首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The multidrug resistance phosphoglycoprotein ATP-binding cassette subfamily B (ABCB1) actively extrudes a range of structurally and functionally diverse xenobiotics as well as glucocorticoids. ABCB1 is present in many cancer cell types as well as in normal tissues. Although it has been localized within the mouse placenta, virtually nothing is known about its regulation. In the mouse, two genes, Abcb1a and Abcb1b, encode ABCB1. We hypothesized that there are changes in placental Abcb1a and Abcb1b gene expression and ABCB1 protein levels during pregnancy. Using in situ hybridization, we demonstrated that Abcb1b mRNA is the predominant placental isoform and that there are profound gestational changes in the expression of both Abcb1a and Abcb1b mRNA. Placentas from pregnant mice were analyzed between Embryonic Days (E) 9.5 and 19 (term approximately 19.5d). Abcb1b mRNA was detected in invading trophoblast cells by E9.5, peaked within the placental labyrinth at E12.5, and then progressively decreased toward term (P < 0.0001). Abcb1a mRNA, although lower than that of Abcb1b at midgestation, paralleled changes in Abcb1b mRNA. Changes in Abcb1 mRNA were reflected by a significant decrease in ABCB1 protein (P < 0.05). A strong correlation existed between placental Abcb1b mRNA and maternal progesterone concentrations, indicating a potential role of progesterone in regulation of placental Abcb1b mRNA. In conclusion, there are dramatic decreases in Abcb1a and Abcb1b mRNA and in ABCB1 at the maternal-fetal interface over the second half of gestation, suggesting that the fetus may become increasingly susceptible to the influences of xenobiotics and natural steroids in the maternal circulation.  相似文献   

2.
ATP-driven efflux transport proteins at the blood-brain barrier protect the healthy brain but impede pharmacotherapy of the disordered CNS. To investigate the question how ATP-binding cassette (ABC)-transporters are regulated during inflammation or infection we analysed the effects of the cytokines tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) on the expression of brain multidrug resistance proteins in primary cultures of porcine brain capillary endothelial cells. We found that TNF-α and IL-1β rapidly decrease Abcg2 ( BMDP/BCRP ) mRNA expression within 6 h. After 24 and 48 h the mRNA level came back to control values. The mRNA reduction at 6 h was counter-regulated by the anti-inflammatory glucocorticoid hydrocortisone. Abcg2 protein levels were suppressed at prolonged stimulations but not after 6 h of stimulation which correlates with Abcg2 specific substrate uptake measurements. Abcb1 (p-glycoprotein) protein expression was transiently increased after TNF-α addition within 6 h of incubation followed by a reduction after 24 and 48 h whereas the Abcb1 mRNA levels were not changed. IL-1β caused a continuous decrease in protein expression of both ABC-transporters. Long-term treatment with an assumed TNF-α-downstream agent, the vasoconstrictor endothelin-1, induced Abcg2 protein expression but suppressed Abcb1. Other efflux pumps like multidrug resistance-associated proteins/Abcc were rarely affected. The present results imply a complex regulation of the two most abundant ABC-transporters at the blood-brain barrier during early inflammation stages suggesting that Abcb1 (p-glycoprotein) is an early target of TNF-α-signalling counterbalanced by Abcg2.  相似文献   

