首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular basis of the heterogeneity of plasma low density lipoproteins (LDL, d 1.024-1.050 g/ml) was evaluated in 40 normolipidemic male subjects following fractionation by isopycnic density gradient ultracentrifugation into eight major subspecies. The mass profile of our subjects' LDL uniformly displayed single symmetric or asymmetric peaks as a function of density; the peak occurred most frequently (20 subjects) in subfraction 7 (d 1.0297-1.0327 g/ml). Several physicochemical properties (hydrodynamic behavior, electrophoretic mobility, chemical composition, size and particle heterogeneity, and apolipoprotein heterogeneity) of the LDL subfractions were examined. Hydrodynamic analyses revealed unimodal distributions and distinct peak Sf degree rates in individual subfractions. Such behavior correlated well with particle size and heterogeneity data, in which LDL subspecies were typically resolved as unique narrow bands by gradient gel electrophoresis. Subspecies with average densities of 1.024 to 1.0409 g/ml ranged from 229 to 214 A in particle diameter. LDL protein content increased in parallel with density while the proportion of triglyceride diminished; cholesteryl esters predominated, accounting for approximately 40% or more by weight. Distinct differences in net electric charge were demonstrated by electrophoresis in agarose gel, the subspecies with average density of 1.0314 g/ml displaying the lowest net negative charge. ApoB-100 was the major apoprotein in all subspecies, and constituted the unique protein component over the density interval 1.0271-1.0393 g/ml. ApoE and apo[a] were detected at densities less than 1.0271 and greater than 1.0393 g/ml. While apoE was evenly distributed within these two regions, representing up to 2% of apoLDL, the distribution of apo[a] was skewed towards the denser region, in which it amounted to 3-7% of apoLDL. ApoC-III was detectable as a trace component at densities greater than 1.0358 g/ml. Calculation of the number of molecules of each chemical component per LDL subspecies showed the presence of one copy of apoB-100 per particle, in association with decreasing amounts of cholesteryl ester, free cholesterol, and phospholipid. These data indicate that a similar overall molecular organization and structure is maintained in a unimodal distribution of LDL particle subspecies over the density range approximately 1.02 to 1.05 g/ml. In sum, our data may be interpreted to suggest that microheterogeneity in the physicochemical properties of human LDL subspecies reflects dissimilarities in their origins, intravascular metabolism, tissular fate, and possibly in their atherogenicity.  相似文献   

2.
The neutral carbohydrate content of both the protein (apoB) and lipid fractions of low density lipoproteins (LDL) from subjects with a predominance of small, dense LDL (subclass pattern B) was found to be lower than in subjects with larger LDL (subclass pattern A): 45 +/- 12 versus 64 +/- 13 mg/g apoLDL, and 58 +/- 8 versus 71 +/- 8 mg/g apoLDL (P less than 0.0005 for both). Sialic acid content of LDL lipids, but not apoB, was also reduced in subclass pattern B. ApoB and glycolipid carbohydrate content of total LDL and LDL density subfractions declined with increasing LDL density and decreasing particle diameter. Moreover, in LDL subfractions from pattern B subjects, carbohydrate content of LDL apoB, but not LDL glycolipid, was significantly lower in comparison with particles of similar size from pattern A subjects. Thus, in LDL subclass pattern B, reductions in LDL carbohydrate content are associated both with reduced concentrations of larger carbohydrate-enriched LDL subclasses, and with reduced glycosylation of apoB in all LDL particles. LDL glycolipids may vary with overall lipid content of LDL particles, but variation in apoB glycosylation may indicate differences in pathways for LDL production, and reduced apoB glycosylation may reflect the altered metabolic state responsible for LDL subclass pattern B.  相似文献   

