首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A defined medium was capable of supporting the growth of a psychrophilic coccus over its growth temperature range, -4 to 25 C. A rapid loss of viability occurred when exponential cells were transferred to growth-restricting temperatures above 25 C. Comparative studies of the chemistry of exponential-phase cells and cells exposed to supermaximum temperature indicated that this loss of viability is not due to temperature-induced membrane damage, inhibition of respiration or energy metabolism, or depletion of intracellular reserves. Moribund and dead cell populations showed an elevated level of intracellular adenosine-5'-triphosphate and amino acids-a finding reflected in the reduced rate of amino acid synthesis during the recovery of heat-shocked cells-and also leakage of degraded ribonucleic acid products into the medium. Incorporation studies indicated that loss of viability at 30 C was correlated with inhibition of protein synthesis, followed later by inhibition of ribonucleic acid synthesis. Deoxyribonucleic acid synthesis was unaffected by temperature above the maximum.  相似文献   

2.
During magnesium starvation of Escherichia coli B, most of the ribosomes break down to low-molecular-weight components. When magnesium is restored to the medium, the cells recover. The rate of recovery can be increased greatly by supplementing the growth medium with a mixture of 21 amino acids. This increased rate of recovery is shown to be due to the effect of only two amino acids, histidine and methionine, which initially stimulate accumulation of cellular ribonucleic acid without increasing the rate of protein synthesis. In contrast, histidine and methionine supplementation to logarithmically growing E. coli B is not as effective in stimulating growth as is the complete amino acid mixture. Since cells recovering from magnesium starvation preferentially synthesize ribosomes, it is possible that histidine and methionine play a special role(s) in ribosomal ribonucleic acid synthesis or stability.  相似文献   

3.
Langridge, Patricia (Oregon State University, Corvallis), and Richard Y. Morita. Thermolability of malic dehydrogenase from the obligate psychrophile Vibrio marinus. J. Bacteriol. 92:418-423. 1966.-The thermolability of malic dehydrogenase in whole cells of Vibrio marinus MP-1 grown at 15 C was compared with that of cell-free extracts and partially purified fractions. The intracellular enzyme was found to be stable between 0 C, and the organism's optimal growth temperature, 15 C. In cell-free extracts, considerable lability was noted even at 0 C, and this lability did not increase further until the enzyme was exposed to temperatures above the organism's maximal growth temperature (20 C). Twenty-fold purified enzyme was stable between 15 and 20 C, but both above and below this there was considerable inactivation. A 5-min exposure of both cold- and heat-inactivated enzyme to 15 C allowed reactivation, although to a different extent. Ammonium sulfate was found both to stimulate enzyme activity and to reactivate temperature-inactivated enzyme.  相似文献   

4.
The effects of temperature on the uptake and metabolism of fluorescent labeled palmitic acid (FLC16) and phosphatidylcholine (FLPC) and lipase activities in the oyster protozoan parasite, Perkinsus marinus, meront stage were tested at 10, 18, and 28 degrees C. Temperature significantly affected not only the uptake, assimilation, and metabolism of both FLC16 and FLPC in P. marinus, but also its triacylglycerol (TAG) lipase activities. The incorporation of both FLC16 and FLPC increased with temperature and paralleled the increase in the amount of total fatty acids in P. marinus meront cultures. The incorporation of FLC16 was higher than FLPC at all temperatures. The percentage of FLC16 metabolized to TAG was significantly higher at higher temperatures. Trace amounts of incorporated FLC16 were detected in monoacylglycerol (MAG) and PC at 18 and 28 degrees C. P. marinus meronts metabolized FLPC to TAG, diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acids (FFA), phosphatidylethanolamine (PE), and cardiolipin (CL). The conversion of FLPC to TAG and PE was highest at 28 degrees C. The relative proportions of individual fatty acids and total saturated, monounsaturated and polyunsaturated fatty acids changed with temperatures. While total saturated fatty acids (SAFAs) increased with temperature, total monounsaturated fatty acids (MUFAs) decreased with temperature. Total polyunsaturated fatty acids (PUFAs) increased from 28 to 18 degrees C. The findings of increase of total SAFAs and decrease of total MUFAs with the increase of temperatures and upward shift of total PUFAs from 28 to 18 degrees C suggest that, as in other organisms, P. marinus is capable of adapting to changes in environmental temperatures by modifying its lipid metabolism. Generally, higher lipase activities were noted at higher cultivation temperatures. Both TAG lipase and phospholipase activities were detected in P. marinus cells and their extra cellular products (ECP), but phospholipase activities in both the cell pellets and ECP were very low. Also, lipase activities were much lower in ECP than in the cells. The observations of low metabolism, bioconversion of incorporated fluorescent lipid analogs and lipase activities at low temperatures are consistent with the low in vitro growth rate and low infectivity of P. marinus at low temperatures.  相似文献   

