首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Global anthropogenic changes are significantly impacting the ecology and evolution of many species. Among temperate taxa, changes to reproductive phenology as a result of warming springs are apparent. However, how such responses to abiotic change interact with biotic impacts resulting from human management interventions are less clear. Here we examine the response of a range of breeding metrics (laying date, clutch size, hatching and fledging success) to interactions between climatic variables and changes in conspecific density (and hence intraspecific competition) resulting from changes in nestbox provision. Using a 37‐year dataset on the Great Tit Parus major we found little evidence for interacting effects of these two drivers. Instead we found that either climatic or competitive effects were the key influence on different metrics. Annual mean laying date substantially advanced with a warming climate, whereas clutch size, hatching success and fledging success were significantly inversely associated with conspecific density. Annual variance in clutch size and hatching success increased weakly with measures of conspecific density, but there was no association between either climatic or density measures and the annual variance in laying date or fledging success. Increasing conspecific densities therefore resulted in years with lower, but more variable, reproductive rates. These results highlight the importance of adaptive provisioning of nestboxes to enhance reproductive output of hole‐nesting birds regardless of climate‐induced phenological change. Such management is likely to be appropriate for assisting with sustaining populations responding to a changing climate.  相似文献   

2.
Migratory species are of special concern in the face of global climate change, since they may be affected by changes in the wintering area, along the migration route and at the breeding grounds. Here we show that migration and breeding times of a trans‐Saharan migrant, the pied flycatcher Ficedula hypoleuca, closely follow local temperatures along the migration route and at the breeding grounds. Because of differences in long‐term temperature trends of short within‐spring periods, the migration period and the time interval between migration and breeding dates of this species have extended in SW Finland. Temperatures in northern parts of Central Europe have risen at the time when the first migrants arrive there, facilitating their migration northward. Temperatures later in the spring have not changed, and the last individuals arrive at the same time as before. The timing of breeding has not advanced because temperatures at the breeding site after arrival have not changed. These results show that the pied flycatchers can speed up their migration in response to rising temperatures along the migration route. Our results strongly indicate that the effects of climate change have to be studied at the appropriate time and geographical scales for each species and population concerned.  相似文献   

3.
气候变化对鄱阳湖白鹤越冬种群数量变化的影响   总被引:2,自引:0,他引:2  
分析了1983—2011年鄱阳湖国家级自然保护区越冬白鹤种群数量的年际变化趋势,检验了白鹤种群动态与繁殖地和越冬地气候变化的相关性,气候变量包括月平均气温、月平均最高气温、月平均最低气温和月降水量。研究结果表明,鄱阳湖国家级自然保护区内的白鹤年最大数量平均为(2 130±153)只,呈显著地线性增长趋势(R2=0.454,F=22.441,df=28,P=0.000),但年际波动较大。在越冬地,越冬当年10月、11月、12月的气候变量与白鹤种群数量没有显著的相关性,但越冬初期10月份和越冬后期翌年3月份的气温变量与第4年、第5年、第6年及第7年的白鹤种群数量存在显著的正相关,表明越冬地气候对白鹤种群大小的影响存在时滞效应。越冬初期和末期可能是白鹤补充能量的关键阶段,而且越冬初期的气候可能也与冬季食物的数量或质量相关,因此这两个阶段的适宜气温可能有利于个体尤其是幼鹤的存活,使更多的个体参加繁殖,由于白鹤的性成熟年龄在3—5a,因此其对白鹤种群增长的有利影响会在3a以后表现出来。白鹤种群数量变化与繁殖地繁殖期的降水量没有显著的相关性,而与7月份的气温变量存在显著的正相关。多元线性回归分析结果表明,6a前的10月份平均最低温度、2a前的10月最高温度及5a前的10月平均气温是白鹤种群数量变化的显著预测因子,共同解释了鄱阳湖国家级自然保护区白鹤种群数量变化的74.8%(F=23.807,df=27,P=0.000)。  相似文献   

4.
Organisms living today are descended from ancestors that experienced considerable climate change in the past. However, they are currently presented with many new, man-made challenges, including rapid climate change. Migration and reproduction of many avian species are controlled by endogenous mechanisms that have been under intense selection over time to ensure that arrival to and departure from breeding grounds is synchronized with moderate temperatures, peak food availability and availability of nesting sites. The timing of egg laying is determined, usually by both endogenous clocks and local factors, so that food availability is near optimal for raising young. Climate change is causing mismatches in food supplies, snow cover and other factors that could severely impact successful migration and reproduction of avian populations unless they are able to adjust to new conditions. Resident (non-migratory) birds also face challenges if precipitation and/or temperature patterns vary in ways that result in mismatches of food and breeding. Predictions that many existing climates will disappear and novel climates will appear in the future suggest that communities will be dramatically restructured by extinctions and changes in range distributions. Species that persist into future climates may be able to do so in part owing to the genetic heritage passed down from ancestors who survived climate changes in the past.  相似文献   

