首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Membrane-associated phosphatidate phosphatase (EC 3.1.3.4) was purified 9833-fold from the yeast Saccharomyces cerevisiae. The purification procedure included sodium cholate solubilization of total membranes followed by chromatography with DE53, Affi-Gel Blue, hydroxylapatite, Mono Q, and Superose 12. The procedure resulted in the isolation of a protein with a subunit molecular weight of 91,000 that was apparently homogeneous as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidate phosphatase activity was associated with the purified 91,000 subunit. The molecular weight of the native enzyme was estimated to be 93,000 by gel filtration chromatography with Superose 12. Maximum phosphatidate phosphatase activity was dependent on magnesium ions and Triton X-100 at pH 7. The Km value for phosphatidate was 50 microM, and the Vmax was 30 mumol/min/mg. The turnover number (molecular activity) for the enzyme was 2.7 x 10(3) min-1 at pH 7 and 30 degrees C. The activation energy for the reaction was 11.9 kcal/mol, and the enzyme was labile above 30 degrees C. Phosphatidate phosphatase activity was sensitive to thioreactive agents. Activity was inhibited by the phospholipid intermediate CDP-diacylglycerol and the neutral lipids diacylglycerol and triacylglycerol.  相似文献   

2.
A partially purified lipoxygenase extract was obtained from the yeast Saccharomyces cerevisiae by precipitation with solid (NH4)SO4 at 20% to 80% saturation. The enzyme had two pH optima, at pH 8.0 and 10.0, with respective apparent K m values of 13 and 9.5 m. At both pH optima, the lipoxygenase demonstrated highest substrate specificity towards linoleic acid, followed by linolenic acid; although the enzyme had less specificity towards mono-linolein than di-linolein at pH 8.0, the reverse was true at pH 10.0.  相似文献   

3.
Phosphatidate phosphatase (EC 3.1.3.4Y was purified 15- to 20-fold from the soluble fraction of rat liver. The purification procedure involved calcium phosphate gel adsorption and elution, ammonium sulfact precipitation, and molecular-sieve chromatography. For the enzyme assay, and aqueous dispersion of phosphatidate, rather than "membrane-bound" phosphatidate, was used as substrate. The partially purified enzyme depends almost entirely on the presence of Mg2+ for its activity. Morover, the activity of the enzyme is stimulated by phosphatidylcholine. The enzyme exhibits a high substrate specificity for phosphatidate. The apparent Km for phosphatidate is approximately 0.05 mM. The optimum pH is between 7.4 and 7.6. The enzyme is inhibited by fluoride and by p-chloromercuribenzoate. The subcellular distribution of phosphatidate phosphatase in rat liver was studied by assaying the activity of the enzyme in the presence of Mg2+ and phosphatidylcholine. In contrast ot the results of previous studies, most of the enzyme activity was found in the soluble fraction.  相似文献   

4.
The regulatory mechanism of triacylglycerol synthesis in Saccharomyces cerevisiae was studied. The triacylglycerol content increased markedly during the entry of cells into the stationary growth phase, whereas the content of phospholipids remained unchanged. Pulse-labeling experiments to measure [14C]acetate incorporation into triacylglycerol revealed that the synthesis of triacylglycerol increased in the stationary growth phase. An increase in fatty acid synthesis was observed only in the later stage of the stationary growth phase and thus does not seem to be the principal causative factor for the triacylglycerol accumulation. Among various triacylglycerol-synthetic enzymes tested, the increase in the phosphatidate phosphatase (EC 3.1.3.4) activity was most closely correlated with the accumulation of triacylglycerol in the stationary phase. Our results show that phosphatidate phosphatase plays an important role in the regulation of triacylglycerol synthesis in S. cerevisiae.  相似文献   

5.
Regulation of phosphatidate phosphatase (EC 3.1.34) activity was examined in Saccharomyces cerevisiae cells supplemented with phospholipid precursors. Addition of inositol to the growth medium of wild-type cells resulted in a twofold increase in phosphatidate phosphatase activity. The increase in phosphatidate phosphatase activity was not due to soluble effector molecules, and inositol did not have a direct effect on enzyme activity. The phosphatidate phosphatase activity associated with the mitochondrial, microsomal, and cytosolic fractions of the cell was regulated by inositol in the same manner. Cells supplemented with inositol had elevated phospholipid levels and reduced triacylglycerol levels compared with unsupplemented cells. Serine, ethanolamine, and choline did not significantly affect the phosphatidate phosphatase activity of cells grown in the absence or presence of inositol. Enzyme activity was not regulated in inositol biosynthesis regulatory mutants, suggesting that regulation by inositol is coupled to regulation of inositol biosynthesis. Phosphatidate phosphatase activity was pleiotropically expressed in structural gene mutants defective in phospholipid biosynthesis. These results suggested that phosphatidate phosphatase was regulated by inositol at a genetic level.  相似文献   