5.
A multiple amino acid auxotroph and a wild type of Escherichia coli K12 were used to study the effects of near minimum growth temperatures on the binding, transport, and cellular incorporation of selected amino acids. Both strains of the bacterium showed the same minimum growth temperature (8 degrees C) when previously grown at 15 degrees C. At 8 degrees C and above, the auxotroph exhibited an overall greater ability to bind and transport amino acids than did the wild type. Below the minimum growth temperature, transport and cellular incorporation including respiration ((uptake) were significantly lower for either organism. The NEU and HEPPEL osmotic shock treatment indicated the removal of the specific histidine-binding protein and the ability to bind histidine was not recovered by further incubation below 8 degrees C. At 8 degrees C and above, the cells recovered their ability to bind histidine within one hour. The evidence presented indicates a direct relationship between the auxotroph's minimum growth temperature and its ability to bind amino acids, specifically methionine.  相似文献   

6.
Temperature-dependent changes of growth rate and protein components were investigated for primary cultured cells derived from goldfish caudal fin. When the culture temperature was shifted from 20 degrees C to 35 degrees C and 40 degrees C, the growth rate was increased at 35 degrees C as compared with that at 20 degrees C, but no cell growth was observed at 40 degrees C. The differential scanning calorimetry demonstrated the onset of the endothermic reaction for goldfish cellular components at 40 degrees C. Therefore, the temperature shift to 40 degrees C was found to be of severe heat shock for goldfish cultured cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that, although expression of 70-kDa components was slightly induced at 35 degrees C, the temperature shift to 40 degrees C markedly induced the expression of the 30-kDa component in addition to that of 70-kDa component. The N-terminal amino acid sequencing identified the 30- and 70-kDa components to be heat shock protein (Hsp)-30 and Hsp70, respectively. Northern blot analysis revealed that the enhanced Hsp30 messenger ribonucleic acid (mRNA) levels were only observed at 40 degrees C, whereas Hsp70 mRNA was slightly accumulated at 35 degrees C. These results indicated that Hsp30 might have important functions under severe heat stress condition.  相似文献   

7.
An enriched synthetic medium with low molecular weight peptides allows Trypanosoma cruzi epimastigotes to grow at 26-37 C. Using this medium, the growth requirements of T. cruzi were compared at different temperatures. When supplemented with fetal bovine serum or serum peptides, nine amino acids were absolutely required from the first passage, while additional amino acids and amino acid precursors were needed to support growth during a second passage. Five amino acids (beta-alanine, glutamine, cysteine, ornithine, and threonine) were also required absolutely at temperatures ranging between 30 and 37 C. Nine vitamins were needed at all temperatures, while ascorbic acid and ergocalciferol were not necessary at any temperature. The remaining amino acids and vitamins showed a variable role as growth factors depending on the temperature increase. In peptide supplemented media, requirements for amino acids and their precursors, as well as vitamins and nucleotides, increased markedly when compared with the protein supplemented medium. A peptide composed of one glutamic acid, two alanines, and one lysine can substitute for serum for trypanosomal growth at all temperatures. Several minimum media have been prepared in which epimastigote forms of T. cruzi can grow at 26-37 C for more than 10 passages.  相似文献   

8.
The heat sensitivity of gram-negative, hydrocarbon-utilizing thermophilic bacteria was altered by a change in growth substrate. Thermophilic strains CC-6, BI-1, and LEH-1, grown with acetate or n-heptadecane as the carbon source, had a higher survival rate when incubated 5 degrees C above their maximum growth temperature than cells of the same organism after growth on glucose or glycerol. There was a correlation between the growth substrated, heat resistance, and the ratios of cellular n-hexadecanoic acid/branched hexadecanoic acid and n-heptadecanoic acid/branched heptadecanoic acid. The bacterial cells that were more heat resistant had ratios of straight-chain/branched-chain fatty acids above 1.0, whereas the heat-sensitive cells had ratios below 0.6.  相似文献   