3.
The structural and metabolic heterogeneity of low density lipoproteins (LDL, d 1.024-1.100 g/ml) has been investigated in the guinea pig. Two LDL subfractions, of d 1.024-1.050 and 1.050-1.100 g/ml, respectively, were isolated by sequential ultracentrifugation; while both were enriched in cholesteryl ester and apoB-100, the former was heterogeneous displaying three particle size species of diameters 26.9, 25.6, and 24.7 nm, whereas the denser subfraction was relatively homogeneous containing a single, smaller species (diam. 23.6 nm). The fractional catabolic rates (FCR) of the two LDL subfractions were alike (approximately 0.090 pools/hr) in the guinea pig in vivo. After modification of each subfraction by reductive methylation, the FCRs were reduced similarly and indicated that 70-80% of degradation occurred via the cellular LDL receptor pathway. However, the intravascular metabolism of these LDL subfractions, determined from the radioactive content of density gradient fractions as a function of time after injection of radiolabeled native or chemically modified LDL, tended to be distinct. Thus, while radiolabeled apoB-100 in the lighter subfraction maintained the initial density profile up to 48 hr, the radioactive profile of its methylated counterpart changed, the proportion of radioactivity in the lighter gradient fractions (d 1.027-1.032 g/ml) increasing while that in the denser (d 1.037-1.042 g/ml) fractions diminished. A more marked transformation occurred in LDL of d 1.050-1.100 g/ml, in which the radioactive profile shifted towards lighter particles of the d 1.024-1.050 g/ml species; this shift was partially dependent on the LDL receptor, since it was more pronounced in the methylated subfraction. Furthermore, a net increase in the radioactive content of gradient subfractions 7 to 9 (d 1.032-1.042 g/ml) was found 10 hr after injection of methylated LDL of d 1.050-1.100 g/ml, at which time the bulk of LDL radioactivity had been removed from plasma. Several mechanisms, acting alone or in combination, may account for these findings; among them, some degree of transformation of dense to lighter LDL species appears a prerequisite. In conclusion, our data attest to the structural heterogeneity of circulating LDL in the guinea pig, and suggest that the intravascular processing and metabolism of LDL particle subspecies is directly related to their structure and physicochemical properties.  相似文献   

4.
Two subpopulations, layer 2 (density 1.025-1.029 g/ml) and layer 3 (density 1.032-1.043 g/ml) of low density lipoproteins (LDL) were isolated from fresh human plasma of normal lipidaemic subjects by density gradient ultracentrifugation. Chemical analyses demonstrated the ratios of triglyceride/cholesterol ester decreased with increasing densities of subfractions. These subfractions together with triglyceride-rich lipoproteins (layer 1, density less than 1.019 g/ml) were subjected to physicochemical studies by differential scanning calorimetry (d.s.c.) and nuclear magnetic resonance (n.m.r.) spectroscopy. The average transition temperature (Tt) of layer 2 was 34.20 +/- 0.83 degrees C and that of layer 3 was 37.25 +/- 0.35 degrees C. In addition, many of the layer 3, but not layer 2 and layer 1, samples showed structural alteration and gave rise to an average Tt of 39.18 +/- 1.24 degrees C. The structural alteration could be detected with polarizing light microscopy showing birefringent spherulites at body temperature. The peak Tt values obtained by d.s.c. were in good agreement with those by n.m.r. spectroscopy. These results demonstrate the physicochemical heterogeneity within the LDL density region and suggest that layer 3 subpopulation is much more labile than the others.  相似文献   