3.
Sphingosine 1-phosphate (S1P) is an extra- and intracellular mediator that regulates cell growth, survival, migration, and adhesion in many cell types. S1P lyase is the enzyme that irreversibly cleaves S1P and thereby constitutes the ultimate step in sphingolipid catabolism. It has been reported previously that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1−/−-MEFs) are resistant to chemotherapy-induced apoptosis through upregulation of B cell lymphoma 2 (Bcl-2) and Bcl-2-like 1 (Bcl-xL). Here, we demonstrate that the transporter proteins Abcc1/MRP1, Abcb1/MDR1, Abca1, and spinster-2 are upregulated in Sgpl1−/−-MEFs. Furthermore, the cells efficiently sequestered the substrates of Abcc1 and Abcb1, fluo-4 and doxorubicin, in subcellular compartments. In line with this, Abcb1 was localized mainly at intracellular vesicular structures. After 16 h of incubation, wild-type MEFs had small apoptotic nuclei containing doxorubicin, whereas the nuclei of Sgpl1−/−-MEFs appeared unchanged and free of doxorubicin. A combined treatment with the inhibitors of Abcb1 and Abcc1, zosuquidar and MK571, respectively, reversed the compartmentalization of doxorubicin and rendered the cells sensitive to doxorubicin-induced apoptosis. It is concluded that upregulation of multidrug resistance transporters contributes to the chemoresistance of S1P lyase-deficient MEFs.  相似文献   

4.
In the present study MRP2/ABCC2 and BSEP/ABCB11 expression were investigated in sandwich cultured (SC) human and rat hepatocytes exposed to the proinflammatory cytokines. The investigation was also done in lipopolysaccharide (LPS)-treated rats. In SC human hepatocytes, both absolute protein and mRNA levels of MRP2/ABCC2 were significantly down-regulated by TNF-α, IL-6, or IL-1β. In contrast to mRNA decrease, which was observed for BSEP/ABCB11, the protein amount was significantly increased by IL-6 or IL-1β. A discrepancy between the change in BSEP/ABCB11 mRNA and protein levels was encountered in SC human hepatocytes treated with proinflammatory cytokines. In SC rat hepatocytes, Mrp2/Abcc2 mRNA was down-regulated by TNF-α and IL-6, whereas the protein level was decreased by all three cytokines. Down-regulations of both Bsep/Abcb11 mRNA and protein levels were found in SC rat hepatocytes exposed to TNF-α or IL-1β. Administration of LPS triggered the release of the proinflammatory cytokines and caused the decrease of Mrp2/Abcc2 and Bsep/Abcb11 protein in liver at 24 h post-treatment; however, the Mrp2 and Bsep protein levels rebounded at 48 h post-LPS treatment. In total, our results indicate that proinflammatory cytokines regulate the expression of MRP2/Mrp2 and BSEP/Bsep and for the first time demonstrate the differential effects on BSEP/Bsep expression between SC human and rat hepatocytes. Furthermore, the agreement between transporter regulation in vitro in SC rat hepatocytes and in vivo in LPS-treated rats during the acute response phase demonstrates the utility of in vitro SC hepatocyte models for predicting in vivo effects.  相似文献   

5.
Two ATP-binding cassette (ABC) proteins, ABCG5 and ABCG8, have recently been associated with the accumulation of dietary cholesterol in the sterol storage disease sitosterolemia. These two 'half-transporters' are assumed to dimerize to form the complete sitosterol transporter which reduces the absorption of sitosterol and related molecules in the intestine by pumping them back into the lumen. Although mutations altering ABCG5 and ABCG8 are found in affected patients, no functional demonstration of sitosterol transport has been achieved. In this study, we investigated whether other ABC transporters implicated in lipid movement and expressed in tissues with a role in sterol synthesis and absorption, might also be involved in sitosterol transport. Transport by the multidrug resistance P-glycoprotein (P-gp; Abcb1), the multidrug resistance-associated protein (Mrp1; Abcc1), the breast cancer resistance protein (Bcrp; Abcg2) and the bile salt export pump (Bsep; Abcb11) was assessed using several assays. Unexpectedly, none of the candidate proteins mediated significant sitosterol transport. This has implications for the pathology of sitosterolemia. In addition, the data suggest that otherwise broad-specific ABC transporters have acquired specificity to exclude sitosterol and related sterols like cholesterol presumably because the abundance of cholesterol in the membrane would interfere with their action; in consequence, specific transporters have evolved to handle these sterols.  相似文献   