9.
The heat sensitivity of gram-negative, hydrocarbon-utilizing thermophilic bacteria was altered by a change in growth substrate. Thermophilic strains CC-6, BI-1, and LEH-1, grown with acetate or n-heptadecane as the carbon source, had a higher survival rate when incubated 5 degrees C above their maximum growth temperature than cells of the same organism after growth on glucose or glycerol. There was a correlation between the growth substrated, heat resistance, and the ratios of cellular n-hexadecanoic acid/branched hexadecanoic acid and n-heptadecanoic acid/branched heptadecanoic acid. The bacterial cells that were more heat resistant had ratios of straight-chain/branched-chain fatty acids above 1.0, whereas the heat-sensitive cells had ratios below 0.6.  相似文献   

10.
Protoplast-bursting factor (P. B. factor) has a little antibacterial activity and is capable of inhibiting the growth of Bacillus megaterium.

The cell suspensions required P. B. factor and Mg++ for the oxidation of glucose-6- phosphate but did not require them for that of glucose.

Leakage of various cellular components into the surrounding menstruum occured when the cell suspension was subjected to treatment with P. B. factor. These materials were identified as protein, deoxyribonucleic acid, ribonucleic acid, and amino acids.

Under an electron microscope, the cytoplasm of the cells treated with P. B. factor was apparently less dense than the control, which seemed to suggest that the cytoplasm had leaked out of the inside of the cell through the membrane by the treatment of P. B. factor.  相似文献   

11.
The effect of growth temperature on the cellular fatty acid profiles of Bacillus subtilis and Bacillus megaterium was studied over a temperature range from 40 to 10 degrees C. As the growth temperature of B. subtilis was reduced, the lower-melting point anteiso-acids increased, while the higher-melting point iso-acids decreased. Consequently the ratio of branched- to straight-chain acids was unaffected by temperature, although changes in the position of fatty acid branching and the degree of unsaturated branched-chain fatty acids occurred. In B. megaterium a more complicated, biphasic behaviour was observed. Saturated, straight-chain and iso-branched acids decreased only from 40 degrees C down to 20-26 degrees C, and anteiso-acids decreased only from 20-26 degrees C to 10 degrees C, while unsaturated acids increased over the whole temperature range studied. Thus, in B. megaterium total branched-chain acids decreased and straight-chain acids increased as temperature decreased. However, the overall cellular content of lower-melting point fatty acids increased with decreasing temperature in both bacilli, and unsaturated fatty acids appeared to be essential components in the adaptation of the microbes to changes in temperatures. Since changes in the relative amounts of branched- and straight-chain fatty acid biosynthesis are known to reflect differences in fatty acid primers, temperature seems to affect not only the activity of the fatty acid desaturases but also the formation or availability of these primers. The results indicate, however, that notable species-specific regulatory features exist in this genus of bacteria.  相似文献   

12.
Moss, C. Wayne (North Carolina State University, Raleigh), and M. L. Speck. Release of biologically active peptides from Escherichia coli at subzero temperatures. J. Bacteriol. 91:1105-1111. 1966.-Freezing and storage of Escherichia coli at -20 C in phosphate buffer resulted in loss of cell viability and a pronounced leakage of cellular material which had maximal absorption at 260 mmu. Greater loss in cell viability occurred when cells were frozen in distilled water, but only small amounts of 260 mmu absorbing material were detected. Unfrozen cells stored at 2 and 22 C in each menstruum showed little loss in viability, but cells in phosphate buffer released significant amounts of material during storage. Leakage material from cells in phosphate buffer contained greater amounts of ribonucleic acid and amino acids than did material from cells in distilled water. Leakage material from frozen cells contained protein in the form of peptides of relatively small molecular weight; this was not observed for unfrozen cells. These compounds protected a dilute cell suspension from the lethal effects of freezing, and also possessed biological activity for the recovery of cells which had been "injured" by freezing. Direct cell counts indicated that the material released was not a result of cell lysis.  相似文献   

