首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Acute tryptophan depletion (ATD) is a method of lowering brain serotonin (5-HT). Administration of large neutral amino acids (LNAA) limits the transport of endogenous tryptophan (TRP) across the blood brain barrier by competition with other LNAAs and subsequently decreases serotonergic neurotransmission. A recent discussion on the specificity and efficacy of the ATD paradigm for inhibition of central nervous 5-HT has arisen. Moreover, side effects such as vomiting and nausea after intake of amino acids (AA) still limit its use. ATD Moja-De is a revised mixture of AAs which is less nauseating than conventional protocols. It has been used in preliminary clinical studies but its effects on central 5-HT mechanisms and other neurotransmitter systems have not been validated in an animal model. We tested ATD Moja-De (TRP-) in two strains of mice: C57BL/6J, and BALB/cJ, which are reported to have impaired 5-HT synthesis and a more anxious phenotype relative to other strains of mice. ATD Moja-De lowered brain TRP, significantly decreased 5-HT synthesis as indexed by 5-HTP levels after decarboxlyase inhibition, and lowered 5-HT and 5-HIAA in both strains of mice, however more so in C57BL/6J than in BALB/cJ. Dopamine and its metabolites as well as norepinephrine were not affected. A balanced (TRP+) control mixture did not raise 5-HT or 5-HIAA. The present findings suggest that ATD Moja-De effectively and specifically suppresses central serotonergic function. These results also demonstrate a strain-specific effect of ATD Moja-De on anxiety-like behavior.  相似文献   

2.
Brain serotonin synthesis and metabolism (turnover), as indicated by CSF concentrations of 5-hydroxyindoleacetic acid (5-HIAA), may depend on plasma concentrations of the essential amino acid L-tryptophan (TRP). We investigated the biochemical effects of acute plasma TRP depletion (ATD) in normal volunteers undergoing a 36-h CSF collection via lumbar drain. Six subjects who were in good health were put on a low-TRP diet (160 mg/day) 24 h before lumbar puncture; this diet was continued for the first 22 h of the CSF collection. At hour 22, subjects ingested a TRP-deficient 15-amino acid drink shown previously to deplete plasma TRP. Total plasma TRP, free plasma TRP, and CSF TRP subsequently decreased 86.3, 86.5, and 92.3%, respectively. CSF 5-HIAA decreased by 32.8%. Plasma total and free TRP concentrations were both decreased at approximately 2 h following ingestion of the TRP-free amino acid drink and were lowest approximately 6 h after ATD; CSF TRP and 5-HIAA were decreased at 2.5 h and approximately 4 h after ATD, respectively. CSF TRP was lowest 8.0 h later. CSF 5-HIAA continued to decrease 14 h after the TRP-deficient amino acid drink was given.  相似文献   

3.
Abstract: The relationship between plasma and brain tryptophan (TRP) concentrations and brain 5-hydroxytryptamine (5-HT) metabolism was studied in weanling rats fed diets containing either 0.4 g or 1.45 g TRP/ 100 g casein hydrolysate. Both groups gained weight comparably though food intakes were generally higher in the low-TRP group. Severe depletion of plasma total and free TRP and of brain TRP, 5-HT, and 5-hydrox-yindoleacetic acid (5-HIAA) occurred within 1 day of feeding the 0.4% TRP diet. Levels became stable after 7 days. The decreased brain TRP concentration of the rats on the 0.4% TRP diet did not cause a compensatory rise of the tryptophan hydroxylase (TRP OHase) activity in vitro. In the low-TRP group, neither plasma free TRP nor total TRP correlated significantly with brain TRP and although plasma TRP/large neutral amino acid (NAA) ratios (TRP/NAA) correlated significantly ( P < 0.05) with the time course of brain TRP, this statistical relationship depended almost completely on the variation of the TRP values alone. In the higher TRP group none of these correlations were significant. A plot of mean plasma free TRP versus brain TRP gave two distinct regression lines with similar slopes and corresponding to values before and after 7 days on the diet. The time course of brain 5-hydroxyindole concentrations did not parallel those of brain TRP and suggested that changes of TRP OHase activity also had an influence on 5-HT synthesis.  相似文献   