5.
The contribution of very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) to various low density lipoprotein (LDL) subfractions was examined in three normal subjects and two with familial combined hyperlipidemia. Autologous VLDL + IDL (d less than 1.019 g/ml) or VLDL only (d less than 1.006 g/ml; one subject only) were isolated by sequential ultracentrifugation, iodinated, and injected into each subject. The appearance, distribution, and subsequent disappearance of radioactivity into LDL density subpopulations was characterized using density gradient ultracentrifugation. These techniques help determine the contribution of precursors to various LDL subpopulations defined uniquely for each subject. The results from these studies have suggested: 1) it took up to several days of intravascular processing of precursor-derived LDL before it resembled the distribution of the 'steady-state' plasma LDL protein; 2) plasma VLDL and IDL precursors contributed rapidly to a broad density range of LDL; 3) the radiolabeled plasma precursors did not always contribute to all LDL density subfractions within an individual in proportion to their relative LDL protein mass as determined by density gradient ultracentrifugation; 4) with time, the distribution of the precursor-derived LDL became more buoyant or more dense than distribution of the LDL protein mass; and 5) the kinetic characteristics of precursor-derived particles within LDL changed within a relatively narrow density range and were not always related to the LDL density heterogeneity of each subject. These studies emphasize the complexities of apoB metabolism and the need to design studies to carefully examine the production of various LDL subpopulations, the kinetic fate and interconversions among the subpopulations, and ultimately, their relationship to the development of atherosclerosis.  相似文献   

6.
Plasma lipoproteins from 5-week old male chickens were separated over the density range 1.006-1.172 g/ml into 22 subfractions by isopycnic density gradient ultracentrifugation, in order to establish the distribution of these particles and their constituent apolipoproteins as a function of density. Lipoprotein subfractions were characterized by electrophorectic, chemical and morphological analyses, and their protein moieties were defined according to net charge at alkaline pH, molecular weight and isoelectric point. These analyses have permitted us to reevaluate the density limits of the major chicken lipoprotein classes and to determine their main characteristics, which are as follows: (1) very-low-density lipoproteins (VLDL), isolated at d less than 1.016 g/ml, were present at low concentrations (less than 0.1 mg/ml) in fasted birds; their mean diameter determined by gradient gel electrophoresis and by electron microscopy was 20.5 and 31.4 nm respectively; (2) as the the density increased from VLDL to intermediate density lipoproteins (IDL), d 1.016-l.020 g/ml) and low-density lipoproteins (LDL, d 1.020-1.046 g/ml), the lipoprotein particles contained progressively less triacylglycerol and more protein, and their Stokes diameter decreased to 20.0 nm; (3) apolipoprotein B-100 was the major apolipoprotein in lipoproteins of d less than 1.046 g/ml, with an Mr of 350000; small amounts of apolipoprotein B-100 were detectable in HDL subfractions of d less than 1.076 g/ml; urea-soluble apolipoproteins were present in this density range as minor components of Mr 38000-39000, 27000-28000 (corresponding to apolipoprotein A-1) and Mr 11000-12000; (4) high density lipoprotein (HDL, d 1.052-1.130 g/ml) was isolated as a single band, whose protein content increased progressively with increase in density; the chemical composition of HDL resembled that of human HDL2, with apolipoprotein A-1 (M 27000-28000) as the major protein component, and a protein of Mr 11000-12000 as a minor component; (5) heterogeneity was observed in the particle size and apolipoprotein distribution of HDL subfractions: two lipoprotein bands which additional apolipoproteins of Mr 13000 and 15000 were detected. These studies illustrate the inadequacy in the chicken of the density limits applied to fractionate the lipoprotein spectrum, and particularly the inappropriateness of the 1.063 g/ml density limit as the cutoff for LDL and HDL particle populations in the species.  相似文献   

