首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
鸟类分子系统地理学研究进展   总被引:1,自引:2,他引:1  
董路  张雁云 《生态学报》2011,31(14):4082-4093
分子系统地理学是当代生物地理学的重要分支,是以分子生物学方法重建种内和种上水平的系统发育关系,阐释进化历史,并通过分析近缘生物类群的系统发育关系与其空间和时间分布格局间的相关性构建生物区系历史的研究,是分子生物学与生物地理学结合的产物。中性进化学说和溯祖理论分析的建立,以及线粒体DNA和微卫星标记等分子遗传标记的应用,为分子系统地理学研究的开展提供了理论和实践基础。近年来,分子系统地理方法在鸟类学研究中的应用揭示了许多不同于传统认知的发现,为准确而深入的了解鸟类分子系统地理格局的差异和不同类群的起源中心提供了新颖的证据。目前的研究多从隔离分化说和扩散说的角度对鸟类分子系统地理格局的成因进行分析,而迁徙行为不同对鸟类系统地理格局的影响为成因的解释提供了新的角度。结合区域特点的比较分子系统地理研究,在更广泛的地域和更多类群中开展研究是我国鸟类分子系统地理研究的方向。此外,展望了第二代测序技术对分子生态生物地理研究具有的潜在促进作用。  相似文献   

3.
The voice of historical biogeography   总被引:2,自引:0,他引:2  
Historical biogeography is going through an extraordinary revolution concerning its foundations, basic concepts, methods, and relationships to other disciplines of comparative biology. There are external and internal forces that are shaping the present of historical biogeography. The external forces are: global tectonics as the dominant paradigm in geosciences, cladistics as the basic language of comparative biology and the biologist's perception of biogeography. The internal forces are: the proliferation of competing articulations, recourse to philosophy and the debate over fundamentals. The importance of the geographical dimension of life's diversity to any understanding of the history of life on earth is emphasized. Three different kinds of processes that modify the geographical spatial arrangement of the organisms are identified: extinction, dispersal and vicariance. Reconstructing past biogeographic events can be done from three different perspectives: (1) the distribution of individual groups (taxon biogeography) (2) areas of endemism (area biogeography), and (3) biotas (spatial homology). There are at least nine basic historical biogeographic approaches: centre of origin and dispersal, panbiogeography, phylogenetic biogeography, cladistic biogeography, phylogeography, parsimony analysis of endemicity, event-based methods, ancestral areas, and experimental biogeography. These nine approaches contain at least 30 techniques (23 of them have been proposed in the last 14 years). The whole practice and philosophy of biogeography depend upon the development of a coherent and comprehensive conceptual framework for handling the distribution of organisms and events in space.  相似文献   

4.
Seascapes are complex environments, and populations are often isolated by factors other than distance. Here we investigate the role of coastal habitat preference and philopatry in shaping the distribution and population structure of lemon sharks. The genus Negaprion comprises the amphiatlantic lemon shark (N. brevirostris), with a relict population in the eastern Pacific, and its Indo‐West Pacific sister species, the sicklefin lemon shark (N. acutidens). Analyzing 138 individuals throughout the range of N. brevirostris (N = 80) and N. acutidens (N = 58) at microsatellite loci (nine and six loci, respectively) and the mitochondrial control region, we find evidence of allopatric speciation corresponding to the Tethys Sea closure (10–14 million years ago) and isolation of the eastern Pacific N. brevirostris population via the emergence of the Isthmus of Panama (~3.5 million years ago). There is significant isolation by oceanic distance (R2 = 0.89, P = 0.005), defined as the maximum distance travelled at depths greater than 200 m. We find no evidence for contemporary transatlantic gene flow (m, M = 0.00) across an oceanic distance of ~2400 km. Negaprion acutidens populations in Australia and French Polynesia, separated by oceanic distances of at least 750 km, are moderately differentiated (FST = 0.070–0.087, P≤ 0.001; ΦST = 0.00, P = 0.99), with South Pacific archipelagos probably serving as stepping stones for rare dispersal events. Migration between coastally linked N. brevirostris populations is indicated by nuclear (m = 0.31) but not mitochondrial (m < 0.001) analyses, possibly indicating female natal site fidelity. However, philopatry is equivocal in N. acutidens, which has the lowest control region diversity (h = 0.28) of any shark yet studied. Restricted oceanic dispersal and high coastal connectivity stress the importance of both local and international conservation efforts for these threatened sharks.  相似文献   