6.
Succinyl-CoA synthetase from Saccharomyces cerevisiae was partially purified (20-fold) with a yield of 44%. The Michaelis-Menten constants were determined: Km (succinate) = 17 mM; Km (ATP) = 0.13 mM; Km (CoA) = 0.03 mM. The succinyl-CoA synthetase has a molecular weight of about 80000 dalton (as determined by polyacrylamide gradient gel electrophoresis). The pH optimum is at 6.0. During fermentation the activity of succinyl-CoA synthetase is lower than in aerobically grown yeast cells. The presence of succinyl-CoA synthetase in fermenting yeasts may be regarded as an indication for the oxidative formation of succinate. In fermenting yeast cells succinyl-CoA synthetase is repressed by glucose if ammonium sulphate serves as nitrogen source. This catabolite repression is not observed with disaccharides or when amino acids are used as nitrogen source.  相似文献   

7.
Mg(2+)-dependent phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of PA to yield diacylglycerol and P(i). In this work, we identified the Saccharomyces cerevisiae PAH1 (previously known as SMP2) gene that encodes Mg(2+)-dependent PA phosphatase using amino acid sequence information derived from a purified preparation of the enzyme (Lin, Y.-P., and Carman, G. M. (1989) J. Biol. Chem. 264, 8641-8645). Overexpression of PAH1 in S. cerevisiae directed elevated levels of Mg(2+)-dependent PA phosphatase activity, whereas the pah1Delta mutation caused reduced levels of enzyme activity. Heterologous expression of PAH1 in Escherichia coli confirmed that Pah1p is a Mg(2+)-dependent PA phosphatase enzyme and showed that its enzymological properties were very similar to those of the enzyme purified from S. cerevisiae. The PAH1-encoded enzyme activity was associated with both the membrane and cytosolic fractions of the cell, and the membrane-bound form of the enzyme was salt-extractable. Lipid analysis showed that mutants lacking PAH1 accumulated PA and had reduced amounts of diacylglycerol and its derivative triacylglycerol.ThePAH1-encoded Mg(2+)-dependent PA phosphatase shows homology to mammalian lipin, a fat-regulating protein whose molecular function is unknown. Heterologous expression of human LPIN1 in E. coli showed that lipin 1 is also a Mg(2+)-dependent PA phosphatase enzyme.  相似文献   

8.
Microsomal phosphatidate phosphohydrolase (phosphatidate phosphatase EC 3.1.3.4) was solubilized and fractionated to yield at least two distinct enzymatically active fractions. One, denoted FA, was non-specific, had a relatively high Km for phosphatidic acid and was insensitive to inhibition by diacylglycerol. The second fraction, FB, was specific for phosphatidates, had a low Km, and was inhibited, non-competitively, by diacylglycerol. FA exhibited a sigmoid substrate-activity curve. The isolated FB aggregated to particles of about 10(6) in the absence of salts and could be dissociated by the addition of monovalent cations at ionic strength 0.4-0.6 to about 2-10(5) daltons and thereby doubled its activity. Dissociation was time- and temperature-dependent. F- was inhibitory. Divalent ions were not required for the activity of FA or FB and inhibited at concentrations exceeding 1 mM.  相似文献   

9.
S-Adenosylhomocysteine (SAH) hydrolase was purified 25-fold from bakers' yeast by chemical methods and column chromatography. The purified enzyme could readily synthesize SAH from adenosine and homocysteine, but could hydrolyze only negligible amounts of SAH. The purified enzyme showed no activity towards S-adenosylmethionine, methylthioadenosine, or adenosine. Several nucleotides, sulfhydryl compounds, and ribose could not replace adenosine or homocysteine in the reaction mixture. SAH could be hydrolyzed by SAH hydrolase if commercial adenosine deaminase was included in the reaction mixture. Under these conditions l-homocysteine could act as a product inhibitor. A number of compounds structurally similar to adenosine and homocysteine were found to inhibit synthesis of SAH from adenosine and homocysteine. The strongest inhibitors were adenine, adenosine-3'-monophosphate, adenosine-2'-monophosphate, adenosine diphosphate, adenosine triphosphate, and adenosine-5'-monophosphate. The biosynthetic and hydrolytic activity of SAH hydrolase in yeast cell ghosts was similar to the activity of the enzyme in vitro.  相似文献   