4.
1. By using a three-dimensional-coulometric HPLC system, biogenic monoamines and their metabolites were quantified simultaneously in the central nervous system of the sea hare, Aplysia kurodai.2. Precursor amino acids, tyrosine-4 (TYR-4) and tryptophan (TRP), and dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxytryptamine (5-HT) were detected in all the ganglia examined.3. Levels of these compounds in the cerebral, pedal and parieto-visceral ganglia were higher than those of the other ganglia examined.4. In some ganglia, epinephrine (E), 3-O-methyldopa (30MD), 3-methoxytyramine (3-MT), dihydroxyphenylethleneglycol (DOPEG), metanephrine (MN), vanillic acid (VA), octopamine (OCT), kynurenine (KYN) and 5-hydroxyindoleacetic acid (5-HIAA) were also detected.5. The main metabolic pathways of biogenic monoamines were shown to be TYR-4DADOPAC and TRP5-HT5-HIAA. Furthermore, following five pathways were also suggested to be present; TYR-4DAEMNVA, TYR-4TYRAOCT, TYR-43OMD, DA3-MT. EDOPEG and TRPKYN.  相似文献   

5.
One-day-old rats were exposed to a gas mixture of 15% CO2-21% O2-64% N2 for a 30-min period. Monoamine synthesis in whole brain was measured during, and at various intervals after, hypercapnia by estimating the accumulation of dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) after inhibition of aromatic L-amino-acid decarboxylase with NSD 1015. Endogenous concentrations of tyrosine, dopamine (DA), noradrenaline (NA), tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were measured at the same intervals. Exposure to CO2 induced an increased synthesis of catecholamines and 5-HT. Further, an increase in DA concentration was seen during hypercapnia, while NA and 5-HT were unchanged. After the CO2 exposure the increased in vivo synthesis rates of catecholamines and 5-HT were rapidly normalized, as was the endogenous DA concentration. A slight increase in 5-HT and 5-HIAA concentrations was seen immediately after CO2 exposure. These results indicate that in neonatal animals, hypercapnia induces changes in central monoamine neurons, primarily an increased synthesis. These alterations may be relevant to some physiological changes seen during CO2 exposure, such as the alteration in central respiratory performance.  相似文献   

6.
Destruction of nigrostriatal dopamine (DA) neurons with 6-hydroxydopamine (6-OHDA) early in development results in hyperinnervation of striatum by the serotonergic afferents deriving from the dorsal raphe nucleus. We have used in vivo microdialysis to investigate the degree to which serotonergic neurotransmission in striatum is altered by this increase in the density of serotonin (5-HT) terminals. The effects of several manipulations known to influence 5-HT function on extracellular 5-HT and 5-hydroxyindoleacetic acid in striatum were compared in adult rats treated neonatally with 6-OHDA and in intact adult rats. Basal levels of 5-HT in extracellular fluid (ECF) of striatum were similar in neonatally DA-depleted rats and in intact rats. Perfusion with the 5-HT reuptake blocker, fluoxetine (100 microM), increased 5-HT in striatal ECF of neonatally DA-depleted rats to levels that were threefold greater than those achieved in intact rats. Likewise, K(+)-depolarization of the 5-HT terminals (100 mM in perfusate) or systemic administration of the 5-HT releaser, (+/-)-fenfluramine (10 mg/kg i.p.), increased the concentration of 5-HT in striatal ECF of neonatally DA-depleted rats to levels approximately threefold greater than those observed in striatum of intact rats. These findings indicate that the 5-HT hyperinnervation of striatum that takes place in rats depleted of DA at infancy is associated with an increased capacity for neurotransmitter release in this system. Concomitant increased in high-affinity 5-HT uptake may prevent the occurrence of any measurable changes in the resting concentration of 5-HT in striatal ECF.  相似文献   

