首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Sodium molybdate affected the stability of vervet monkey (Cercopithecus aethiops pygerythrus) uterine estrogen (ER) and progesterone (PR) receptors. Yields of receptors were invariably higher (20 - 40 %) when cytosols were prepared in the presence of 10mM sodium molybdate. No changes were observed in the binding affinities for the natural ligands as reflected in dissociation at 0°C and 20°C was not affected in the presence or absence of molybdate. Stability studies at 37°C indicated both receptors to be more resistant to inactivation in the presence of molybdate. Dissociation of ER and PR was biphasic, indicating the existence of slow (SDC), as well as fast dissociating (FDC) complexes. Rate constants of dissociation were significantly affected by the presence of sodium molybdate Although no significant changes in the sedimentation coefficeints were observed, marked differences in the actual gradient profiles could be illustrated in the presence or absence of sodium molybdate. Observed effects could only be partially reversed in sedimentation dialysis experiments. Proteolytic inhibitors phenlymethylsulfonylfluoride (PMSF) and leupeptin had no inhibitive effect on the molybdate stabilization of ER and PR.  相似文献   

2.
This study investigated the influence of the degree of concentration of breast tumor cytosols on the apparent estrogen receptor content as measured by the Dextran-charcoal assay. It was found that the dilution of cytosols to 1-2 mg protein/ml frequently but not always causes highly underestimated receptor concentrations. This could not be explained by the protein loss through adsorption to the charcoal. The effect was also studied in the presence of gelatin, sodium molybdate or with limited trypsinization of the incubation mixture. Addition of 1 mg/ml gelatin in the Dextran-charcoal suspension was very useful in most cases in preventing dilution induced losses in receptor sites. Both trypsinization and addition of sodium molybdate produced increases in receptor concentrations that were not as susceptible to inactivation through dilution of the cytosol. These data suggest that the observed high variability in the dilution induced receptor losses can be explained by receptor heterogeneity: some receptor form(s) are either readily absorbed to or "stripped" by the charcoal particles. As a conclusion we recommend that in order to optimize the estrogen receptor assay as regards both binding sites and affinities the cytosol concentrations should be maintained as high as possible and a protein expander be included in the Dextran-charcoal suspension. Though sodium molybdate frequently gives considerable increases in estrogen binding sites it occasionally has an opposite effect. For this reason we hesitate to recommend its use in routine assays of estrogen receptors.  相似文献   

3.
When sodium molybdate is added at a final concentration of 20 mM, additional 85 and 4S progesterone (3 H-R5020) receptor can be detected in the cytosols from a number of human breast cancers. Additional estrogen receptor also could be measured in some cytosols, and a quantitative temperaturedependent conversion of 8S to 4S binding molecules achieved. Sodium molybdate also prevented the loss of binding activity that occurred when cytosols were incubated at 30° in the absence of added estradiol. In addition to increasing the amount of progesterone receptor, and to a lesser extent estrogen receptor that may be detected, elucidation of the mechanism by which this salt stabilized receptors should contribute to further understanding of how cytosol steroid receptor content and function is regulated.  相似文献   

4.
In structure and general mode of action, the Ah receptor is very similar to the receptors for steroid hormones. Molybdate previously has been shown to be highly effective at preserving ligand-binding function in steroid receptors during their exposure to elevated temperature or high ionic strength and at stabilizing steroid receptors as high molecular weight oligomeric complexes. Since such stabilization by molybdate can be very useful during characterization and purification of receptors, we tested the effects of molybdate on the Ah receptor to determine if the Ah receptor, like the receptors for steroid hormones, might be stabilized. In hepatic cytosols from C57BL/6N mice and Sprague-Dawley rats, molybdate concentrations up to 30 mM in homogenizing and analysis buffers did not alter the concentration of specific Ah receptor sites detected by binding of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin. However, inclusion of 20 mM molybdate in the homogenizing buffer did significantly protect unliganded Ah receptor from thermal inactivation at 20 degrees C and from KCl-induced loss of ligand-binding ability. In accord with previous reports, 20 mM molybdate in homogenizing and analysis buffers greatly increased the concentration of detectable glucocorticoid receptor in rat hepatic cytosol and estrogen receptor in rat uterine cytosol. Exposure to 0.4 M KC1 caused the glucocorticoid receptor from rat liver to shift sedimentation from approximately equal to 8 S to approximately equal to 4 S and caused a severe loss of specific glucocorticoid binding. Presence of 20 mM molybdate stabilized the glucocorticoid receptor as a single discrete peak sedimenting at approximately equal to 8 S. In contrast, the Ah receptor from rat liver exposed to 0.4 M KC1 in the presence of molybdate sedimented as biphasic peaks; one peak (approximately equal to 9.5 S) corresponded to the form of Ah receptor observed at low ionic strength, while the other peak (approximately equal to 5.5 S) corresponded to the form of Ah receptor seen in cytosol treated with 0.4 M KC1 in the absence of molybdate. Addition of heparin to hepatic cytosols from mice or rats shifted sedimentation of Ah receptor from approximately equal to 9.5 S to approximately equal to 5.5 S. Molybdate, again, provided stabilization in the approximately equal to 9.5 S form, but only for about one-half the total Ah receptor content in both rat and mouse hepatic cytosols. In sum, molybdate is far less effective at stabilizing rodent Ah receptors than it is at stabilizing steroid receptors in the same species.  相似文献   