7.
Previous studies using cynomolgus monkeys have shown that isocaloric substitution of dietary fish oil for lard reduced the in vitro binding of plasma low density lipoproteins (LDL) to arterial proteoglycans (PG) (Edwards, I.J., A.K. Gebre, W. D. Wagner, and J. S. Parks. 1991. Arterioscler. Thromb., 11: 1778-1785). The purpose of the present study was to determine whether all LDL subfractions were equally affected by the type of dietary fat with regard to PG binding and to identify compositional changes in LDL subfractions that might relate to the differential in PG binding. Two groups of cynomolgus monkeys (n = 5 each) were fed atherogenic diets (40% calories as fat; 0.26 mg cholesterol/kcal) containing 20% of calories as egg yolk and 20% as either lard or menhaden fish oil. LDL were isolated from plasma by ultracentrifugation and size exclusion chromatography and subfractionated by density gradient centrifugation. Three density ranges of LDL subfractions were collected from the gradients for determination of chemical composition, apoE and apoB content by ELISA, and binding to arterial PG in vitro. The d 1.015-1.025 g/ml subfraction contained 39 +/- 8% of the LDL cholesterol in the lard group but only 7 +/- 3% for the fish oil group. Values for cholesterol distribution were opposite for the d 1.035-1.045 g/ml subfraction, 8 +/- 1% versus 41 +/- 8%, respectively. Similar trends were noted for the distribution of apoB. For the lard group, LDL binding to arterial PG increased with decreasing density (i.e., increasing size) of the subfractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
1. Plasma lipoproteins from six thoroughbred horses were separated by density gradient ultracentrifugation. For each sample, lipoprotein bands were visualized by means of a prestained plasma control and characterized by electrophoretic, chemical and morphological analysis. 2. Very low density lipoproteins (VLDL) were isolated at d less than 1.018 g/ml. 3. Two clearly resolved bands were detected in the low density lipoprotein fraction (LDL). The density limits were evaluated as follows: LDL1(1.028 less than d less than 1.045 g/ml) and LDL2(1.045 less than d less than 1.070 g/ml). Marked differences were observed in the chemical composition and particle size of LDL1 and LDL2 fractions. 4. High density lipoprotein fraction (HDL) was usually isolated as a single band, distributed over the range 1.075 less than d less than 1.180 g/ml. However, chemical composition and particle size revealed heterogeneity in HDL subfractions. 5. The density limit of LDL and HDL bands varied in each animal, indicating differences in equine lipoprotein distribution.  相似文献   

9.
Changes in lipoprotein surface potentials were studied by a positively charged analog as a spin probe. Low density lipoproteins (LDL) and high density lipoproteins (subfractions HDL2 and HDL3) of patients with coronary heart disease (CHD) were studied. CHD patients have revealed a significant decrease (by 14.4 +/- 0.3 mV) in LDL and an increase (by 6.3 +/- 2.0 mV) in HDL3 negative surface potential, as compared to the control. The increase in HDL2 surface potential in CHD patients was insignificant (1.9 +/- +/- 2.5 mV). The possible role of LDL and HDL3 surface potential changes in the mechanism of interaction of these types of lipoproteins with vascular wall and blood cellular membranes and in pathogenesis of CHD and atherosclerosis is discussed.  相似文献   

10.
A highly electronegative fraction of human plasma LDLs, designated L5, has distinctive biological activity that includes induction of apoptosis in bovine aortic endothelial cells (BAECs). This study was performed to identify a relationship between LDL density, electronegativity, and biological activity, namely, the induction of apoptosis in BAECs. Plasma LDLs from normolipidemic subjects and homozygotic familial hypercholesterolemia subjects were separated into five subfractions, with increasing electronegativity from L1 to L5, and into seven subfractions according to increasing density, D1 to D7. L1 to L5 were also separated according to density, and D1 to D7 were separated according to charge. The density profiles of L1 to L5 were similar (maximum density = 1.030 +/- 0.002 g/ml). Induction of apoptosis by all seven density subfractions was confined to the highly electronegative fraction, L5, and within each density subfraction the magnitude of apoptosis correlated with the L5 content. Electronegative LDL is heterogeneous with respect to density and composition, and induction of apoptosis is more strongly associated with LDL electronegativity than with LDL size or density.  相似文献   

11.
A single spin density gradient ultracentrifugation method in a swinging bucket rotor has been applied for the detection and isolation of low density lipoprotein (LDL) subfractions. The visualization of the LDL heterogeneity was facilitated by prestaining the serum with Coomassie Brilliant Blue R prior to density gradient ultracentrifugation for 19.5 hr. A total of 13 human serum pools was analyzed. In each pool, two LDL subfractions, a lighter LDL1 subfraction, occasionally showing a subdivision into two bands, LDL1A and LDL1B, and a heavier LDL2 could be clearly distinguished by the banding pattern in the density gradient. Physicochemical characteristics of the isolated LDL subfractions were determined. The simple method for detection and isolation of these subfractions presented here may facilitate future studies on LDL heterogeneity.  相似文献   