7.
Turnover of dopamine (DA), serotonin [5-hydroxytryptamine (5-HT)], and their metabolites has been measured in adult and aged rats. Turnover rates of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxy-3-indoleacetic acid (5-HIAA) have been assayed from the disappearance rates after blocking by pargyline inhibition of monoamine oxidase (MAO) and from the accumulation rates by probenecid inhibition of the probenecid-sensitive transport system. DA and 5-HT turnover rates have been measured as accumulation rates of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively, after central decarboxylase inhibition by 3-hydroxybenzylhydrazine (NSD-1015) and as accumulation rates of DA and 5-HT after pargyline inhibition of MAO. The DA turnover rate after NSD-1015 was 23.9% lower in aged rats than in adults, whereas after pargyline there was no significant difference between the two age groups. The HVA fractional rate constant and turnover after pargyline were lower in aged rats than in adults, and HVA turnover after probenecid was higher in aged rats than in adults. The DOPAC-HVA pathway seems to be reinforced at the expense of DOPAC conjugation. In aged and adult rats whose 5-HT steady-state levels were not statistically different, the 5-HT turnover rate after pargyline and NSD-1015 treatment was lower in aged rats than in adults. An increase of 5-HIAA levels after pargyline and probenecid treatment in aged rats could be due to the handling stress.  相似文献   

8.
3,4-Dihydroxyphenylethylamine (DA, dopamine) and 5-hydroxytryptamine (5-HT) turnover values were determined in freely moving male rats by measuring the rates of accumulation of the acidic metabolites of the above transmitters, i.e., 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in cisternal cerebrospinal fluid (CSF) samples after probenecid (200 mg/kg i.p.) administration. Determinations on samples before and after acid hydrolysis showed that the latter procedure was necessary for DA turnover determination. Thus whereas total (DOPAC + HVA) increased linearly with time after probenecid, free (DOPAC + HVA) did not. This was because the percentage of DOPAC + HVA in conjugated form increased with time. Determinations on a group of 28 rats during the dark (red light) period showed that cisternal amine metabolite concentrations before probenecid injection did not parallel turnover values. This was probably because individual differences in metabolite egress strongly affect the pre-probenecid values. The poor correlations between CSF tryptophan and 5-HT turnover suggested that differences of brain tryptophan concentration were not major determinants of differences of brain 5-HT metabolism within this group of normal rats. Considering that the rats were of similar weight and that the turnover values were all determined at approximately the same time of day, the three- to fourfold ranges of the turnover values are remarkable. The positive correlation between the DA and 5-HT turnovers of individual rats suggests the existence of common effects on DA and 5-HT turnover in normal rats.  相似文献   

9.
The effects of microinfusingl-glutamate, serotonin (5-HT), (±)-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH DPAT; a 5-HT1A agonist), and muscimol (a GABAA agonist) into the dorsal raphe nucleus on the extracellular levels of 5-HT, dopamine (DA) and their metabolites in the nucleus accumbens were studied in unanesthetized, freely moving, adult male Wistar rats, using the technique of microdialysis coupled with small-bore HPLC. Administration of 0.75 gl-glutamate produced a 25–50% increase (P<0.05) in the extracellular levels of both 5-HT and DA. On the other hand, infusion of 8-OH DPAT and, to a lesser extent, 5-HT produced a significant (P<0.05) decrease in the extracellular levels of both 5-HT and DA. Muscimol (0.25 or 0.50 g) had little effect on the extracellular concentrations of 5-HT or DA following its administration. In general, the extracellular levels of the major metabolites of 5-HT and DA in the nucleus accumbens were not altered by microinfusion of any of the agents. The data indicate that (a) the 5-HT neurons projecting to the nucleus accumbens from the dorsal raphe nucleus can be activated by excitatory amino acid receptors and inhibited by stimulation of 5-HT1A autoreceptors, and (b) the dorsal raphe nucleus 5-HT neuronal system may regulate the ventral tegmental area DA projection to the nucleus accumbens.Special issue dedicated to Dr. Morris H. Aprison  相似文献   