5.
Androgen, estrogen and progesterone receptors have been characterized with anion exchange Fast Protein Liquid Chromatography (FPLC) on a Mono Q column (Pharmacia). In the presence of sodium molybdate androgen receptors in cytosols from rat prostate, rat epididymis and calf uterus eluted as a single sharp peak at 0.32 M NaCl with recoveries of approx 90%. The molybdate-stabilized form of the androgen receptor from rat prostate was purified about 75-fold. The receptor containing FPLC-peak fractions sedimented in high salt (0.4 M KCl) linear sucrose gradients at 3.6 S (prostate) and at 4.6 S (epididymis and calf uterus) respectively. Multiple forms of the androgen receptor were present in cytosols from rat prostate prepared in the absence of sodium molybdate, probably due to proteolytic breakdown of the native form. Calf uterine estradiol and progesterone receptors prepared in the presence of sodium molybdate (20 mM) eluted from the Mono Q column at 0.32 M NaCl. The molybdate-stabilized forms of the oestradiol and progesterone receptors were purified approx 70-fold and 30-fold respectively. In the absence of molybdate the estradiol receptor dissociated into two major forms eluting at 0.23 M NaCl and 0.37 M NaCl. After heat induced transformation (30 min at 25 degrees C) of the estradiol receptor one major peak was eluted at 0.42 M NaCl, indicating a change in the surface charge of the estradiol receptor as a result of the 4 S to 5 S transformation. It is concluded that the FPLC anion exchange system is a powerful, fast tool for characterization and partial purification of steroid receptors. In addition this technique could be applied as a rapid procedure for the quantitative estimation of steroid receptors in small biological samples.  相似文献   

6.
B S Leung 《Hormone research》1984,19(4):243-252
The cytoplasmic estrogen receptor (ERc) and progesterone receptor (PRc) in mammary tumors have been recognized as useful biochemical markers for predicting the objective response of patients with advanced breast cancers to endocrine therapy. These proteins are also useful in the prognosis of gynecologic carcinoma. This report presents data showing the effect of sodium molybdate in the stabilization of estrogen and progesterone receptors. In rabbit uterine tissue, molybdate (20 mM) increased the binding of progesterone and estrogen to the receptors in several ways: (a) the apparent loss of detectable receptors during lengthy sucrose gradient analysis and at elevated temperature (30 degrees C) was reduced; (b) the instability of receptors due to storage at -70 degrees C was lessened, and (c) the conversion of the 7S PRc to the 3.5S form was minimized. Similarly, molybdate caused a qualitative and/or a statistically significant quantitative difference in receptor values for some human gynecologic tumors presented herein; the molybdate-associated changes vary with tumor specimen. Of the 8 tumors for which receptor values in the presence of molybdate (M+) and its absence (M-) can be compared, detectable ERc of 6 and PRc of 7 tumors increased with molybdate, and ERc of 2 and PRc of 1 tumor showed no change. In addition to the increase in receptor values, a concomitant shift of the 3-4S molecules to the 7-8S moieties was noted for some tumors (1 of 6 for ERc and 3 of 7 for PRc). In 2 receptor-poor tumor samples, ERc was only detected in M+ cytosols. These results show that molybdate is effective in reducing receptor degradation and stabilizes the 7-8S molecules from converting to 4S moieties. The addition of molybdate may be helpful for better quantitation of steroid receptors in clinical specimens.  相似文献   