12.
The fractionation and physicochemical characterization of the complex molecular components composing the plasma lipoprotein spectrum in the goose, a potential model of liver steatosis, are described. Twenty lipoprotein subfractions (d less than 1.222 g/ml) were separated by isopycnic density gradient ultracentrifugation, and characterized according to their chemical composition, particle size and particle heterogeneity, electrophoretic mobility, and apolipoprotein content. Analytical ultracentrifugal analyses showed high density lipoproteins (HDL) to predominate (approximately 450 mg/dl plasma), the peak of its distribution occurring at d approximately 1.090 g/ml (F1.21 approximately 2.5). The HDL class displayed marked density heterogeneity, HDL1-like particles being detected up to a lower density limit of approximately 1.020 g/ml, particle size decreasing progressively from 17-19 nm at d 1.024-1.028 g/ml to 10.5-12 nm (d 1.055-1.065 g/ml), and then remaining constant (approximately 9 nm) at densities greater than 1.065 g/ml. HDL subfractions displayed multiple size species; five subspecies were present over the range d 1.103-1.183 g/ml with diameters of 10.5, 9.9, 9.0, 8.2, and 7.5 nm, four in the range d 1.090-1.103 g/ml (diameters 10.5, 9.9, 9.0, and 8.2 nm) and three over the range d 1.076-1.090 g/ml (diameters 10.5, 9.9, and 9.0 nm). ApoA-I (Mr 25,000-27,000) was the major apolipoprotein in all goose HDL subfractions, while the minor components (apparent Mr 100,000, 91,000, 64,000, 58,000, approximately 42,000, 18,000 and apoC-like proteins) showed marked quantitative and qualitative variation across this density range (i.e., 1.055-1.165 g/ml). The d 1.063 g/ml boundary for separation of goose low density lipoproteins (LDL) from HDL was inappropriate, since HDL-like particles were present in the density interval 1.024-1.063 g/ml, while particles enriched in apoB (Mr approximately 540,000) and resembling LDL in size (approximately 20.5 nm) were detected up to a density of approximately 1.076 g/ml. Goose LDL itself was a major component of the profile (90-172 mg/dl) with a single peak of high flotation rate (Sf approximately 10.5). The physicochemical properties and apolipoprotein content of intermediate density lipoproteins (IDL) and LDL varied but little over the range d 1.013-1.040 g/ml, presenting as two particle species (diameters 20.5 and 21 nm) of essentially constant chemical composition; LDL (d 1.019-1.040 g/ml) were separated from HDL1 by gel filtration chromatography and appeared to contain primarily apoB with lesser amounts of apoA-I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL) were isolated from the blood of healthy subjects and CHD patients. LDL from the blood of healthy individuals did not raise the intracellular lipid values within 24 h of cultivation. During intracellular lipid values within 24 h of cultivation. During the same incubation period. LDL obtained from the blood of CHD patients caused a 2- to 5-fold rise in cholesterol esters as well as a 1.5- to 3-fold rise in free cholesterol and triglycerides, while the intracellular phospholipid levels remained unchanged. In one of the three cases, the ability to raise the intracellular level of cholesterol esters was demonstrated by VLDL (500 micrograms/ml) derived from CHD patients blood. HDL did not affect the lipid levels in smooth muscle cells cultured from unaffected intima. The obtained data suggests that circulating LDL and, possibly, VLDL in the blood of CHD patients are capable of inducing the accumulation of fat in vascular wall cells.  相似文献   