10.
Imbalances of neurotransmitter systems, particularly serotonin (5-HT) and dopamine (DA), are known to play an essential role in many neuropsychiatric disorders. The transient manipulation of such systems through the alteration of their amino acid precursors is a well-known research tool. Among these methods are alterations of tryptophan, the essential amino acid (AA) precursor of 5-HT, as well as manipulations of tyrosine and phenylalanine, the AA precursors of DA, which can be metabolized into norepinephrine and subsequently into epinephrine. These systems can be loaded by applying a large dose of these AAs or depleted by applying an amino acid mixture lacking the respective AAs serving as precursors. Functional neuroimaging has given insights into differential brain activation patterns and functions depending on the tasks performed, pharmacological treatments or specific disorders. Such research has shed light on the function of many brain areas as well as their interactions. The combination of AA challenge approaches with neuroimaging techniques has been subject of numerous studies. Overall, the studies conducted in this particular field of research have shown that AA challenge techniques are valid and effective research tools that allow the investigation of serotonergic and dopaminergic systems without causing serious side effects or long-term damage to the subjects. In this review, we will present an overview of the results obtained so far and discuss the implications of these findings as well as open questions that remain to be answered.  相似文献   

11.
Three serotonin (5-HT) neurotoxins,p-chlorophenylalanine (PCPA, 125 and 250 mg/kg, i.p.),p-chloroamphetamine (PCA, 10 mg/kg, i.p.) and 5,7-dihydroxytryptamine (5,7-DHT, 200 µg/rat, i.c.v.) were used to examine whether depletion of central 5-HT has an effect on central dopaminergic (DA) neuronal activities or on prolactin (PRL) secretion. Adult ovariectomized Sprague-Dawley rats primed with estrogen (polyestradiol phosphate, 0.1 mg/rat, s.c.) were treated with one of three neurotoxins and then decapitated in the morning after 3–7 days. Blood sample and brain tissues were collected. The acute effect of PCA (from 30 to 180 min) was also determined. The concentrations of 5-HT, DA and their metabolites, 5-hydroxyindoleacetic acid and 3,4-dihydroxyphenylacetic acid, in the median eminence, striatum and nucleus accumbens were determined by HPLC-electrochemical detection. All three toxins significantly depleted central 5-HT stores by 11–20%. Except for PCPA, neither PCA nor 5,7-DHT had any significant effect on basal DA neuronal activities or PRL secretion. PCA also exhibited an acute effect on the release and reuptake of 5-HT and DA. In summary, depletion of central 5-HT stores to a significant extent for 3–7 days did not seem to affect basal DA neuronal activity and PRL secretion.  相似文献   

12.
The effect of melatonin treatment on time-of-day variations in hypothalamic serotonin (5-HT) and dopamine (DA) turnover was studied in rats treated with Freund's complete adjuvant (FCA). Animals received s.c. injections of 30 æg of melatonin or vehicle 1 h before lights off for 11 days. On day 10 of treatment, FCA or its vehicle was s.c. injected, and 2 days later, the rats were killed at 6 different time intervals throughout a 24-hour cycle. Hypothalamic 5-HT, 5-hydroxyindole-3-acetic acid (5-HIAA), DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were measured by HPLC. 5-HT and DA turnover were estimated from the 5-HIAA/5-HT and DOPAC/DA ratios, respectively. In the anterior hypothalamus, time-of-day variation in 5-HT turnover was suppressed by FCA, an effect counteracted by melatonin treatment. Melatonin also prevented FCA effect on medial hypothalamic 5-HT turnover, while in the posterior hypothalamus, similar daily variations of 5-HT turnover were found in all experimental groups. As far as DA turnover, FCA or melatonin administration suppressed its daily variations in the anterior hypothalamus. Time-of-day variations in medial hypothalamic DA turnover were similar in all groups while only rats treated with melatonin and FCA or its vehicle exhibited significant daily changes of DA turnover in the posterior hypothalamus. Results indicate that melatonin treatment affects partly the 24-hour pattern of variation of hypothalamic 5-HT and DA turnover at an early phase of FCA arthritis in rats.  相似文献   

13.
1. Animals avoid diets lacking an essential amino acid, such as tryptophan (TRP), the precursor for serotonin (5-HT). 5-HT is important in the control of feeding. 2. To study the effects of TRP deprivation, slugs were fed TRP-devoid (DEV) or control (COR) diets. 3. Food intake was depressed in DEV, as expected, but after 2 weeks, the serontonergic metacerebral giant cell in DEV was still functional. 4. Neither brain 5-HT nor plasma TRP concentration was affected. 5. Compared with food-restricted animals that had reductions in most amino acids, the DEV group sustained a marked plasma amino acid imbalance.  相似文献   

