-D-GlcDAGs. For PEs having the same effective hydrocarbon chain length but different chain configurations, the Tm and Th values vary markedly but with an almost constant temperature interval (deltaT(L/NL)) between the two phase transitions. Moreover, although the Tm and Th values of the PEs and alpha-D-GlcDAGs are equally sensitive on the temperature scale to variations in the length and chemical configuration of the hydrocarbon chains, the deltaT(L/NL) values are generally larger in the PEs and vary less with the hydrocarbon chain structure. This suggests that the PE headgroup has a greater ability to counteract variations in the packing properties of different hydrocarbon chain structures than does the alpha-D-GlcDAG headgroup. With decreasing chain length, this ability of the PE headgroup to counteract the hydrocarbon chain packing properties increases, significantly expanding the temperature interval over which the Lalpha phase is stable relative to the corresponding regions in the alpha-D-GlcDAGs. Overall, these findings indicate that the PEs have a smaller propensity to form the H(II) phase than do the alpha-D-GlcDAGs with an identical fatty acid composition. In contrast to our previous report, there is some variation in the d-spacings of these various PEs (and alpha-D-GlcDAGs) in both the Lalpha and H(II) phases when the hydrocarbon chain structure is changed while the effective chain length is kept constant. These hydrocarbon chain structural modifications produce different d-spacings in the Lalpha and H(II) phases, but those changes are consistent between the PEs and alpha-D-GlcDAGs, probably reflecting differences in the hydrocarbon chain packing constraints in these two phases. Overall, our experimental observations can be rationalized to a first approximation by a simple lateral stress model in which the primary bilayer strain results from a mismatch between the actual and optimal headgroup areas and the primary strain in the H(II) phase arises from a simple hydrocarbon chain packing term.  相似文献   

13.
The dynamic structure of detergent-resistant membranes (DRMs) isolated from RBL-2H3 cells was characterized using two different acyl chain spin-labeled phospholipids (5PC and 16PC), a headgroup labeled sphingomyelin (SM) analog (SD-Tempo) and a spin-labeled cholestane (CSL). It was shown, by comparison to dispersions of SM, dipalmitoylphosphatidylcholine (DPPC), and DPPC/cholesterol of molar ratio 1, that DRM contains a substantial amount of liquid ordered phase: 1) The rotational diffusion rates (R( perpendicular)) of 16PC in DRM between -5 degrees C and 45 degrees C are nearly the same as those in molar ratio DPPC/Chol = 1 dispersions, and they are substantially greater than R( perpendicular) in pure DPPC dispersions in the gel phase studied above 20 degrees C; 2) The order parameters (S) of 16PC in DRM at temperatures above 4 degrees C are comparable to those in DPPC/Chol = 1 dispersions, but are greater than those in DPPC dispersions in both the gel and liquid crystalline phases. 3) Similarly, R( perpendicular) for 5PC and CSL in DRM is greater than in pure SM dispersions in the gel phase, and S for these labels in DRM is greater than in the SM dispersions in both the gel and liquid crystalline phases. 4) R( perpendicular) of SD-Tempo in DRM is greater than in dispersions of SM in both gel and liquid phases, consistent with the liquid-like mobility in the acyl chain region in DRM. However, S of SD-Tempo in DRM is substantially less than that of this spin label in SM in gel and liquid crystalline phases (in absolute values), indicating that the headgroup region in DRMs is less ordered than in pure SM. These results support the hypothesis that plasma membranes contain DRM domains with a liquid ordered phase that may coexist with a liquid crystalline phase. There also appears to be a coexisting region in DRMs in which the chain labels 16PC and 5PC are found to cluster. We suggest that other biological membranes containing high concentrations of cholesterol also contain a liquid ordered phase.  相似文献   

14.
Lactosylceramide (LacCer) is a key intermediate in glycosphingolipid metabolism and is highly enriched in detergent-resistant biomembrane fractions associated with microdomains, i.e., rafts and caveolae. Here, the lateral interactions of cholesterol with LacCers containing various homogeneous saturated (8:0, 16:0, 18:0, 24:0) or monounsaturated acyl chains (18:1, 24:1) have been characterized using a Langmuir-type film balance. Cholesterol-induced changes in lateral packing were assessed by measuring changes in average molecular area, i.e., area condensations, and in lateral elasticity, i.e., surface compressional moduli (C S(-1)) with emphasis on high surface pressures (> or = 30 mN/m) that mimic biomembrane conditions. Cholesterol most dramatically affected the lateral packing elasticity of LacCers with long saturated acyl chains at sterol mole fractions > or = 0.3, consistent with liquid-ordered (LO) phase formation. The lateral elasticity within the LacCer-cholesterol LO-phase was much lower than that observed within pure LacCer condensed, i.e., gel, phase. The magnitude of the cholesterol-induced reduction in lateral elasticity was strongly mitigated by cis monounsaturation in the LacCer acyl chain. At identical high sterol mole fractions, higher lateral elasticity was observed within LacCer-cholesterol mixtures compared with galactosylceramide-cholesterol and sphingomyelin-cholesterol mixtures. The results show how changes to sphingolipid headgroup and acyl chain structure contribute to the modulation of lateral packing elasticity in sphingolipid-cholesterol LO-phases.  相似文献   