6.
7.
8.
ABCB1, also known as P-glycoprotein (P-gp) or multidrug resistance protein 1 (MDR1), is a membrane-associated multidrug transporter of the ATP-binding cassette (ABC) transporter family. It is one of the most widely studied transporters that enable cancer cells to develop drug resistance. Reliable high-throughput assays that can identify compounds that interact with ABCB1 are crucial for developing new therapeutic drugs. A high-throughput assay for measuring ABCB1-mediated calcein AM efflux was developed using a fluorescent and phase-contrast live cell imaging system. This assay demonstrated the time- and dose-dependent accumulation of fluorescent calcein in ABCB1-overexpressing KB-V1 cells. Validation of the assay was performed with known ABCB1 inhibitors, XR9576, verapamil, and cyclosporin A, all of which displayed dose-dependent inhibition of ABCB1-mediated calcein AM efflux in this assay. Phase-contrast and fluorescent images taken by the imaging system provided additional opportunities for evaluating compounds that are cytotoxic or produce false positive signals. Compounds with known therapeutic targets and a kinase inhibitor library were screened. The assay identified multiple agents as inhibitors of ABCB1-mediated efflux and is highly reproducible. Among compounds identified as ABCB1 inhibitors, BEZ235, BI 2536, IKK 16, and ispinesib were further evaluated. The four compounds inhibited calcein AM efflux in a dose-dependent manner and were also active in the flow cytometry-based calcein AM efflux assay. BEZ235, BI 2536, and IKK 16 also successfully inhibited the labeling of ABCB1 with radiolabeled photoaffinity substrate [125I]iodoarylazidoprazosin. Inhibition of ABCB1 with XR9576 and cyclosporin A enhanced the cytotoxicity of BI 2536 to ABCB1-overexpressing cancer cells, HCT-15-Pgp, and decreased the IC50 value of BI 2536 by several orders of magnitude. This efficient, reliable, and simple high-throughput assay has identified ABCB1 substrates/inhibitors that may influence drug potency or drug-drug interactions and predict multidrug resistance in clinical treatment.  相似文献   

9.
Estradiol 17ß-d-glucuronide (E17G) induces acute cholestasis in rat with endocytic internalization of the canalicular transporters bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). Classical protein kinase C (cPKC) and PI3K pathways play complementary roles in E17G cholestasis. Since non-conjugated estradiol is capable of activating these pathways via estrogen receptor alpha (ERα), we assessed the participation of this receptor in the cholestatic manifestations of estradiol glucuronidated-metabolite E17G in perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHC). In both models, E17G activated ERα. In PRL, E17G maximally decreased bile flow, and the excretions of dinitrophenyl-glutathione, and taurocholate (Abcc2 and Abcb11 substrates, respectively) by 60% approximately; preadministration of ICI 182,780 (ICI, ERα inhibitor) almost totally prevented these decreases. In IRHC, E17G decreased the canalicular vacuolar accumulation of cholyl-glycylamido-fluorescein (Abcb11 substrate) with an IC50 of 91±1 µM. ICI increased the IC50 to 184±1 µM, and similarly prevented the decrease in the canalicular vacuolar accumulation of the Abcc2 substrate, glutathione-methylfluorescein. ICI also completely prevented E17G-induced delocalization of Abcb11 and Abcc2 from the canalicular membrane, both in PRL and IRHC. The role of ERα in canalicular transporter internalization induced by E17G was confirmed in ERα-knocked-down hepatocytes cultured in collagen sandwich. In IRHC, the protection of ICI was additive to that produced by PI3K inhibitor wortmannin but not with that produced by cPKC inhibitor Gö6976, suggesting that ERα shared the signaling pathway of cPKC but not that of PI3K. Further analysis of ERα and cPKC activations induced by E17G, demonstrated that ICI did not affect cPKC activation whereas Gö6976 prevented that of ERα, indicating that cPKC activation precedes that of ERα. Conclusion: ERα is involved in the biliary secretory failure induced by E17G and its activation follows that of cPKC.  相似文献   