5.
The increase in spring temperatures in temperate regions over the last two decades has led to an advancing spring phenology, and most resident birds have responded to it by advancing their onset of breeding. The pied flycatcher (Ficedula hypoleuca) is a long‐distance migrant bird with a relatively late onset of breeding with respect to both resident birds and spring phenology in Europe. In the present correlational study, we show that some fitness components of pied flycatchers are suffering from climate change in two of the southernmost European breeding populations. In both montane study areas, temperature during May increased between 1980 and 2000 and an advancement of oak leafing was detected by using the normalized difference vegetation index (NDVI) to assess tree phenology. This might result in an advancement of the peak in availability of caterpillars, the main prey during the nestling stage. Over the past 18 yr, the time of egg laying and clutch size of pied flycatchers were not affected by the increase in spring temperatures in these Mediterranean populations. However, this increase seems to have an adverse effect on the reproductive output of pied flycatchers over the same period. Our data suggest that the mismatch between the timing of peak food supply and nestling demand caused by recent climate change might result in a reduction of parental energy expenditure that is reflected in a reduction of nestling growth and survival of fledged young in our study populations. The data seem to indicate that the breeding season has not shifted and it is the environment that has shifted away from the timing of the pied flycatcher breeding season. Mediterranean pied flycatchers were not able to advance their onset of breeding, probably, because they are constrained by their late arrival date and their restricted high altitude breeding habitat selection near the southern border of their range.  相似文献   

6.
Describing natural selection on phenotypic traits under varying environmental conditions is essential for a quantitative assessment of the scale at which adaptation might occur and of the impact of environmental variability on evolution. Here we analyzed patterns of multivariate selection via fecundity and viability on three reproductive traits (laying date, clutch size, and egg weight) in a population of great tits (Parus major). We quantified selection under different environmental conditions using (1) local variation in breeding density and (2) distinct areas of the population's habitat. We found that selection gradients were generally stronger for fecundity than for viability selection. We also found correlational selection acting on the combination of laying date and clutch size; this is the first documented evidence of such selection acting on these two traits in a passerine bird. Our analyses showed that both local breeding density and habitat significantly influenced selection patterns, hence favoring different patterns of reproductive investment at a small-scale relative to typical dispersal distances in this species. Canonical rotation of the nonlinear selection matrices yielded similar conclusions as traditional nonlinear selection analyses, and also showed that the main axes of selection and fitness surfaces varied over space within the population. Our results emphasize the importance of quantifying different forms of selection, and of including variation in environmental conditions at small scales to gain a better understanding of potential evolutionary dynamics in wild populations. This study suggests that the fitness landscape for this species is relatively rugged at scales relevant to the life histories of individual birds and their close relatives.  相似文献   

7.
Mitigating climate change: the role of domestic livestock   总被引:1,自引:0,他引:1  
Livestock contribute directly (i.e. as methane and nitrous oxide (N2O)) to about 9% of global anthropogenic greenhouse gas (GHG) emissions and around 3% of UK emissions. If all parts of the livestock production lifecycle are included (fossil fuels used to produce mineral fertilizers used in feed production and N2O emissions from fertilizer use; methane release from the breakdown of fertilizers and from animal manure; land-use changes for feed production and for grazing; land degradation; fossil fuel use during feed and animal production; fossil fuel use in production and transport of processed and refrigerated animal products), livestock are estimated to account for 18% of global anthropogenic emissions, but less than 8% in the UK. In terms of GHG emissions per unit of livestock product, monogastric livestock are more efficient than ruminants; thus in the UK, while sheep and cattle accounted for 32% of meat production in 2006, they accounted for 48% of GHG emissions associated with meat production. More efficient management of grazing lands and of manure can have a direct impact in decreasing emissions. Improving efficiency of livestock production through better breeding, health interventions or improving fertility can also decrease GHG emissions through decreasing the number of livestock required per unit product. Increasing the energy density of the diet has a dual effect, decreasing both direct emissions and the numbers of livestock per unit product, but, as the demands for food increase in response to increasing human population and a better diet in some developing countries, there is increasing competition for land for food v. energy-dense feed crops. Recalculating efficiencies of energy and protein production on the basis of human-edible food produced per unit of human-edible feed consumed gave higher efficiencies for ruminants than for monogastric animals. The policy community thus have difficult decisions to make in balancing the negative contribution of livestock to the environment against the positive benefit in terms of food security. The animal science community have a responsibility to provide an evidence base which is objective and holistic with respect to these two competing challenges.  相似文献   