15.
The orientation of lipid headgroups may serve as a powerful sensor of electrostatic interactions in membranes. As shown previously by 2H NMR measurements, the headgroup of phosphatidylcholine (PC) behaves like an electrometer and varies its orientation according to the membrane surface charge. Here, we explored the use of solid-state 14N NMR as a relatively simple and label-free method to study the orientation of the PC headgroup in model membrane systems of varying composition. We found that 14N NMR is sufficiently sensitive to detect small changes in headgroup orientation upon introduction of positively and negatively charged lipids and we developed an approach to directly convert the 14N quadrupolar splittings into an average orientation of the PC polar headgroup. Our results show that inclusion of cholesterol or mixing of lipids with different length acyl chains does not significantly affect the orientation of the PC headgroup. In contrast, measurements with cationic (KALP), neutral (Ac-KALP), and pH-sensitive (HALP) transmembrane peptides show very systematic changes in headgroup orientation, depending on the amount of charge in the peptide side chains and on their precise localization at the interface, as modulated by varying the extent of hydrophobic peptide/lipid mismatch. Finally, our measurements suggest an unexpectedly strong preferential enrichment of the anionic lipid phosphatidylglycerol around the cationic KALP peptide in ternary mixtures with PC. We believe that these results are important for understanding protein/lipid interactions and that they may help parametrization of membrane properties in computational studies.  相似文献   

16.
K A Dill  D Stigter 《Biochemistry》1988,27(9):3446-3453
We develop theory for the lateral interactions among the zwitterionic head groups of phospholipids in monolayers and bilayers, particularly phosphatidylcholine (PC) and phosphatidylethanolamine (PE). With the P- end of the head group anchored at the water/hydrocarbon interface, a balance of two effects dictates the angle that the P--N+ dipole makes with respect to the plane of the bilayer: N+ is driven toward water due to the (Born) electrostatic free energy, but the hydrophobic effect drives the methyl and methylene groups around the N+ charge toward the hydrocarbon. The only adjustable parameter of the model is the average fluctuation of the oil/water interface or, alternatively, the dielectric constant of the hydrocarbon phase. The model predicts that at 5 degrees C the head group dipole should lie largely in the bilayer plane, in accord with X-ray, neutron diffraction, and NMR studies. The theory makes the novel prediction that the N+ end of the dipole becomes increasingly submerged in hydrocarbon with increasing temperature, leading to strongly enhanced lateral repulsion between PC head groups. This prediction is in good agreement with second and third viral coefficients of monolayer lateral pressures, and with the temperature dependence of the former. The theoretical model is consistent with head group fluctuations measured by neutron diffraction of PC and PE bilayers. Because PE has a smaller hydrophobic cluster near N+, its lateral repulsion should be much smaller and less temperature dependent than for PC, also in agreement with equation-of-state measurements. This suggests why at high density PE monolayers have higher melting temperatures than PC monolayers and more propensity for reversed curvature.  相似文献   

17.
Increasing methylation of the headgroup in DPPE results in an increase of minimum area per molecule in highly compressed monolayers at the air-water interface. The shape of solid domains, as observed by epifluorescence microscopy, also exhibits marked changes upon increasing headgroup methylation. Branching domains are observed in DPPE and DP(Me)PE, whereas U-shaped or round domains are observed in DP(Me)2PE and DPPC under our experimental conditions. The domain shape is determined more by the headgroup methylatin than by the corresponding shift in critical temperatures, as shown by the study of PCs of different acyl chain moieties. In mixed lipid monolayers, PC (phosphatidylcholine) and PE (phosphatidylethanolamine) do not mix ideally, as indicated by the non-linear variation of the average area per molecule with composition, and by distinct domain shapes in LE/LC (liquid expanded/liquid condensed) coexisting phases representing PE-enriched or PC-enriched domains in those mixed monolayers.  相似文献   