7.
In order to study the receptor system for adrenocortical steroids, hippocampal cytosolic preparations--containing both type I and type II receptors--were subjected to anion exchange fast protein liquid chromatography (FPLC). With running buffer containing Tris, EDTA, and glycerol three peaks (1-3) were eluted from the column at 220, 400 and 560 mM NaCl respectively regardless of whether [3H]corticosterone or [3H]RU 28362 had been used as radiotracer. None of the peaks was caused by serum transcortin as revealed by control studies. However, the sequestering influence of transcortin on receptor binding of corticosterone could be demonstrated by the FPLC technique with mixtures containing serum and hippocampus cytosol. Competition experiments with cytosolic samples revealed that type I receptor was present only in peaks 2 and 3 while type II was found in all three peaks in variable amounts, depending on the presence of molybdate. When molybdate was added to the running buffer only two peaks (2 and 3) were eluted, both containing type I and type II receptors. Peak 1 was attributed to the activated type II receptor while peak 2 represented nonactivated receptors. The origin of peak 3 remains uncertain. The data indicate that molybdate must be present in the cytosolic preparation and in the running buffer to keep type II receptor in its nonactivated form. Type I receptor was probably not transformed into the activated form in the absence of molybdate but lost binding capacity and/or affinity for corticosterone.  相似文献   

8.
Transformation of the rabbit uterine progesterone receptor following binding to several synthetic steroids was studied. Cytosolic receptors were prepared with and without 10 mM sodium molybdate. Following incubation with the 3H-ligands the cytosols were chromatographed on phosphocellulose minicolumns. The rank order of the compounds to promote transformation in the absence of molybdate was: medroxyprogesterone acetate (MPA) greater than 17 alpha, 21-dimethyl-19-nor-4,9-pregnadiene-3,20-dione (R5020) greater than progesterone much greater than deoxycorticosterone (DOC) much greater than 20 alpha-hydroxyprogesterone (20 alpha OH-P). The rank order was the same in the presence of molybdate, but the amount of transformation was reduced by 35-90%. Molybdate inhibited transformation to a greater extent when the receptor was bound to progesterone, DOC and 20 alpha OH-P than when bound to MPA or R5020. The antiprogestin, 11 beta-[4-(dimethylamino)phenyl]-17 beta-hydroxy-17-(1-propynyl)-4,9-estradiene-3-one (RU38486, synthesized by The Upjohn Company and designated U-66990), promoted approximately twice as much receptor transformation as did progesterone. MPA, R5020 and U-66990 all dissociated from the progesterone receptor much more slowly than did progesterone. In all cases dissociation was faster in the presence of molybdate than in its absence. These data demonstrate that potent progestins (MPA and R5020) promote a greater amount of receptor transformation than does progesterone, and that steroids with little progestin bioactivity (DOC and 20 alpha OH-P) promote very little transformation. In addition, the antiprogestin activity of U-66990 cannot be attributed to a lack of progesterone receptor transformation nor to a rapid rate of dissociation from the receptor.  相似文献   

9.
Hepatic cytosols from male and female vervet monkeys (Cercopithecus pygerythrus) were found to contain the same levels of high affinity estrogen-binding proteins. Multipoint saturation analyses revealed that male liver cytosols contain two distinctly different binding components: a high affinity (HAEB) and a low affinity estrogen binder (LAEB). Female livers appeared to contain only the HAEB. Sucrose density gradient (SDG) analyses, however, clearly established the presence of a 3.8 S as well as an 8.1 S estrogen-binding component in the hepatic cytosols of both sexes. The 3.8 S binding component appeared to be more prominent in male SDG profiles. Cytosols, prepared in the presence of sodium molybdate (cyt +) exhibited significantly lower (50%) levels of specific estrogen-binding than cytosols prepared in the absence of the oxyanion (cyt-). SDG analyses, however, indicated that in cyt+ the 8.1 S binding component was stabilized at the cost of the 3.8 S binder. This phenomenon was observed in both sexes. Large excess levels of cortisol did not have any effect on specific estrogen binding by hepatic cytosols. The hepatic estrogen-binding proteins displayed a lower relative binding affinity for diethylstilbestrol than for its native ligand and higher affinities for estriol and estrone than expected.  相似文献   