8.
Spatial and temporal variation in prey abundance have been shown to impact the time of breeding and breeding success of birds. Understanding the ecological requirements of preferred prey can help develop management measures to improve food supply for target species. For the colonial Lesser Kestrel Falco naumanni, mole crickets Gryllotalpa spp. are one of the most important prey items during the mate‐feeding period. Lesser Kestrel colonies with higher mole cricket consumption had earlier egg‐laying dates, suggesting that differences between individuals in the time of breeding could be caused by differences in the diet. Moreover, the mean number of mole crickets in pellets was significantly correlated with clutch size (in one of the studied years) and egg volume. Thus, the impact of environmental variables and land use on mole crickets is likely to be relevant to Lesser Kestrel conservation. Weekly consumption of mole crickets was higher following an increase in either precipitation or minimum temperature values. Furthermore, mole cricket consumption was higher in colonies surrounded by higher quality soils and in wetter areas and years. Predicted probability of mole cricket occurrence in surveyed watercourse margins suggested a positive relationship between soil penetrability and mole cricket occurrence. Among variables that might be the target of management, the presence of riparian vegetation positively influenced the occurrence of mole crickets, whilst tillage and sowing of streambeds were revealed as the most important threats. We suggest that the maintenance of native vegetation in the margins of watercourses could improve soil resilience to erosion, increase water retention, soil penetrability and fertility, and provide a food supply and shelter for mole crickets. Overall, the implementation of such recommendations is likely to benefit other farmland species known to consume mole crickets, including several endangered species.  相似文献   

9.
F. P. O'Mara 《Annals of botany》2012,110(6):1263-1270

Background

Grasslands are a major part of the global ecosystem, covering 37 % of the earth''s terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world''s natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change.

Scope

Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO2 equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective.

Conclusions

Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world''s existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and they are continuing to sequester carbon with considerable potential to increase this further. Grassland adaptation to climate change will be variable, with possible increases or decreases in productivity and increases or decreases in soil carbon stores.  相似文献   

10.
Zdravko Dolenec 《Biologia》2006,61(5):635-637
Increasing evidence suggests that climate change affects bird breeding phenology and other life-history traits of wildlife. This study is based on the mean spring temperatures (February, March, April) and laying dates of first eggs of the marsh tit Parus palustris. We collected data from 1984 to 2004 for the Mokrice area in NW Croatia. Correlation between laying date and mean spring temperatures was significant. The relationship between mean laying date (y) and air temperature (x) can be expressed as y = 44.69 − 2.08x. Results indicate that spring temperatures are a good predictor of timing of laying eggs. Such long-term data could than be used in order to assess the effects on biological systems if human activities influence climate.  相似文献   

11.
气候变化对内蒙古中部草原优势牧草生长季的影响   总被引:1,自引:0,他引:1  
李夏子  韩国栋  郭春燕 《生态学报》2013,33(13):4146-4155
研究温性典型草原优势牧草生长季与气候因子变化的关系,对于监测草地环境变化及保护利用,评估区域气候变化对优势牧草生长的影响,指导畜牧业生产等具有重要的科学意义和实践价值.基于内蒙古中部草原3个牧业气象试验站1983-2009年克氏针茅和羊草的物候期、气象资料,对返青、黄枯日期、生长季与气温、降水量之间的关系进行了统计分析.结果表明:(1)27a间,该区的年、春季、夏季和秋季平均气温均呈显著升高趋势,春季升温幅度最大,气候倾向率为0.71-0.84℃/10a;各时段降水量变化除春季呈微量增加趋势外,总体呈减少态势.可见,内蒙古中部温性典型草原区暖干化趋势明显.(2)27a间,锡林浩特克氏针茅和羊草返青日期表现为推后趋势,并与4月降水量呈显著正相关;镶黄旗和察右后旗克氏针茅和羊草返青日期呈提前趋势,并与3-5月气温、降水量呈显著负相关,气温每升高1℃、降水量每增加10mm,优势牧草返青日期约提前3.0-5.1d和1.3-2.1d.(3)该区克氏针茅和羊草黄枯日期均呈提前趋势,与8-9月气温均呈显著负相关,降水量为正相关,气温每升高1℃,克氏针茅黄枯日期提前1.7-10.7 d,羊草黄枯日期提前3.5-11.3d,降水量的影响相对较弱.(4)该区克氏针茅生长季延长趋势明显,羊草生长季缩短趋势明显.克氏针茅生长季与4-10月均温正相关系数最大,羊草生长季与水热系数的正相关系数最大.  相似文献   