14.
Abstract: Intracerebral microdialysis was applied to monitor the neocortical extracellular levels of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, the neurotransmitters dopamine (DA), noradrenaline (NA), and serotonin (5-HT), and the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole-3-acetic acid (5-HIAA) in rats with various forms of experimental hepatic encephalopathy (HE). The extracellular aromatic amino acid levels were clearly increased in acute, subacute, and chronic HE. No changes compared with controls in the neocortical DA release could be detected in the three experimental HE rat models investigated. The NA release showed a significant increase only in the subacute HE group. These data suggest that HE may not be associated with any major reduction of neocortical DA or NA release as previously suggested. In acute and subacute HE, decreased extracellular DOPAC but elevated 5-HIAA concentrations were seen. In chronic HE, elevations of both DOPAC and 5-HIAA were observed. Neocortical 5-HT release did not change in subacute and chronic HE, whereas it decreased in acute HE compared with control values. Significant increase in extracellular concentrations of 5-HIAA and of the 5-HIAA/5-HT ratio in the present study are in agreement with previously reported increases in 5-HT turnover in experimental HE. However, a substantially increased 5-HT turnover in experimental HE does not appear to be related to an increase in neuronal neocortical 5-HT release.  相似文献   

15.
Six brain areas of rats and guinea-pigs, killed by microwave irradiation, were used for the concomitant measurement of the levels and regional distribution of cholinergic, biogenic amine, and amino acid neurotransmitters and metabolites. Acetylcholine (ACh) and choline (Ch) were quantified by chemiluminescence; noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites by HPLC with electrochemical detection (HPLC-EC); and six putative amino acid neurotransmitters by HPLC-EC following derivatisation. The levels and regional distribution of these transmitters and their metabolites in the rat were similar to those reported in previous studies, except that biogenic amine transmitter levels were higher and metabolite concentrations were lower. The guinea-pig showed a similar regional distribution, but the absolute levels of ACh were lower in striatum and higher in hippocampus, midbrain-hypothalamus, and medulla-pons. In all areas, the levels of Ch were higher and those of NA, 5-HT, and taurine were lower than in the rat. The most marked differences between the rat and guinea-pig were in the relative proportion of DA metabolites and 5-HT turnover, as estimated by metabolite/transmitter ratios. This study can be used as a basis for a comprehensive understanding of the central effects of drugs on the major neurotransmitter systems.  相似文献   

16.
The concentrations of dopamine (DA), norepinephrine (NE), serotonin (5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the right and left cortex, striatum, and nucleus accumbens of adult Purdue-Wistar rats. There was more DA in the right cortex and accumbens and a greater concentration of NE in the left striatum. There is more 5-HT in the left striatum and right accumbens, more 5-HIAA in the left cortex, as well as a greater 5-HT turnover in the left accumbens. These results are considered in the light of previous findings concerning the relationship of neurochemical asymmetries and behavioral lateralization.  相似文献   

17.
This study investigated: (a) the effects of acute 17alpha-methyltestosterone (MT) or 17beta-estradiol (E(2)) administration on norepinephrine (NE), dopamine (DA), serotonin (5-HT), 3,4, dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) contents in the hypothalamus, telencephalon and pituitary of previtellogenic female rainbow trout Oncorhynchus mykiss, and (b) the effects of chronic MT administration on the levels of these neurotransmitters in these brain regions in immature male rainbow trout. The acute administration of MT induced a significant decrease in pituitary levels of DOPAC as well as in the DOPAC/DA ratio. On the other hand, the acute administration of E(2) induced an increase in pituitary 5-HT levels as well as a decrease in the 5-HIAA/5-HT ratio. In a second experiment, 20 mg MT per kilogram body weight was implanted for 10, 20 or 40 days into sexually immature male rainbow trout. Implanted rainbow trout showed increased testosterone and decreased E(2) levels. In the pituitary, MT induced long-term decreases in NE, DA, DOPAC and 5-HT levels, as well as in the DOPAC/DA ratio. Hypothalamic and telencephalic DA, NE and 5-HT levels were not affected by MT implantation. However, 5-HIAA levels and the 5-HIAA/5-HT ratio were reduced by MT implantation in both brain regions. These results show that chronic treatment with MT exerts both long-term and region-specific effects on NE, DA, and 5-HT contents and metabolism, and thus that this androgen could inhibit pituitary catecholamine and 5-HT synthesis. A possible role for testosterone in the control of pituitary dopaminergic activity and gonadotropin II release is also discussed.  相似文献   