10.
A mouse was immunised with an antigen(s) purified by oestradiol-Sepharose affinity chromatography of pooled oestrogen-receptor positive cytosols from human breast cancer tissue. One antibody secreting clone was identified which precipitated labelled antigen and which also stained MCF-7 cells. Culture supernatant and ascites fluid were used for immunofluorescence, SDS-PAGE-Western blotting, photoaffinity labelling and binding studies. The antibody staining of MCF-7 cells was inhibited by preincubation in oestrogen-receptor positive cytosol but was unaffected by oestrogen-receptor negative cytosol. MCF-7 cells stained whether cultured in the presence or absence of oestradiol. The oestrogen-receptor negative cell lines MDA-MB-231 and MDA-MB-330 did not stain. Binding studies with 16-alpha-iodooestradiol using breast cancer tissue cytosols followed by immunoprecipitation showed activity only with oestrogen-receptor positive cytosols with optimal binding activity at 4 degrees C, unaffected by molybdate, but reduced at 25 degrees C or in the presence of 0.4 M KCl. Binding studies with MCF-7, MDA-MB-231 and MDA-MB-330 cytosols and nuclear fractions only showed activity with the MCF-7 cytosol and MCF-7 particulate fractions. The antibody recognised a 48 K species in both MCF-7 cytosol and nuclear fractions but not in the cytosol and nuclear extracts of oestrogen-receptor negative cell lines. Photoaffinity labelling using 16 alpha-iodooestradiol suggests the 48 K antigen does not bind oestradiol directly. The relationship of this antigen to the classical oestrogen-receptor and receptor complex awaits further clarification.  相似文献   

11.
A high resolution and quantitative method for isoelectric focusing has been developed to separate the isoforms of estrogen and progesterone receptors in human mammary tumor cytosols stabilized by sodium molybdate. Agarose gels (0.5%) were used. Six samples can be analyzed on one gel in about 2 h, and 35-microliters samples are sufficient to determine the estrogen receptor isoform pattern. The constant yields and the reproducibility of data allow a quantitative analysis of these receptors. Four estrogen receptor isoforms have been observed (pI 4.7, 5.5, 6, and 6.5), isoforms with pI 4.7 and 6.5 being present in all tumors. After incubation at 28 degrees C in high ionic strength, the comparison of isoelectric focusing and high-performance size exclusion chromatography patterns of estrogen receptor confirms the oligomeric structure of the pI 4.7 isoform and suggests a monomeric structure for the pI 6.5 isoform. Under the same conditions of analysis, only one progesterone receptor isoform has been detected with pI 4.7.  相似文献   

12.
R A Johnson 《FEBS letters》1982,140(1):80-84
The separate and combined effects of molybdate and dithiothreitol on the stability of human uterine 9 S estrogen receptor were studied. Maximal, short-term, protection of the 9 S estrogen receptor was achieved by the joint inclusion of both stabilizing agents in cytosol buffers. This molybdate—dithiothreitol-mediated stability was dependent on reducing agent concentration inferring sulphydryl involvement in 9 S receptor protection by molybdate. The study also showed that molybdate—dithiothreitol could not prevent the gradual decay of the 9 S estrogen receptor to the 4 S form in cytosols stored at 4°C over prolonged periods.  相似文献   

13.
Non-denaturing polyacrylamide gel electrophoresis and non-denaturing agarose gel electrophoresis have been used to resolve [3H]R5020-binding components from chick oviduct cytosol. From both gel systems 2 peaks of bound radioactivity are resolved which display these properties of authentic progesterone receptor: binding of R5020: steroid specificity, saturability, and restriction to target tissues. The two peaks are approximately equal in magnitude, and there is no evidence for interconversion of the 2 peaks. The presence or absence of 10-20 mM sodium molybdate during cytosol preparation had no effect on the magnitude or mobility of either peak. Neither peak contains salt-dissociable components which affect its electrophoretic properties, suggesting a possible alteration of native receptor forms during electrophoresis.  相似文献   