5.
Abstract.  1. Australia has a unique and speciose gall-inducing scale insect fauna that is primarily associated with Myrtaceae. Much of the diversity is currently undescribed or uncharacterised.
2. This study concerns Apiomorpha munita (Hemiptera), a scale insect that induces characteristic four-horned galls on eucalypts of subgenus Symphyomyrtus and exhibits extraordinary karyotypic diversity (2n = 6 – 2n > 100). The three described subspecies of A. munita are each confined to hosts in different sections of Eucalyptus . Previous chromosomal data, however, cast doubt on the validity of the groupings, as two of the subspecies share multiple, different karyotypes (2n = 6, 20, 22, and 24).
3. Allozyme data were used to examine species delimitation, chromosome evolution, host associations and population structure in A. munita .
4. A cryptic-species radiation was revealed, with at least five taxa each restricted to a discrete set of host eucalypt species. This is consistent with host-associated speciation.
5. Karyotypic variation within A. munita partially fits the five distinct genetic groups, but there are additional chromosomal changes that are not accompanied by detected genetic differentiation.
6. The population structure of taxa within the A. munita species complex suggests that there are high levels of inbreeding, as would be expected for scale insects in which adult females are sessile. Some genotypes, however, are found over great distances (up to 1100 km). This is an unusual population structure because it combines low mobility and local differentiation with occasional long-distance dispersal, probably mediated by wind-dispersal of first-instar nymphs.  相似文献   

6.
Sauropodomorph dinosaurs originated in the Southern Hemisphere in the Middle or Late Triassic and are commonly portrayed as spreading rapidly to all corners of Pangaea as part of a uniform Late Triassic to Early Jurassic cosmopolitan dinosaur fauna. Under this model, dispersal allegedly inhibited dinosaurian diversification, while vicariance and local extinction enhanced it. However, apomorphy-based analyses of the known fossil record indicate that sauropodomorphs were absent in North America until the Early Jurassic, reframing the temporal context of their arrival. We describe a new taxon from the Kayenta Formation of Arizona that comprises the third diagnosable sauropodomorph from the Early Jurassic of North America. We analysed its relationships to test whether sauropodomorphs reached North America in a single sweepstakes event or in separate dispersals. Our finding of separate arrivals by all three taxa suggests dispersal as a chief factor in dinosaurian diversification during at least the early Mesozoic. It questions whether a 'cosmopolitan' dinosaur fauna ever existed, and corroborates that vicariance, extinction and dispersal did not operate uniformly in time or under uniform conditions during the Mesozoic. Their relative importance is best measured in narrow time slices and circumscribed geographical regions.  相似文献   

7.
New Zealand has long been a conundrum to biogeographers, possessing as it does geophysical and biotic features characteristic of both an island and a continent. This schism is reflected in provocative debate among dispersalist, vicariance biogeographic and panbiogeographic schools. A strong history in biogeography has spawned many hypotheses, which have begun to be addressed by a flood of molecular analyses. The time is now ripe to synthesize these findings on a background of geological and ecological knowledge. It has become increasingly apparent that most of the biota of New Zealand has links with other southern lands (particularly Australia) that are much more recent than the breakup of Gondwana. A compilation of molecular phylogenetic analyses of ca 100 plant and animal groups reveals that only 10% of these are even plausibly of archaic origin dating to the vicariant splitting of Zealandia from Gondwana. Effects of lineage extinction and lack of good calibrations in many cases strongly suggest that the actual proportion is even lower, in keeping with extensive Oligocene inundation of Zealandia. A wide compilation of papers covering phylogeographic structuring of terrestrial, freshwater and marine species shows some patterns emerging. These include: east–west splits across the Southern Alps, east–west splits across North Island, north–south splits across South Island, star phylogenies of southern mountain isolates, spread from northern, central and southern areas of high endemism, and recent recolonization (postvolcanic and anthropogenic). Excepting the last of these, most of these patterns seem to date to late Pliocene, coinciding with the rapid uplift of the Southern Alps. The diversity of New Zealand geological processes (sinking, uplift, tilting, sea level change, erosion, volcanism, glaciation) has produced numerous patterns, making generalizations difficult. Many species maintain pre‐Pleistocene lineages, with phylogeographic structuring more similar to the Mediterranean region than northern Europe. This structure reflects the fact that glaciation was far from ubiquitous, despite the topography. Intriguingly, then, origins of the flora and fauna are island‐like, whereas phylogeographic structure often reflects continental geological processes.  相似文献   