12.
Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well‐documented, there is a paucity of studies on climate‐mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human‐dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20‐year period using data from the New York State Breeding Atlases collected during 1980–1985 and 2000–2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats.  相似文献   

13.
14.
CapsuleFood independently affects both laying date and clutch size, suggesting that seasonal decline in clutch size is related to a decrease in food availability.

Aim To test the effect of food abundance on laying date and clutch size of the White Stork and identify the cause of seasonal decline in the number of eggs laid.

Methods During 1991 and 1996 we recorded clutch size and laying date of pairs breeding next to rubbish dumps (food abundant and constant throughout the breeding season) and birds breeding far from rubbish dumps (using natural food sources).

Results In 1991 there was no difference in mean laying date between pairs nesting at rubbish dumps and control pairs. Clutch size was significantly larger at rubbish dump nests. In contrast, mean laying date was earlier in control pairs in 1996 and there was no significant differences in clutch sizes, even when controlling for laying date effect.

Conclusion The results support the hypothesis that food availability independently affects both laying date and clutch size. The seasonal decline in clutch size close to rubbish dumps was negligible (1991) or much smaller than in the control zone (1996) suggesting that a progressive deterioration of natural food sources is the most probable reason for a decline in clutch size as the season advances.  相似文献   

15.
Theory considers the covariation of seasonal life-history traits as an optimal reaction norm, implying that deviating from this reaction norm reduces fitness. However, the estimation of reaction-norm properties (i.e., elevation, linear slope, and higher order slope terms) and the selection on these is statistically challenging. We here advocate the use of random regression mixed models to estimate reaction-norm properties and the use of bivariate random regression to estimate selection on these properties within a single model. We illustrate the approach by random regression mixed models on 1115 observations of clutch sizes and laying dates of 361 female Ural owl Strix uralensis collected over 31 years to show that (1) there is variation across individuals in the slope of their clutch size-laying date relationship, and that (2) there is selection on the slope of the reaction norm between these two traits. Hence, natural selection potentially drives the negative covariance in clutch size and laying date in this species. The random-regression approach is hampered by inability to estimate nonlinear selection, but avoids a number of disadvantages (stats-on-stats, connecting reaction-norm properties to fitness). The approach is of value in describing and studying selection on behavioral reaction norms (behavioral syndromes) or life-history reaction norms. The approach can also be extended to consider the genetic underpinning of reaction-norm properties.  相似文献   

16.
Species interactions form food webs, impacting community structure and, potentially, ecological dynamics. It is likely that global climatic perturbations that occur over long periods of time have a significant influence on species interaction patterns. Here, we integrate stable isotope analysis and network theory to reconstruct patterns of trophic interactions for six independent mammalian communities that inhabited mammoth steppe environments spanning western Europe to eastern Alaska (Beringia) during the Late Pleistocene. We use a Bayesian mixing model to quantify the contribution of prey to the diets of local predators, and assess how the structure of trophic interactions changed across space and the Last Glacial Maximum (LGM), a global climatic event that severely impacted mammoth steppe communities. We find that large felids had diets that were more constrained than those of co-occurring predators, and largely influenced by an increase in Rangifer abundance after the LGM. Moreover, the structural organization of Beringian and European communities strongly differed: compared with Europe, species interactions in Beringian communities before—and possibly after—the LGM were highly modular. We suggest that this difference in modularity may have been driven by the geographical insularity of Beringian communities.  相似文献   

17.
Torti VM  Dunn PO 《Oecologia》2005,145(3):486-495
Many recent studies have shown that birds are advancing their laying date in response to long-term increases in spring temperatures. These studies have been conducted primarily in Europe and at local scales. If climate change is a large-scale phenomenon, then we should see responses at larger scales and in other regions. We examined the effects of long-term temperature change on the laying dates and clutch sizes of six ecologically diverse species of North American birds using 50 years of nest record data. As predicted, laying dates for most (four of six) species were earlier when spring temperatures were warmer. Over the long-term, laying dates advanced over time for two species (red-winged blackbirds, Agelaius phoeniceus and eastern bluebirds, Sialia sialis). Laying date of song sparrows (Melospiza melodia) also advanced with increasing temperature when the analysis was restricted to eastern populations. Neither laying date nor clutch sizes changed significantly over time in the remaining species (American coot, Fulica americana, killdeer, Charadrius vociferous, and American robin, Turdus migratorius), an unsurprising result given the lack of increase in temperatures over time at nest locations of these species. This study indicates that the relationship between climate change and breeding in birds is variable within and among species. In large-scale analyses of North American birds, four of seven species have shown advances in laying dates with increasing temperature (including song sparrows in the east). These variable responses within and among species highlight the need for more detailed studies across large spatial scales.  相似文献   