14.
Two independent parameters, two characteristic temperatures, one indicating the change in the molecular organization of the core, Tc, and the other in the surface layer, Ts, were measured for a number of natural and triglyceride-enriched porcine low-density lipoprotein (LDL1 (buoyant density 1.020--1.063 g/ml) and LDL2 (buoyant density 1.063--1.080 g/ml) samples. Tc was determined by differential scanning calorimetry (DSC), whereas Ts was measured by Mn(II) binding to the lipoprotein surface followed by electron spin resonance (ESR) spectroscopy. A significant causal relationship between Tc and Ts in both LDL subfractions demonstrates the surface-core interaction in LDL. The significance of that interaction is emphasized as a possible link in the chain diet----lipoprotein changes----atherosclerosis.  相似文献   

15.
The receptor-mediated metabolism of human plasma low-density lipoprotein (LDL) subfractions was studied. LDL was isolated from healthy donors and further fractionated by density gradient ultracentrifugation into three subfractions: (I) d = 1.031-1.037, (II) d = 1.037-1.041 and (III) d = 1.041-1.047 g/ml, comprising 24 +/- 7%, 46 +/- 8% and 30 +/- 9% of the total LDL protein, respectively. As assessed by electron microscopy and gradient gel electrophoresis, the LDL particle size decreased and the relative protein content increased from fraction I towards fraction III. Fraction II had the highest (Kd 2.6 micrograms/ml) and fraction I the lowest (Kd 5.8 micrograms/ml) binding affinity to LDL receptors of human fibroblasts at 4 degrees C. The rate of receptor-mediated degradation of fraction II was also higher than that of the other two fractions at 37 degrees C. These results suggest that LDL subfractions have different rates of receptor-mediated catabolism depending on particle size or composition, and therefore their metabolic fate and atherogenic properties may also differ.  相似文献   

16.
Atherosclerosis is commonly found in diabetes. There is an association between small dense low density lipoprotein (LDL) phenotype, which is more prevalent in the diabetic state, and atherosclerosis. Small dense LDL is more easily oxidised and it is possible that fatty acid compositional changes, particularly an increase in polyunsaturated fatty acids, could underlie this association. However, there is little information about fatty acids in the different LDL phenotypes in the literature. This study examined LDL subfraction composition in 18 non-insulin-dependent diabetic (NIDDM) patients and 11 control subjects. LDL was isolated and fractionated into LDL 1, 2 and 3 by density gradient ultracentrifugation. NIDDM patients had significantly more fatty acids in all LDL subfractions than control subjects (P<0.01). Palmitic and linoleic acid were significantly greater in all subfractions in the diabetic patients compared to control subjects (P<0.01) and palmitoleic and oleic acids were also greater in LDL1 and LDL2 in diabetic patients (P<0.01). We conclude that in NIDDM fatty acids are increased in all LDL subfractions and this may be the reason for the increased atherosclerosis in diabetes irrespective of phenotype.  相似文献   

17.
The metabolism of heterogeneous subpopulations of low density lipoprotein (LDL) apoB100 was examined in three normolipidemic and two familial combined hyperlipidemic subjects. Autologous radioiodinated plasma LDL (1.019 less than d less than 1.063 g/ml) were injected into each subject and the disappearance and appearance of radiolabeled lipoproteins into various LDL subpopulations were examined using density gradient ultracentrifugation. Eleven to 13 fractions (-320 microliter each) were collected within LDL defined uniquely in each subject. In all subjects, the disappearance of radiolabeled LDL from plasma was biexponential. However, changes with time in the distribution of radiolabeled LDL among the various LDL density subpopulations revealed complex metabolic behavior that differed among the subjects. When the relationships between density and kinetic characteristics were examined in more detail by following the disappearance of individual fractions defining LDL in each subject, the data suggested that: 1) the kinetic behavior of the LDL fractions was more complex than suggested by the disappearance of radiolabeled LDL from plasma: 2) certain fractions within specific density ranges were kinetically similar; 3) distinct differences in the disappearance curves among the fractions occurred within narrow density ranges; and 4) precursor-product relationships were seen among specific LDL density fractions and varied from subject to subject. These studies underscore the complexities of plasma LDL apoB-100 metabolism. More detailed characterizations of the kinetic behavior of various LDL subpopulations should help in our understanding of the origin(s) and potential physiological consequences of different LDL subpopulations.  相似文献   