10.
11.
A wild-type strain and six methionine auxotrophs of Saccharomyces cerevisiae were cultured in a synthetic medium supplemented with 0.1 mM L-cysteine or L-methionine and analyzed for the synthesis of homoserine O-acetyltransferase (EC 2.3.1.31). Among them, four mutant strains exhibited enzyme activity in cell extracts. Methionine added to the synthetic medium at concentrations higher than 0.1 mM repressed enzyme synthesis in two of these strains. The enzyme was partially purified (3,500-fold) from an extract of a mutant strain through ammonium sulfate fractionation and chromatography on columns of DEAE-cellulose, Phenyl-Sepharose C1-4B, and Sephadex G-150. The enzyme exhibited optimal pH at 7.5 for activity and at 7.8 for stability. The reaction product was ascertained to be O-acetyl-L-homoserine by confirming that it produced L-homocysteine in an O-acetyl-L-homoserine sulfhydrylase reaction. The Km for L-homoserine was 1.0 mM, and for acetyl coenzyme A it was 0.027 mM. The molecular weight of the enzyme was estimated to be approximately 104,000 by Sephadex G-150 column chromatography and 101,000 by sucrose density gradient centrifugation. The isoelectric point was at pH 4.0. Of the hydroxy amino acids examined, the enzyme showed reactivity only to L-homoserine. Succinyl coenzyme A was not an acyl donor. In the absence of L-homoserine, acetyl coenzyme A was deacylated by the enzyme, with a Km of 0.012 mM. S-Adenosylmethionine and S-adenosylhomocysteine slightly inhibited the enzyme, but methionine had no effect.  相似文献   

12.
Acid phosphatase from yeast Saccharomyces cerevisiae was purified, and its physicochemical and kinetic properties were investigated. The sedimentation coefficient has been determined to be s0(20,w) = 13.6 S. The diffusion constant has been found to be 3.9 X 10(-7) cm2s-1, and the calculated partial specific volume was v = 0.663 cm3/g. From these data, a molecular weight of 252,000 was calculated. Electrophoresis on gel slabs, with a linear concentration gradient of polyacrylamide (4-30%), showed size heterogeneity of the native enzyme preparation and indicated an apparent molecular weight in the range of 170,000 to 360,000. In the presence of sodium dodecyl sulfate, the molecular weight was in the range of 82,000 to 165,000, indicating dimeric structure of the native enzyme, which was confirmed by cross-linking experiments. Isoelectric focusing demonstrated charge heterogeneity of enzyme preparation. From CD spectrum it was calculated that the enzyme contains about 29% of alpha-helical structure. Excitation at 278 nm gave an emission fluorescence spectrum with a maximum at 340 nm. Amino acid analysis revealed a high content of aspartic acid, serine, and threonine. Glycine is found as the NH2-terminal amino acid. Initial velocity dependence on substrate concentration, as well as on pH, and thermostability studies indicated the presence of at least two enzyme forms in the preparation.  相似文献   

13.
14.
Cryptic trehalase from Saccharomyces cerevisiae was purified about 3000-fold. The recovery of 970% of the original "activity" indicated the removal of an inhibitor of the enzyme. Active trehalase, obtained through phosphorylation of cryptic trehalase by cAMP-dependent protein kinase, was isolated by chromatography on DEAE-cellulose. A major phosphorylated protein, with an apparent Mr of 86,000, was detected after SDS-polyacrylamide gel electrophoresis. This protein band correlated exactly with the elution profile of trehalase activity and 32Pi incorporation into the enzyme on DEAE-cellulose chromatography. Partially purified active trehalase showed absolute specificity towards trehalose with an apparent Km of 4.79 X 10(-3) M. Both forms of the enzyme showed an apparent molecular weight of 160,000, by gel filtration. Centrifugation on a glycerol density gradient indicated multiple forms of trehalase-c, with Mr of 320,000, 160,000, and 80,000. After activation of each of these forms by protein kinase, a single form of trehalase-a was observed, with a Mr of 160,000. Trehalase-c appears to be a totally inactive form of the enzyme. The only mechanism of activation seems to be phosphorylation by cAMP-dependent protein kinase. When the protein kinase concentration was varied, at a fixed trehalase-c concentration, a sigmoidal activation plot was obtained. This result suggests the occurrence of multiple forms of cryptic trehalase.  相似文献   

15.
The DNA untwisting enzyme has been partially purified from Saccharomyces cerevisiae. The enzyme exhibits a pH optimum of 7.3 to 7.6 in phosphate buffer, appears to require 0.15 M KCl for activity as determined by a DNA filter-binding assay, and is inhibited by N-ethylmaleimide. Like the untwisting enzymes from other eucaryotic cells, it can remove both positive and negative superhelical turns. A DNA molecule containing a single strand break was shown to be an intermediate in the untwisting reaction. Thermal stabilities of the enzyme from selected conditional lethal mutants defective in DNA synthesis have been examined and were found to be indistinguishable from the wild type enzyme.  相似文献   