10.
Overexpression of multidrug transporters is a well-established mechanism of resistance to chemotherapy, but other changes may be co-selected upon exposure to drugs that contribute to resistance. Using a model of J774 macrophages made resistant to the fluoroquinolone antibiotic ciprofloxacin and comparing it with the wild-type parent cell line, we performed a quantitative proteomic analysis using the stable isotope labeling with amino acids in cell culture technology coupled with liquid chromatography electrospray ionization Fourier transform tandem mass spectrometry (LC-ESI-FT-MS/MS) on 2 samples enriched in membrane proteins (fractions F1 and F2 collected from discontinuous sucrose gradient). Nine hundred proteins were identified with at least 3 unique peptides in these 2 pooled fractions among which 61 (F1) and 69 (F2) showed a significantly modified abundance among the 2 cell lines. The multidrug resistance associated protein Abcc4, known as the ciprofloxacin efflux transporter in these cells, was the most upregulated, together with Dnajc3, a protein encoded by a gene located downstream of Abcc4. The other modulated proteins are involved in transport functions, cell adhesion and cytoskeleton organization, immune response, signal transduction, and metabolism. This indicates that the antibiotic ciprofloxacin is able to trigger a pleiotropic adaptative response in macrophages that includes the overexpression of its efflux transporter.  相似文献   

11.
Expression of multidrug resistance ABC transporters has been suggested as a functional marker and chemoprotective element in early human progenitor cell types. In this study we examined the expression and function of the key multidrug-ABC transporters, ABCB1, ABCC1 and ABCG2 in two human embryonic stem (HuES) cell lines. We detected a high level ABCG2 expression in the undifferentiated HuES cells, while the expression of this protein significantly decreased during early cell differentiation. ABCG2 in HuES cells provided protection against mitoxantrone toxicity, with a drug-stimulated overexpression of the transporter. No significant expression of ABCB1/ABCC1 was found either in the undifferentiated or partially differentiated HuES cells. Examination of the ABCG2 mRNA in HuES cells indicated the use of selected promoter sites and a truncated 3' untranslated region, suggesting a functionally distinct regulation of this transporter in undifferentiated stem cells. The selective expression of the ABCG2 multidrug transporter indicates that ABCG2 can be applied as a marker for undifferentiated HuES cells. Moreover, protection of embryonic stem cells against xenobiotics and endobiotics may depend on ABCG2 expression and regulation.  相似文献   

12.
cGMP secretion from cells can be mediated by ATP-binding cassette (ABC) transporters ABCC4, ABCC5, and ABCC11. Indirect evidence suggests that ABCC4 and ABCC5 contribute to cGMP transport by erythrocytes. We have re-investigated the issue using erythrocytes from wild-type and transporter knockout mice. Murine wild-type erythrocyte vesicles transported cGMP with an apparent Km that was 100-fold higher than their human counterparts, the apparent Vmax being similar. Whereas cGMP transport into human vesicles was efficiently inhibited by the ABCC4-specific substrate prostaglandin E1, cGMP transport into mouse vesicles was inhibited equally by Abcg2 and Abcc4 inhibitors/substrates. Similarly, cGMP transport into vesicles from Abcc4-/- and Abcg2-/- mice was 42% and 51% of that into wild-type mouse vesicles, respectively, whereas cGMP transport into vesicles from Abcc4(-/-)/Abcg2(-/-) mice was near background. The knockout mice were used to show that Abcg2-mediated cGMP transport occurred with lower affinity but higher Vmax than Abcc4-mediated transport. Involvement of Abcg2 in cGMP transport by Abcc4-/- erythrocyte vesicles was supported by higher transport at pH 5.5 than at pH 7.4, a characteristic of Abcg2-mediated transport. The relative contribution of ABCC4/Abcc4 and ABCG2/Abcg2 in cGMP transport was confirmed with a new inhibitor of ABCC4 transport, the protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride.  相似文献   