18.
We have evaluated the effect of serotonin (5-HT) and of its biosynthetic precursors 5-Hydroxytryptophan (5-HTP) and tryptophan (TRP) on the release of immunoreactive glucagon (IRG) and insulin (IRI) from isolated islets and pieces of pancrease of the rat. In isolated islets, 5-HT inhibited the IRI response to a high glucose concentration (3.0 mg/ml), without affecting the IRG response to either a low (0.5 mg/ml) or a high glucose concentration; TRP stimulated the IRG and IRI response to the low glucose concentration, while 5-HTP was ineffective. When pieces of pancreas were used, 5-HT and 5-HTP inhibited IRG response to both glucose concentrations, while IRI release was inhibited only by 5-HT. The anti-5-HT agent metergoline enhanced the release of IRG and IRI by pieces of pancreas at both glucose concentrations. The results indicate that exogenous and endogenous 5-HT inhibit basal as well as glucose-mediated IRG and IRI release; that isolated islets are less sensitive than pieces of pancreas to the inhibitory effect of 5-HT and that TRP acts as an amino acid and not as a precursor of 5-HT.  相似文献   

19.
In humans and other primates low cerebrospinal fluid (CSF) levels of the major serotonin (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been correlated to high aggressiveness. This finding forms the basis of the 5-HT deficiency hypothesis of aggression. Surprisingly, this correlation has not been confirmed in rodents so far, while manipulation studies aimed to investigate the link between 5-HT and aggressive behaviour are mostly carried out in rodents. In this study the relation between aggression and CSF monoamine and metabolite concentrations was investigated in male Wildtype Groningen rats. In sharp contrast to the hypothesis and our expectation, a clear positive correlation was found between the individual level of trait-like aggressiveness and CSF concentrations of 5-HT, 5-HIAA, norepinephrine (NE), dopamine (DA), and 3,4-dihydroxyphenylacetic acid (DOPAC). Shortly after the acute display of aggressive behaviour (as a state-like phenomenon), decreased 5-HT levels and an increase in 5-HIAA/5-HT ratio and NE concentrations were found. Surprisingly, pharmacological challenges known to influence 5-HT transmission and aggressive behaviour did not affect CSF 5-HT and 5-HIAA concentrations, only the NE level was increased. Lesioning 5-HT terminals by 5,7-dihydroxytryptamine (5,7-DHT) administration caused a decrease in CSF 5-HT and 5-HIAA, but without affecting aggressive behaviour. The observed positive correlation between CSF 5-HIAA and trait aggressiveness makes it questionable whether a direct extrapolation of neurobiological mechanisms of aggression between species is justified. Interpretation of CSF metabolite levels in terms of activity of neural substrates requires a far more detailed knowledge of the dynamics and kinetics of a neurotransmitter after its release.  相似文献   

20.
Summary. L-Tryptophan (TRP) is the precursor amino acid for the synthesis of serotonin (5-HT). 5-HT is effective both on the food intake and gastrointestinal system contractility. The aim of this study was to search the effects of systemic TRP treatment on 5-HT levels of ileum and searching the effect of ileal contractility and oxidant status. Swiss-albino mice were divided into two groups: 1. Control, 2. TRP-treated (100 mg/kg/24 h, i.p., for 7 days). Body weights were recorded at the beginning and at the end of experiments. Acetylcholine-induced contractile responses in the isolated ileum were recorded on polygraph. Ileal tissue malondialdehyde and glutathione levels determined by spectrophotometric and ileal tissue 5-HT levels were measured by immunohistochemical methods. TRP treatment decreased body weight and increased ileal contractile response. In the TRP-treated group, ileum malondialdehyde levels increased and glutathione levels decreased. Immunohistochemical detection showed that ileal 5-HT levels were increased by TRP treatment. There is a relationship between increased oxidative stress and increased contractility in the ileal tissue of the TRP-treated animals. These effects may be related to increased ileal 5-HT synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号