18.
We have studied the biosynthetic regulation of the membrane lipid polar headgroup distribution in Acholeplasma laidlawii B cells made fatty acid auxotrophic by growth in the presence of the biotin-binding agent avidin to test whether this organism has the ability to coherently regulate the lamellar/nonlamellar phase propensity of its membrane lipids. The addition of various single normal growth-supporting exogenous fatty acids to such cell cultures produces fatty acid-homogeneous cells in which the hydrocarbon chain length and structure of the fatty acyl chains of the membrane lipids can be independently varied. Moreover, in analyzing our results, we consider the fact that the individual membrane lipid classes of this organism can form either normal micellar, lamellar, or reversed cubic or hexagonal phases in isolation (Lewis, R. N. A. H., and McElhaney, R. N. (1995) Biochemistry 34, 13818-13824). When A. laidlawii cells are highly enriched in one of a homologous series of methyl isobranched, methyl anteisobranched, or omega-cyclohexyl fatty acids, neither the ratio of normal micellar/lamellar nor of inverted cubic or hexagonal/lamellar phase-forming lipids are coherently regulated, and in fact in the former case, the changes in lipid polar headgroup composition observed are generally in a direction opposite to that required to maintain the overall lamellar/nonlamellar phase preference of the total membrane lipids constant when hydrocarbon chain length is varied. Similarly, when lipid hydrocarbon structure is varied at a constant effective chain length, a similar lack of coherent regulation of membrane lipid polar headgroup distribution is also observed, although in this case a weak overall trend in the expected direction occurs. We also confirm our previous finding (Foht, P. J., Tran, Q. M., Lewis, R. N. A. H., and McElhaney, R. N. (1995) Biochemistry 34, 13811-13817) that the ratio of inverted phase-forming monoglucosyl diacylglycerol to the lamellar phase-forming glycolipid diglucosyl diacylglycerol, previously used to estimate membrane lipid phase preference in A. laidlawii A and B, is not by itself a reliable indicator of the overall lamellar/nonlamellar phase propensity of the total membrane lipids of these organisms. Our results indicate that A. laidlawii B lacks a coherent mechanism to biosynthetically regulate the polar headgroup distribution of its membrane lipids to maintain the micellar/lamellar/inverted phase propensity constant in the face of induced variations in either the chain length or the structure of its lipid hydrocarbon chains. Finally, we suggest that the lack of a coherent regulatory mechanism to regulate the overall phase-forming propensity of the total membrane lipids of this organism under these circumstances may result in part from its inability to optimize all of the biologically relevant physical properties of its membrane lipid bilayer simultaneously.  相似文献   

19.
Cationic, triple-chain amphiphiles promote vesicle fusion more than structurally related double-chain or single-chain analogues. Two types of vesicle fusion experiments were conducted, mixing of oppositely charged vesicles and acid-triggered self-fusion of vesicles composed of cationic amphiphile and anionic cholesteryl hemisuccinate (CHEMS). Vesicle fusion was monitored by standard fluorescence assays for intermembrane lipid mixing, aqueous contents mixing and leakage. Differential scanning calorimetry was used to show that triple-chain amphiphiles lower the lamellar-inverse hexagonal (L(alpha)-H(II)) phase transition temperature for dipalmitoleoylphosphatidylethanolamine. The triple-chain amphiphiles may enhance vesicle fusion because they can stabilize the inversely curved membrane surfaces of the fusion intermediates, however, other factors such as extended conformation, packing defects, chain motion, or surface dehydration may also contribute. From the perspective of drug delivery, the results suggest that vesicles containing cationic, triple-chain amphiphiles (and cationic, cone-shaped amphiphiles in general) may be effective as fusogenic delivery capsules.  相似文献   

20.
The interactions of the antibiotic polymixin B, a polycationic cyclic polypeptide containing a branched acyl side chain, with dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidic acid (DMPA) bilayers were investigated by Raman spectroscopy for a wide range of lipid/polypeptide mole fractions. Temperature profiles, constructed from peak height intensity ratios derived from the lipid methylene C-H stretching and acyl chain C-C stretching mode regions, reflected changes originating from lateral chain packing effects and intrachain trans / gauche rotamer formation, respectively. For DMPC/polymyxin B bilayers the temperature dependent curves indicate a broadening of the gel-liquid crystalline phase transition accompanied by an approx. 3 C deg. increase in the phase transition temperature from 22.8°C for the pure bilayer to 26°C for the polypeptide complex. For a 10:1 lipid/polypeptide mole ratio the temperature profile derived from the C-C mode spectral parameters displays a second order/disorder transition, at approx. 35.5°C, associated with the melting behavior of approximately three bilayer lipids immobilized by the antibiotic's charged cyclic headgroup and hydrophobic side chain. For the 10:1 mole ratio DMPA/polypeptide liposomes, the temperature profiles indicate three order/disorder transitions at 46, 36 and 24°C. Pure DMPA bilayers display a sharp lamellar-micellar phase transition at 51°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号