13.
Sinusoidal and apical transporters are responsible for the uptake and biliary elimination of many compounds by hepatocytes. Few in vitro models are however available for analyzing such functions. The expression and bile-acid inducibility of 13 transporters and two nuclear receptors were investigated in the new rat polarized lines, Can 3−1 and Can 10, and in their unpolarized parent, Fao. The relative abundance of mRNA, the protein level, and their localization were examined by real-time quantitative PCR, Western blotting, immunofluorescence, and confocal microscopy. Compared with rat liver, mRNA levels of Fao cells were: negligible for Bsep/Abcb11; lower for the uptake transporters Ntcp and Oatps; similar for SHP, FXR, and Bcrp/Abcg2; and higher (four–fold to 160-fold) for the efflux pumps Mdr1b/Abcb1b, Mdr2/Abcb4, Mrp1/Abcc1, Mrp2/Abcc2, Mrp3/Abcc3, Abcg5, and Abcg8. This profile was mostly maintained (and improved for Bsep) in Can 10. Some transporters were less well expressed in Can 3−1. In both lines, sinusoidal (Ntcp, Mrp3) and canalicular transporters (Mdr-P-glycoproteins detected with C219 antibody, Mrp2) were localized at their correct poles. Bile-acid effects on polarity and mRNA levels of transporters were analyzed after a 6-day treatment with 50 μM taurocholic, chenodeoxycholic (CDCA), or ursodeoxycholic acid (UDCA). No polarization of Fao cells was induced; Can 10 and Can 3−1 polarity was maintained. CDCA and UDCA induced marked enhancement of the volume of Can 10 bile canaliculi. CDCA upregulated Bsep, Mdr2, SHP, Mdr1b, and Oatp2/1a4 in Can 10 (two- to seven-fold) and in Fao cells. Thus, Can 10 constitutes an attractive polarized model for studying vectorial hepatobiliary transport of endogenous and xenobiotic cholephilic compounds. This work was supported by a grant from Egide (PAI Picasso) and the Acción Integrada Hispano-Francesa (HF2003-0089). This research group is part of the Network for Cooperative Research on Membrane Transport Proteins (REIT), co-funded by the Ministerio de Educación y Ciencia, Spain and the European Regional Development Fund (ERDF; grant BFU2005-24983-E/BFI) and belongs to the “Centro de Investigación Biomédica en Red” for Hepatology and Gastroenterology Research (CIBERehd), Instituto de Salud Carlos III, Spain.  相似文献   

14.

Background

Tumor tissue resembles chronically inflamed tissue. Since chronic inflammatory conditions are a strong stimulus for bone marrow-derived cells (BMDCs) it can be assumed that recruitment of BMDCs into cancer tissue should be a common phenomenon. Several data have outlined that BMDC can influence tumor growth and metastasis, e.g., by inducing a paracrine acting feedback loop in tumor cells. Likewise, cell fusion and horizontal gene transfer are further mechanisms how BMDCs can trigger tumor progression.

Results

Hygromycin resistant murine 67NR-Hyg mammary carcinoma cells were co-cultivated with puromycin resistant murine BMDCs from Tg(GFPU)5Nagy/J mice. Isolation of hygromycin/puromycin resistant mBMDC/67NR-Hyg cell clones was performed by a dual drug selection procedure. PCR analysis revealed an overlap of parental markers in mBMDC/67NR-Hyg cell clones, suggesting that dual resistant cells originated by cell fusion. By contrast, both STR and SNP data analysis indicated that only parental 67NR-Hyg alleles were found in mBMDC/67NR-Hyg cell clones favoring horizontal gene transfer as the mode of origin. RealTime-PCR-array analysis showed a marked up-regulation of Abcb1a and Abcb1b ABC multidrug transporters in mBMDC/67NR-Hyg clones, which was verified by Western Blot analysis. Moreover, the markedly increased Abcb1a/Abcb1b expression was correlated to an efficient Rhodamine 123 efflux, which was completely inhibited by verapamil, a well-known Abcb1a/Abcb1b inhibitor. Likewise, mBMDCs/67NR-Hyg clones revealed a marked resistance towards chemotherapeutic drugs including 17-DMAG, doxorubicin, etoposide and paclitaxel. In accordance to Rhodamine 123 efflux data, chemotherapeutic drug resistance of mBMDC/67NR-Hyg cells was impaired by verapamil mediated blockage of Abc1a/Abcb1b multidrug transporter function.