18.
Climate envelope models (CEMs) have been used to predict the distribution of species under current, past, and future climatic conditions by inferring a species' environmental requirements from localities where it is currently known to occur. CEMs can be evaluated for their ability to predict current species distributions but it is unclear whether models that are successful in predicting current distributions are equally successful in predicting distributions under different climates (i.e. different regions or time periods). We evaluated the ability of CEMs to predict species distributions under different climates by comparing their predictions with those obtained with a mechanistic model (MM). In an MM the distribution of a species is modeled based on knowledge of a species' physiology. The potential distributions of 100 plant species were modeled with an MM for current conditions, a past climate reconstruction (21 000 years before present) and a future climate projection (double preindustrial CO2 conditions). Point localities extracted from the currently suitable area according to the MM were used to predict current, future, and past distributions with four CEMs covering a broad range of statistical approaches: Bioclim (percentile distributions), Domain (distance metric), GAM (general additive modeling), and Maxent (maximum entropy). Domain performed very poorly, strongly underestimating range sizes for past or future conditions. Maxent and GAM performed as well under current climates as under past and future climates. Bioclim slightly underestimated range sizes but the predicted ranges overlapped more with the ranges predicted with the MM than those predicted with GAM did. Ranges predicted with Maxent overlapped most with those produced with the MMs, but compared with the ranges predicted with GAM they were more variable and sometimes much too large. Our results suggest that some CEMs can indeed be used to predict species distributions under climate change, but individual modeling approaches should be validated for this purpose, and model choice could be made dependent on the purpose of a particular study.  相似文献   

19.
The Late Quaternary was a time of rapid climatic oscillations and drastic environmental changes. In general, species can respond to such changes by behavioral accommodation, distributional shifts, ecophenotypic modifications (nongenetic), evolution (genetic) or ultimately face local extinction. How those responses manifested in the past is essential for properly predicting future ones especially as the current warm phase is further intensified by rising levels of atmospheric carbon dioxide. Here, we use ancient DNA (aDNA) and morphological features in combination with ecological niche modeling (ENM) to investigate genetic and nongenetic responses of Central European Palearctic shrews to past climatic change. We show that a giant form of shrew, previously described as an extinct Pleistocene Sorex species, represents a large ecomorph of the common shrew (Sorex araneus), which was replaced by populations from a different gene‐pool and with different morphology after the Pleistocene Holocene transition. We also report the presence of the cold‐adapted tundra shrew (S. tundrensis) in Central Europe. This species is currently restricted to Siberia and was hitherto unknown as an element of the Pleistocene fauna of Europe. Finally, we show that there is no clear correlation between climatic oscillations within the last 50 000 years and body size in shrews and conclude that a special nonanalogous situation with regard to biodiversity and food supply in the Late Glacial may have caused the observed large body size.  相似文献   

20.
中温型和暖温型草原五种植物构件生长与水热组合关系研究   总被引:12,自引:10,他引:12  
在暖温型和中温型草原对大针茅(Stipa grandis)、羊草(Leymus chinensis)、糙隐子草(Cleistogeness quorrosa)、达乌里胡枝子(Lespedeza dahurica)和阿尔泰狗哇花(Heteropappus altaicus)5个共有植物种群的构件生长特征进行了比较研究,并应用种群统计的生长分析指标与研究站点的月平均温度、降水量和湿润度进行了灰色关联分析.结果表明,中温型草原各共有种的相对生长速率(DRGR &DRGRa)和单位叶速率(DULA)均高于暖温型草原,显示出对中温型草原生长季短、热量条件不足的生态适应特征;而暖温型草原则以较长的叶面积及构件持续时间适应该草原区生长季长、热量较为充足的气候条件.暖温型草原各共有种的构件生长指标与湿润度之间的灰色关联度普遍高于中温型草原,即暖温型草原植物的构件生长对生长季内的水热组合更为敏感,显示出不同热量型草原区植物构件生长的响应特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号