8.
The Central Highlands region in the central United States is a taxonomically diverse region with a high incidence of stream endemism. Based on the distributions of the diverse ichthyofauna in the region, a pre-Pleistocene pattern of diversity due to vicariant events has been proposed to explain high levels of endemism and species richness. We tested this hypothesis using crayfish phylogenies and distributional patterns for species distributed in the Central Highlands region. We concluded that both pre-Pleistocene and Pleistocene hypotheses are compatible with the crayfish distributions and these distributions are likely due to a combination of both vicariant and dispersal events. Furthermore, we suggest a Pleistocene center of origin for the crayfish subgenus Procericambarus within the Ozark region and a pre-Pleistocene center of origin for the genus Orconectes within the Eastern Highlands region.  相似文献   

9.
The central problem in biogeography is that interactions between different processes result in the formation of historical patterns, such that it is difficult to discriminate the relative roles of vicariance and dispersal. Ferns are distributed by small wind-dispersed propagules that are produced in very large numbers and capable of dispersing thousands of kilometers. Thus, most taxon distributions in ferns are assumed to be a function of dispersal rather than vicariance. Here, we review some case examples that provide good evidence for vicariance and dispersal in ferns. We then ask whether dispersal is so extensive in ferns that vicariance is no longer detectable in most cases. Although we think that too few studies have been carried out to make generalizations at this stage, we outline the criteria for an effective research programme that can address this issue. Phylogenetic and distributional data are needed, not only because they are lacking in an evolutionarily important group of organisms, but also because data from ferns and other cryptogams are likely to be crucial in making broad biogeographic statements.  相似文献   

10.
11.
The phylogenetics and biogeography of Pancratium (Amaryllidaceae) were investigated, with a focus on the Mediterranean and adjacent areas, with the aim of contributing new information towards a better understanding of the evolutionary history of the genus and the taxonomic placement of P. linosae and P. hirtum. To address these questions, we sequenced four plastid DNA markers: the ndhF and rbcL genes, the trnL(UAA)trnF(GAA) intergenic spacer and the trnL(UAA) intron, analysing them using parsimony, likelihood and Bayesian approaches. The results show that the relationships among the majority of the species are resolved; however, the relationships of one of the major clades of the genus are unresolved compared with the others. The phylogenetic and the dispersal–vicariance analyses show that Pancratium appears as a well‐structured group with interesting patterns of speciation. Notably, P. arabicum and P. linosae fall within the P. maritimum complex. In addition, P. hirtum is identical, in terms of plastid DNA sequences, to the P. trianthum accessions. The results provide new insights and help to formulate new working hypotheses for evolutionary biology of the genus. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 12–28.  相似文献   

12.
13.
Geckos in the Western Hemisphere provide an excellent model to study faunal assembly at a continental scale. We generated a time-calibrated phylogeny, including exemplars of all New World gecko genera, to produce a biogeographical scenario for the New World geckos. Patterns of New World gecko origins are consistent with almost every biogeographical scenario utilized by a terrestrial vertebrate with different New World lineages showing evidence of vicariance, dispersal via temporary land bridge, overseas dispersal or anthropogenic introductions. We also recovered a strong relationship between clade age and species diversity, with older New World lineages having more species than more recently arrived lineages. Our data provide the first phylogenetic hypothesis for all New World geckos and highlight the intricate origins and ongoing organization of continental faunas. The phylogenetic and biogeographical hypotheses presented here provide an historical framework to further pursue research on the diversification and assembly of the New World herpetofauna.  相似文献   

14.
15.
In the newly emerging field of statistical phylogeography, consideration of the stochastic nature of genetic processes and explicit reference to theoretical expectations under various models has dramatically transformed how historical processes are studied. Rather than being restricted to ad hoc explanations for observed patterns of genetic variation, assessments about the underlying evolutionary processes are now based on statistical tests of various hypotheses, as well as estimates of the parameters specified by the models. A wide range of demographical and biogeographical processes can be accommodated by these new analytical approaches, providing biologically more realistic models. Because of these advances, statistical phylogeography can provide unprecedented insights about a species' history, including decisive information about the factors that shape patterns of genetic variation, species distributions, and speciation. However, to improve our understanding of such processes, a critical examination and appreciation of the inherent difficulties of historical inference and challenges specific to testing phylogeographical hypotheses are essential. As the field of statistical phylogeography continues to take shape many difficulties have been resolved. Nonetheless, careful attention to the complexities of testing historical hypotheses and further theoretical developments are essential to improving the accuracy of our conclusions about a species' history.  相似文献   