Conclusion

Co-cultivation of mBMDCs and mouse 67NR-Hyg mammary carcinoma cells gave rise to highly drug resistant cells. Even though it remains unknown whether mBMDC/67NR-Hyg clones originated by cell fusion or horizontal gene transfer, our data indicate that the exchange of genetic information between two cellular entities is crucial for the origin of highly drug resistant cancer (hybrid) cells, which might be capable to survive chemotherapy.  相似文献   

15.
Acquired resistance of cancer cells to various chemotherapeutic agents is known as multidrug resistance, and remains a critical factor in the success of cancer treatment. It is necessary to develop the inhibitors for multidrug resistance. The aim of this study was to examine the effects of eight α-adrenoceptor antagonists on ABCG2/BCRP-mediated resistance and transport. Previously established HeLa/SN100 cells, which overexpress ABCG2/BCRP but not ABCB1/MDR1, were used. The effects of the antagonists on sensitivity to mitoxantrone and the transport activity of Hoehst33342, both substrates for ABCG2/BCRP, were evaluated using the WST-1 assay and cellular kinetics, respectively. ABCG2/BCRP mRNA expression and the cell cycle were also examined by real-time RT-PCR and flow cytometry, respectively. Sensitivity to mitoxantrone was reversed by the α-adrenoceptor antagonists in a concentration-dependent manner, although such effects were also found in the parental HeLa cells. Levels of ABCG2/BCRP mRNA expression were not influenced by the antagonists. The transport activity of Hoechst33342 was decreased by doxazosin and prazosin, but unaffected by the other antagonists. In addition, doxazosin and prazosin increased the proportion of S phase cells in the cultures treated with mitoxantrone, whereas the other α-adrenoceptor antagonists increased the percentage of cells in G(2)/M phase. These findings suggested that doxazosin and prazosin reversed resistance mainly by inhibiting ABCG2/BCRP-mediated transport, but the others affected sensitivity to mitoxantrone via a different mechanism.  相似文献   

16.
The placental multidrug transporters, P‐glycoprotein (P‐gp, encoded by ABCB1) and breast cancer resistance protein (BCRP, ABCG2) protect the foetus from exposure to maternally derived glucocorticoids, toxins and xenobiotics. During pregnancy, maternal glucocorticoid levels can be elevated by stress or exogenous administration. We hypothesized that glucocorticoids modulate the expression of ABCB1/P‐gp and ABCG2/BCRP in the first trimester human placenta. Our objective was to examine whether dexamethasone (DEX) or cortisol modulate first trimester placental expression of multidrug transporters and determine whether cytotrophoblasts or the syncytiotrophoblast are/is responsible for mediating these effects. Three models were examined: (i) an ex‐vivo model of placental villous explants (7‐10 weeks), (ii) a model of isolated first trimester syncytiotrophoblast and cytotrophoblast cells and (iii) the BeWo immortalized trophoblast cell line model. These cells/tissues were treated with DEX or cortisol for 24 hour to 72 hour. In first trimester placental explants, DEX (48 hour) increased ABCB1 (P < .001) and ABCG2 (P < .05) mRNA levels, whereas cortisol (48 hour) only increased ABCB1 mRNA levels (P < .01). Dexamethasone (P < .05) and cortisol (P < .01) increased BCRP but did not affect P‐gp protein levels. Breast cancer resistance protein expression was primarily confined to syncytiotrophoblasts. BeWo cells, when syncytialized with forskolin, increased expression of BCRP protein, and this was further augmented by DEX (P < .05). Our data suggest that the protective barrier provided by BCRP increases as cytotrophoblasts fuse to form the syncytiotrophoblast. Increase in glucocorticoid levels during the first trimester may reduce embryo/foetal exposure to clinically relevant BCRP substrates, because of an increase in placental BCRP.  相似文献   