14.
We determined the effect of ligand binding on the sedimentation behavior of cytosolic progestin receptors in human uterine leiomyomata, normal endometria and myometria. When cytosols were prelabeled with the tritiated progestin R5020, 4.4S and 7–8S receptors were demonstrated in all three uterine tissues; with postlabeling of fractionated gradients, 4.4S and 9–10S receptors were present. Sodium molybdate (20 mM) blocked the ligand-induced conversion of 9–10S to 7–8S receptors. The relative amount of 7–8S receptor increased with increasing amounts of ligand and time of incubation with ligand (up to 5 hrs); the amount of 9–10S receptor decreased with time.These data indicate that ligand binding to human uterine progestin receptors induces a change from a 9–10S to 7–8S form of receptor. Since molybdate blocks transformation of receptors and the ligand effect on receptor sedimentation, ligand binding to 9–10S receptor and the consequent conversion to 7–8S receptor may be a step preceding transformation of progestin receptors.  相似文献   

15.
In order to determine if different physicochemical properties exist among antihormone-receptor complexes, we have compared the interaction of the antiprogestin RU486 with progesterone receptor (PR) versus the triphenylethylene antiestrogen H1285 (4-(N,N-diethyl-aminoethoxy)-4'-methoxy-alpha-(p-hydroxyphenyl-alp ha'- ethylstilbene] with estrogen receptor (ER) from rabbit uterine tissue. Contrary to other reports, we observed no difference in the sedimentation properties of transformed PR (4S) when bound by the antagonist RU486 versus the progesterone agonist R5020 in either cytosol or DEAE partially-purified receptor preparations analyzed on sucrose gradients containing 0.3 M KCl. In addition, we found no difference in the sedimentation properties of these receptor preparations in the presence of 10 mM sodium molybdate: the nontransformed RU486-PR and nontransformed R5020-PR both sedimented as a 6S species. These same results were obtained when the receptor preparation and gradient analysis were performed in the absence of monothioglycerol. Likewise, there was no change in the sedimentation properties of the transformed PR when the receptor, partially purified in the absence of molybdate, was analyzed on sucrose gradients containing 10 mM sodium molybdate to prevent receptor alteration during centrifugation. From DNA-cellulose assays performed with partially purified PR in the absence of molybdate we determined that the 4S form of R5020-PR and RU486-PR is transformed receptor; whereas in the presence of molybdate, the 6S species is nontransformed. In contrast, we found a different pattern of sedimentation when comparing transformed antiestrogen-receptor complexes with transformed estrogen-receptor complexes. In this case, transformed H1285-ER sedimented as 6S and estradiol-ER sedimented as 4S. We conclude from these experiments that these two antihormones, RU486 and H1285, may have different mechanisms of action in their antagonism of steroid hormone action. Antiestrogen stabilizes the salt-transformed ER as a dimer while antiprogestin appears to permit dissociation of the oligomeric form of the receptor to the monomeric form.  相似文献   

16.
The nature of the 1,25-dihydroxyvitamin D3 receptor from chick intestine was examined in regard to its response to sodium molybdate. Sodium molybdate (10 mM) stabilized the receptor from crude nuclear extract but not that from the supernatant or cytoplasmic fraction, suggesting the molybdate may act by binding to the DNA binding region of the receptor. At a concentration of 50 mM, sodium molybdate prevented aggregation of the nuclear receptor. This concentration of sodium molybdate also inhibited the receptor from binding to DNA cellulose while the same ionic strength KCl (90 mM) did not. These properties also suggest that molybdate interacts with the DNA binding region. Purification of the receptor using DNA cellulose chromatography has also been improved by using a sodium molybdate gradient (0-0.2 M) instead of the KCl gradient used previously.  相似文献   