13.
Repair of thermal injury of Staphylococcus aureus   总被引:66,自引:16,他引:50  
Iandolo, John J. (University of Illinois, Urbana), and Z. John Ordal. Repair of thermal injury of Staphylococcus aureus. J. Bacteriol. 91:134-142. 1966.-Exposure of Staphylococcus aureus MF 31 to sublethal temperatures produced a temporary change in the salt tolerance and growth of the organism. After sublethal heat treatment at 55 C for 15 min, more than 99% of the viable population was unable to reproduce on media containing 7.5% NaCl. The data presented demonstrate that thermal injury, in part, occurred owing to changes in the cell membrane, which allowed soluble cellular components to leak into the heating menstruum. When the cells were placed in a limiting medium, complete recovery did not occur, regardless of the incubation time. The temperature and the pH which produced the optimal rate of recovery were similar to those described previously for the multiplication of uninjured cells. However, the rate of recovery as well as the unchanging total count during recovery indicated that cell multiplication was not a factor during the recovery process. The nutrient requirements for the complete recovery of injured cells consisted of a solution containing an energy source, such as glucose, a mixture of amino acids, and phosphate. The use of the metabolic inhibitors, penicillin, cycloserine, 2,4-dinitrophenol, and chloramphenicol, did not inhibit recovery. Actinomycin D, however, completely suppressed recovery. This result implied that ribonucleic acid synthesis was particularly involved; this inference was substantiated by radio tracer experiments. The rate at which label was incorporated in the nucleic acid fraction paralleled that of recovery and the return of salt tolerance.  相似文献   

14.
Aleurone tissue from undried immature developing wheat grains (Triticum aestivum L. cv. Sappo), normally insensitive to gibberellic acid, can be made to respond to the hormone by a series of temperature treatments. Incubation of the de-embryoed grains at temperatures above 27° C for at least 8 h causes the tissue to become sensitive. Prolonged incubation at temperatures below 27° C does not effect a change in sensitivity. In addition to the requirement for exposure to an elevated temperature for a period of several hours the tissue must also subsequently be subjected to a period at a lower temperature for just a few seconds for the response to be observed. Once sensitized, the tissue remains responsive to gibberellic acid for substantial periods of time. Exposure of the tissue to temperatures which induce sensitivity to gibberellic acid also results in an increased leakage of amino acids. It is suggested that the increase in sensitivity to gibberellin requires two separate processes to take place. One could be a homeoviscous adaptation of the cell membranes in response to elevated temperature, the other a subsequent, permanent change in conformation of membrane components.  相似文献   

15.
Salinity of the growth medium was found to have a marked effect on the maximal growth temperature of four bacteria isolated from marine sources. Vibrio marinus MP-1 had a maximal growth temperature of 21.2 C at a salinity of 35% and a maximal growth temperature of 10.5 C at a salinity of 7%, the lowest salinity at which it would grow. This effect was shown to be due to the presence of various cations in the medium. The order of effectiveness of cations in restoring the normal maximal growth temperature, when added to dilute seawater, was Na(+) > Li(+) > Mg(++) > K(+) > Rb(+) > NH(4) (+). The anions tested, with the exception of SO(4)=, had no marked effect on the maximal growth temperature response. In a completely defined medium, the highest maximal growth temperature was 20.0 C at 0.40 m NaCl. A decrease in the maximal growth temperature was observed at both low and high concentrations of NaCl.  相似文献   

16.
Summary The tolerance of Opuntia bigelovii Engelm. (Cactaceae) to high temperature was investigated by subjecting stems to temperatures ranging from 25°C to 65°C for a 1-h period, after which various properties of chlorenchyma cells were examined. The temperatures at which activities depending on membrane integrity decreased by 50% were 60°C for electrolyte leakage, 52°C for staining by neutral red, and 51°C for plasmolysis for plants maintained at day/night air temperatures of 30°C/20°C. Nocturnal acid accumulation, which depends on stomatal opening and enzymatic reactions as well as membrane properties, was half-inactivated at a lower temperature, 46°C. Visual observation indicated that 50% of the stems subjected to a heat treatment of 52°C became necrotic in 2 weeks.Heat acclimation, which is apparently necessary for survival of O. bigelovii in the field, was investigated by raising the day/night air temperatures from 12°C/2°C to 60°C/50°C in 10°C steps every 2 weeks. The heat tolerance of the cellular properties increased with increasing air temperature; for a 10°C temperature increase, the half-inactivation temperature increased 2.9°C for electrolyte leakage, 3.0°C for staining, 3.8° C for stem survival, and fully 6.1°C for nocturnal acid accumulation. The relative order of these four properties with respect to heat tolerance did not change during the hardening, nocturnal acid accumulation remaining the most heat sensitive. The upper temperature for 50% survival was 59° for O. bigelovii when acclimated to day/night air temperatures of 50°C/40°C.  相似文献   