18.
Separation of lipoproteins by traditional sequential salt density floatation is a prolonged process ( approximately 72 h) with variable recovery, whereas iodixanol-based, self-generating density gradients provide a rapid ( approximately 4 h) alternative. A novel, three-layered iodixanol gradient was evaluated for its ability to separate lipoprotein fractions in 63 subjects with varying degrees of dyslipidemia. Lipoprotein cholesterol, triglycerides, and apolipoproteins were measured in 21 successive iodixanol density fractions. Iodixanol fractionation was compared with sequential floatation ultracentrifugation. Iodixanol gradient formation showed a coefficient of variation of 0.29% and total lipid recovery from the gradient of 95.4% for cholesterol and 84.7% for triglyceride. Recoveries for VLDL-, LDL-, and HDL-cholesterol, triglycerides, and apolipoproteins were approximately 10% higher with iodixanol compared with sequential floatation. The iodixanol gradient effectively discriminated classic lipoproteins and their subfractions, and there was evidence for improved resolution of lipoproteins with the iodixanol gradient. LDL particles subfractionated by the gradient showed good correlation between density and particle size with small, dense LDL (<25.5 nm) separated in fractions with density >1.028 g/dl. The new iodixanol density gradient enabled rapid separation with improved resolution and recovery of all lipoproteins and their subfractions, providing important information with regard to LDL phenotype from a single centrifugation step with minimal in-vitro modification of lipoproteins.  相似文献   

19.
Subfractions of CLDL (VLDL), Sf 100-400; CLDL2, Sf 60--100; VLDL3, Sf 20--60) and LDL (LDL), Sf 12--20; LDL2, Sf 6--12; LDL3, Sf 3--6) were isolated from the plasma of three normal, three type III and four type IV hyperlipoproteinemic subjects. In the type IV group, all VLDL subspecies were of normal composition but were increased in concentration in the order VLDL1 greater than VLDL2 greater than VLDL3. In the same subjects, although LDL2 was lowered and LDL3 increased, the total plasma LDL concentration was normal. All VLDL subfractions were elevated in the type III group, but in this case VLDL3 predominated. These subfractions were enriched in cholesteryl esters and depleted in triglyceride. In the LDL density range there was a shift of mass towards the least dense fraction, LDL1, which was of normal composition. EPR studies of the VLDL and LDL subfractions in a type IV subject demonstrated a decrease in fluidity with increasing density. The major change occurred between VLDL3 and LDL1 and was attributed to a substantial alteration in the cholesteryl ester : triglyceride ratio in the particle. A similar argument was used to explain thction in normal or type IV subjects. Particle diameters, determined by laser light-scattering spectroscopy were in good agreement with the values obtained by electron microscopy. This study provides a baseline for the examination of the relationship between the physical and metabolic properties of VLDL and LDL subfractions in type III and IV hyperlipoproteinemia.  相似文献   

20.
We have devised a method to fractionate low density lipoprotein (LDL) into subspecies by means of column chromatography. DEAE-agarose columns, 2.6 X 60 cm, were loaded with LDL (25-45 mg LDL protein) and eluted with a 0.045-0.13 M NaCl gradient. The LDL eluted over a volume of 900 ml. Specific portions of the eluted LDL, reapplied to a column identical with the original, reelute at about the same point. Altering the NaCl concentration of the elution fluid changed the elution volume. The cholesterol-protein ratio of the LDL subfractions was progressively lower in fractions eluting at higher NaCl concentrations. These results indicate the LDL is not a homogenous lipoprotein species but consists of subfractions which differ in at least charge and cholesterol content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号