17.
The DNA-binding and physical properties of the rat liver cytosol glucocorticoid receptor were determined before and after Sephacryl S-300 filtration in the presence or absence of molybdate. Cytosol was prepared and labeled with [3H]triamcinolone acetonide in buffer containing molybdate. Prior to gel filtration, only 5 +/- 3% (mean +/- S.E.) of labeled receptors bound to DNA-cellulose. After gel filtration in the presence and absence of molybdate, the per cent of labeled receptors binding to DNA-cellulose was 57 +/- 10% and 83 +/- 1%, respectively. Nonreceptor fractions from the Sephacryl S-300 column contained a heat-stable factor which blocked receptor activation but did not block the binding of activated receptors to DNA-cellulose. The activation inhibitor eluted from the column in the region of the albumin standard, but after heating its size was considerably reduced (Mr less than 3500). Receptors activated by Sephacryl S-300 filtration underwent the same size changes in the presence or absence of molybdate. Prior to gel filtration, the S20,w of labeled receptors in the presence of molybdate was 9.2 +/- 0.2 S. After filtration in the presence and absence of molybdate, the S20,w of labeled receptors was 4.2 +/- 0.2 and 4.4 +/- 0.1 S, respectively. The Stokes radius (Rs) of labeled receptors after gel filtration in either the presence or absence of molybdate was 65 +/- 1 A. From the Rs and S20,w values, the molecular weight (Mr) of activated receptors was calculated to be 115,000 to 121,000, which was in close agreement with the Mr of affinity-labeled receptors determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

18.
The highest molecular weight form of the calf uterine androgen receptor separates as an 11S form in glycerol gradients. This "cytosolic" receptor, prepared in the presence of molybdate, polyethyleneimide and low ionic strength, dissociates into 9S and 7.2S forms with increasing KCl concentration. A 4.5S androgen binding component appears as the predominant form of the receptor in the absence of polyethyleneimide and this unit quantitatively converts to a stable 3.5S form in the absence of molybdate. Renaturation of partially purified protein, separated by SDS-PAGE electrophoresis, demonstrates the presence of an androgen binding component in the 110 kDa region of the gel. This renatured protein separates as a 4.5S component in glycerol gradients and has a Stokes radius of 6 nm. Photoaffinity labelling of partially purified receptor preparations, followed by SDS-PAGE electrophoresis, reveals the presence of an androgen binding component having a molecular weight of 115 kDa. The binding characteristics and specificity of the receptor binding to R1881 have been studied and a DHT-affinity chromatography resin used to purify the receptor.  相似文献   

19.
Glucocorticoid receptor in rat liver cytosol is inactivated (rendered unable to bind steroid) by incubation with calf intestine alkaline phosphatase or highly purified rabbit muscle phosphoprotein phosphatase (phosphorylase phosphate, protein phosphatase C). The receptor is inactivated by both enzymes even when 10 mM sodium molybdate is present. Receptors that are inactivated by phosphatases in the presence of molybdate can be reactivated to the steroid-binding state by addition of dithiothreitol, but receptors that are inactivated in the absence of molybdate cannot be reactivated. These observations suggest that dephosphorylation leads to oxidation of a moiety (-SH) on the receptor that is required for steroid binding. Molybdate apparently preserves the receptor in a form such that reduction returns the receptor to the steroid binding state. We would propose that molybdate may act by complexing with sulfur groups on the receptor.  相似文献   

20.
Calf uterine cytosol contains an androgen receptor with a relative molecular mass of approx. 90,000. In this study we have analysed the structure and aggregation properties of the androgen receptor, using sucrose density gradient centrifugation on a vertical rotor (VTi65). In the presence of 10 mM NaCl the androgen receptor in whole cytosol sedimented at 8 S irrespective of the presence of molybdate. In 400 mM NaCl the receptor dissociated to a 4.3 S entity. In whole cytosol molybdate promoted a partial shift of the 4.3 S receptor into the aggregated 8 S state. The time of exposure of the receptor to molybdate and NaCl determined the proportion of receptor sedimentating at 8 S and 4.3 S. The DNA-binding form of the uterine androgen receptor when analysed under the conditions of the DNA-cellulose binding assay, sedimented at 6.5 S. Increasing concentrations of molybdate shifted its sedimentation coefficient gradually from 6.5 S to 4.5 S and in parallel reduced the DNA-binding capacity. Molybdate added to a partially purified, DNA-binding form of the androgen receptor did not promote receptor aggregation to faster sedimentating forms. This suggests that such preparations are devoid of an androgen receptor-aggregation factor. Indirect evidence for such a factor was obtained from reconstitution experiments with whole cytosol. Our results indicate that the DNA-binding form of the androgen receptor interacts with a cytosol factor to form the 8 S receptor complex. Molybdate has diverse effects: in the presence of the cytosol factor it stabilizes the 8S complex; in its absence molybdate prevents in a concentration-dependent way DNA-binding as well as reaggregation of the monomeric 4.3 S form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号