17.
Ascorbic acid (AA) is an essential cofactor for osteoblast differentiation both in vivo and in vitro. Before it can function, this vitamin must be transported into cells via a specific Na+-dependent AA transporter. In this study, we examine the regulation of this transport activity by glucocorticoids, a class of steroid hormones known to stimulate in vitro osteoblast differentiation. Dexamethasone stimulated Na+-dependent AA transport activity approximately twofold in primary rat calvarial osteoblasts. Effects of hormone on ascorbic acid transport were rapid (detected within 24 h) and were maximally stimulated by 25–50 nM dexamethasone. Similar effects of dexamethasone on transport activity were also observed in murine MC3T3-E1 cells. This preosteoblast cell line was used for a more detailed characterization of the glucocorticoid response. Transport activity was stimulated selectively by glucocorticoids (dexamethasone > corticosterone) relative to other steroid hormones (progesterone and 17-β-estradiol) and was blocked when cells were cultured in the presence of cycloheximide, a protein synthesis inhibitor. Kinetic analysis of AA transporter activity in control and dexamethasone-treated cells indicated a Km of approximately 17 μM for both groups. In contrast, dexamethasone increased Vmax by approximately 2.5-fold. Cells also contained an Na+-independent glucose transport activity that has been reported in other systems to transport vitamin C as oxidized dehydroascorbic acid. In marked contrast to Na+-dependent AA transport, this activity was inhibited by dexamethasone. Thus, glucocorticoids increase Na+-dependent AA transport in osteoblasts, possibly via up-regulation of transporter synthesis, and this response can be resolved from actions of glucocorticoids on glucose transport. J. Cell. Physiol. 176:85–91, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Overexpression of ATP-binding cassette (ABC) transporter is one of the most important factors taking responsibility for the progress of multidrug resistance (MDR) in multiple cancers. In this study, we investigated that veliparib, a PARP inhibitor which is in clinical development, could overcome ABCB1-mediated MDR in liver cancer cells. Veliparib could significantly enhance the cytotoxic effects of a series of conventional chemotherapeutic drugs in ABCB1-overexpression liver cancer cells. Mechanism study showed that veliparib could significantly enhance the accumulation of doxorubicin in ABCB1-overexpression liver cancer cells, without down-regulating the expression level of ABCB1. Finally, veliparib could significantly inhibit the ATPase activity of ABCB1 transporter. This study could provide information that combine veliparib with other chemotherapeutic drugs may benefit liver cancer patients.  相似文献   

19.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette (ABC) polytopic membrane transporter of considerable clinical importance that confers multidrug resistance on tumor cells by reducing drug accumulation by active efflux. MRP1 is also an efficient transporter of conjugated organic anions. Like other ABC proteins, including the drug resistance conferring 170-kDa P-glycoprotein (ABCB1), the 190-kDa MRP1 has a core structure consisting of two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD). However, unlike P-glycoprotein and most other ABC superfamily members, MRP1 contains a third MSD with five predicted transmembrane segments with an extracytosolic NH(2) terminus. Moreover, the two nucleotide-binding domains of MRP1 are considerably more divergent than those of P-glycoprotein. In the present study, the first structural details of MRP1 purified from drug-resistant lung cancer cells have been obtained by electron microscopy of negatively stained single particles and two-dimensional crystals formed after reconstitution of purified protein with lipids. The crystals display p2 symmetry with a single dimer of MRP1 in the unit cell. The overall dimensions of the MRP1 monomer are approximately 80 x 100 A. The MRP1 monomer shows some pseudo-2-fold symmetry in projection, and in some orientations of the detergent-solubilized particles, displays a stain filled depression (putative pore) appearing toward the center of the molecule, presumably to enable transport of substrates. These data represent the first structural information of this transporter to approximately 22-A resolution and provide direct structural evidence for a dimeric association of the transporter in a reconstituted lipid bilayer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号