16.
17.
The mannosyltransferase that catalyses the transfer of mannosefrom dolichyl-phosphate-mannose (Dol-P-Man) to the hydroxylgroup of serine/threonine residues in the acceptor peptide (Tyr-Asn-Pro-Thr-Ser-Val)was partially purified 150-fold from the microsomal membranefraction of Saccharomyces cerevisiae. The membrane-bound enzymewas solubilized with 0.5% Triton X-100 at a protein:detergentratio of 2: 1, and was then purified by ionexchange chromatographyon DEAE-cellulose, followed by hydroxyapatite column chromatography.The partially purified enzyme had a pH optimum of 7.2 and requiredMg2+ at an optimum concentration of 10 mM for activity. Theapparent mol. wt of the enzyme, as estimated by gel filtrationon Sephacryl S-300, was 125 kDa. The activity of the partiallypurified enzyme was greatly stimulated by phosphatidylcholine(PC), while other naturally occurring phosphoglycerides hadno significant effect.The extent of activation of mannosyltransferaseactivity was greatly affected by the number of carbons and thedegree of saturation/unsaturation of the fatty acid substituents,as well as by their position on the glycerol moiety of the PCmolecule. Maximum stimulation of the mannosyltransferase activitywas induced by a PC derivative in which both sn-1 and sn-2 positionson the glycerol moiety were occupied by C12:0 fatty acids. Ingeneral, mannosyltransferase was found to exhibit greater specificityfor the L--PC derivatives in which the sn-2 position of theglycerol contained a saturated fatty acid. The mannosyltransferaseshowed a greatly reduced Km value (five times lower) for thehexapeptide substrate in the presence of PC than in its absence,indicating that the stimulation of mannosyltransferase activitywas at least partially due to the increased affinity for theacceptor peptide. Upon ß-elimination of the radiolabelledmannosyl-peptide formed during the incubation of Dol-P-[14C]Manand unlabelled acceptor peptide with the partially purifiedenzyme, total radioactivity was released as mannose, confirmingthat a single mannose unit was linked to the serine/threonineresidues via an O-glycosidic bond. mannosyltransferase purification Saccharomyces cerevisiae 1Present address: Department of Biosciences and Biotechnology,University of Roorkee,Roorkee 247 667, India 2Present address: Department of Biochemistry and Molecular Biology,University of Arkansas for Medical Sciences, Little Rock, AR72205, USA  相似文献   

18.
The membrane-associated phospholipid biosynthetic enzyme phosphatidylinositol synthase (cytidine 5'-diphospho-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) was purified 1,000-fold from the microsomal fraction of Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of the microsomal membranes, CDPdiacylglycerol-Sepharose (Larson et al., Biochemistry 15:974-979, 1976) affinity chromatography, and chromatofocusing. The procedure resulted in the isolation of a nearly homogeneous protein preparation with an apparent minimum subunit molecular weight of 34,000, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Phosphatidylinositol synthase was dependent on manganese and Triton X-100 for maximum activity. The pH optimum was 8.0. Thioreactive agents inhibited enzyme activity. The energy of activation was found to be 35 kcal/mol (146,540 J/mol). The enzyme was reasonably stable at temperatures of up to 60 degrees C.  相似文献   

19.
Alkaline phosphatase was purified from bovine polymorphonuclear neutrophils by butanol extraction and a combination of ion exchange, gel filtration and affinity chromatography. The enzyme was partially purified 2300-fold with a 4.7% yield and a sp. act. of 206 units/mg of protein. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a single activity band with the mol. wt of 165,000. The pH optima for the enzyme were 10.0 with p-nitrophenylphosphate and phenylphosphate and were 9.0 when beta-glycerophosphate, AMP and ADP were used. The enzyme was activated by Mg2+, Mn2+, Co2+ and Ni2+ but was inhibited by Zn2+. The enzyme was inhibited by EDTA and the EDTA-inactivated enzyme was reactivated by Mg2+, Mn2+ and Co2+ but not Zn2+.  相似文献   

20.
A method for the purification of yeast K+-activated aldehyde dehydrogenase is presented which can be completed in substantially less time than other published procedures. The enzyme has a different N-terminal amino acid from preparations previously reported, and other small differences in amino acid content. These differences may be the result of differential proteolytic digestion rather than a different protein in vivo. A purification step involves the biospecific adsorption on affinity columns containing immobilized nucleotides in the absence of the substrate aldehyde. Direct binding studies with the coenzyme in the absence of aldehyde reveal 4 NAD sites per tetrameric molecule, each with a dissociation constant of 120 micron. These results conflict with properties of preparations previously reported and may conflict with kinetic models that have aldehyde as the leading substrate. Binding to Blue Dextran affinity columns suggests the presence of a dinucleotide fold in common with other dehydrogenases and kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号