17.
The interchange of octadecenoic acids and dihydrosterulic acid was a response of aerobically growing Lactobacillus fermentum to changes in growth temperature. Oleic and vaccenic acid contents decreased both at temperatures below 20 degrees C and above 26 degrees C, showing mirror image behaviour, with a concomitant increase in dihydrosterulic acid. A temperature-dependent shift from vaccenic to oleic acid synthesis, and the conversion of the latter to dihydrosterulic acid was responsible for the overall change. Consequently, the degree of fatty acid unsaturation decreased at temperatures above 26 degrees C, whereas the degree of cyclization increased. The converse occurred below 20 degrees C. The relative amount of lactobacillic acid, total cellular fatty acid content, and mean fatty acid chain length were practically temperature-independent. The occurrence of oleic acid is thought to be related to aerobic growth conditions.  相似文献   

18.
Rice grains (Oryza sativa L.) from three varieties and three pairs of lines with different protein content were collected at 4-day intervals from 4 to 32 days after flowering. The samples were analyzed for protein, free amino nitrogen, ribonucleic acid, protease activity, and ribonuclease activity. In addition, the capacity of the intact grain to incorporate amino acids was determined for the three pairs of lines. The maximal level of free amino nitrogen and the capacity of the developing grain to incorporate amino acids were consistently found to be higher in the samples with the high protein content in the mature grain. The ribonucleic acid content of the grain tended to be higher in the high protein samples.  相似文献   

19.
We determined the participation of the cellular compartment in the changes of plasma amino acid concentrations during maximal exercise test on a cycle ergometer. Following an overnight fast, male athletes were submitted to a maximal exercise test until fatigue (for 25 min approximately) to determine maximal oxygen uptake. The amino acid concentrations in total blood, plasma, and blood cells were determined before and after the maximal exercise test. Most essential amino acids were decreased significantly in the total blood concentration as a result of the maximal exercise test. However, the concentrations of most nonessential amino acids tended to be significantly increased. Amino acid concentration was increased most in plasma. Concentrations of blood cell alanine and proline were significantly increased by 26% and 15%, respectively, after the maximal exercise test. No significant differences in blood cell concentrations of other amino acids induced by the exercise test were found, although the amount of tryptophan in blood cells was increased after exhaustive exercise.  相似文献   

20.
The cellular content of carbon, nitrogen, amino acids, polysaccharides, phosphorus and adenosine trtphosphate (ATP) was determined at several stages during the life cycle of the dinoflagellate Scrippsiella trochoidea (Stein) Loeblich. Carbon per cell decreased slightly between exponential and stationary phase growth in vegetative cells whereas nitrogen per cell did not change. Both of these cellular components increased markedly on encystment and then decreased to vegetative cell levels during dormancy and germination. C/N ratios increased gradually during cyst dormancy and activation, reflecting a more rapid decrease in N than in C pools, even though both decreased through time. Amino acid composition was relatively constant during the vegetative cell stages; glutamic acid was the dominant component. Arginine was notably higher in cysts than in vegetative cells but decreased significantly during germination, suggesting a role in nitrogen storage. The ratio of neutral ammo acids to total ammo acids (NAA/TAA) decreased as cysts were formed and then gradually increased during storage and germination. The ratio of basic ammo acids to total ammo acids (BAA/TAA) changed in the opposite direction of NAA/TAA, whereas the ratio of acidic acids to total amino adds (AAA/TAA) was generally invariant. Ammo acid pools were not static during the resting slate in the cysts: there was degradation or biosynthesis of certain, but not all, classes of these compounds. The monosacchande composition of cold and hot water extracted polysaccharides was quite different between cells and cysts. A high percentage of glucose in cysts suggests that the storage carbohydrate is probably in the form of glucan. Total cellular phosphorus was higher in all cyst stages than in vegetative cells. However, ATP-cell?1 decreased as vegetative cells entered stationary phase and encysted, and continued to decrease in cysts during dark cold storage. ATP increased only as the cysts were activated at warm temperatures in the light and began to germinate. The above data demonstrate that dormancy and quiescence are not periods of inactive metabolism but instead are times when numerous biochemical transformations are occurring that permit prolonged survival in a resting state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号