16.
Studies on the evolution of tropical taxa emphasize the role ofvicariance and the break-up of Gondwana in explaining modern distributions.Earlier studies on figs (Ficus spp.) support this view.In the current study,we used an expanded sample (208 spp.) and improved molecular dating techniques to reconstruct the phylogenetic and biogeographic history of Ficus.Consistent with previous studies,our biogeographic analysis indicated that the ancestor of Ficus was present in Gondwana.However,a relaxed clock analysis relying on uncorrelated rates in BEAST suggested that the Neotropical section Pharmacosycea split-off in South America 86.67 Mya,and that other Ficus lineage ancestors originated in India.Most of the basal lineages appeared to have diverged following KT extinction,then rapidly diversified after India collided with continental Asia.The Afrotropical species most likely evolved initially in the Indian subcontinent then dispersed to Africa,either in the late Cretaceous of Madagascar or even later,following the Eocene collision of India with Asia.The Neotropical section Americana,either islandhopped to South America or took a northern route to the Americas through Europe prior to the terminal Eocene global cooling event.Ficus may have arrived in eastern Malesia following the collision of India with Asia,then widely dispersed thereafter.Given the wide ranges in our date estimates,several other scenarios are possible.However,contrary to earlier reports,our analyses suggest that vicariance played a relatively minor role compared with ecological opportunity and dispersal in the diversification of genus Ficus.  相似文献   

17.
The grass genus Hordeum (Poaceae, Triticeae), comprising 31 species distributed in temperate and dry regions of the world, was analysed to determine the relative contributions of vicariance and long-distance dispersal to the extant distribution pattern of the genus. Sequences from three nuclear regions (DMC1, EF-G and ITS) were combined and analysed phylogenetically for all diploid (20 species) and two tetraploid Hordeum species and the outgroup Psathyrostachys. Ages of clades within Hordeum were estimated using a penalized likelihood analysis of sequence divergence. The sequence data resulted in an almost fully resolved phylogenetic tree that allowed the reconstruction of intrageneric migration routes. Hordeum evolved c. 12 million years ago in South-west Asia and spread into Europe and Central Asia. The colonization of the New World and South Africa involved at least six intercontinental exchanges during the last 4 million years (twice Eurasia-North America, North America-South America, twice South America-North America and Europe-South Africa). Repeated long-distance dispersal between the northern and southern hemisphere were important colonization mechanisms in Hordeum.  相似文献   

18.
Minute moss beetles (Hydraenidae) are one of the most speciose and widespread families of aquatic Coleoptera, with an estimated 4000 extant species, found in the majority of aquatic habitats from coastal rock pools to mountain streams and from the Arctic Circle to the Antarctic islands. Molecular phylogenetic works have improved our understanding of the evolutionary history of the megadiverse Hydraena, Limnebius and Ochthebius in recent years, but most genera in the family have not yet been included in any phylogenetic analyses, particularly most of those which are restricted to the Southern Hemisphere. Using a multimarker molecular matrix, sampling over 40% of described species richness and 75% of currently recognized genera, we infer a comprehensive molecular phylogeny of these predominantly Gondwanan Hydraenidae. Whilst the genera we focus on are morphologically diverse, and currently classified across all four hydraenid subfamilies, our phylogenetic analyses suggest that these Gondwanan genera may instead constitute a single clade. As a result of our findings, the African genus Oomtelecopon Perkins syn.n. is shown to nest within Coelometopon Janssens, the New Zealand Homalaena Ordish syn.n. and Podaena Ordish syn.n. are synonymised with Orchymontia Broun, and the South African Pterosthetops Perkins syn.n. is synonymised with Prosthetops Waterhouse, resulting in Pterosthetopini Perkins syn.n. being synonymised with Prosthetopini Perkins. Mesoceratops Bilton & Jäch gen.n. is erected to accommodate six former members of Mesoceration Janssens, which is shown to be polyphyletic. We propose the replacement name Orchymontia ordishi Jäch & Bilton nom.n. for Homalaena dilatata Ordish, 1984 (now a junior homonym); altogether 39 new combinations are proposed. Our Bayesian divergence times infer an origin for this ‘Gondwana group’ of genera in Africa plus Madagascar in the mid-Cretaceous and suggest that both vicariant and dispersal processes, together with extinctions, have shaped the biogeographic history of these beetles in the Southern Hemisphere during the Cretaceous, resulting in geographically conserved extant lineages. Finally, we reconstruct ancestral habitat shifts across our phylogeny, revealing numerous changes in habitat occupancy in these genera, including multiple origins of fully terrestrial, humicolous taxa in different regions.  相似文献   

19.
20.
Explaining global patterns of species diversity is one of the most challenging objectives in biology. Most agree that complex interactions between historical and current processes are responsible for such patterns, although rigorous testing of possible mechanisms has proved difficult. Here we demonstrate that macropterous and flightless insects in the rainforests of north-eastern Australia have dispersed and speciated in similar manners. These results contradict the traditionally held assumption that differences in vagility potential would lead to significant differences in distributional patterns and speciation modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号