首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hensen's node is the gastrulation center in the avian embryo. It is the homologue of the amphibian dorsal blastopore lip and the zebrafish shield. It contains the progeny of all midline cells (floor plate of the neural tube, notochord and dorsal endoderm). However, microsurgical experiments on Hensen's node allow to think that organizer function is due to an extremely limited region situated in the caudal part of Hensen's node which corresponds to the boundary between prospective axial mesoderm rostrally and paraxial mesoderm caudally. This interface is essential for Hensen's node regression and organization of the caudal part of the body.  相似文献   

2.
The node of the mouse gastrula is the major source of the progenitor cells of the notochord, the floor plate, and the gut endoderm. The node may also play a morphogenetic role since it can induce a partial body axis following heterotopic transplantation. The impact of losing these progenitor cells and the morphogenetic activity on the development of the body axes was studied by the ablation of the node at late gastrulation. In the ablated embryo, an apparently intact anterior-posterior body axis with morphologically normal head folds, neural tube, and primitive streak developed during early organogenesis. Cell fate analysis revealed that the loss of the node elicits de novo recruitment of neural ectoderm and somitic mesoderm from the surrounding germ-layer tissues. This leads to the restoration of the neural tube and the paraxial mesoderm. However, the body axis of the embryo was foreshortened and somite formation was retarded. Histological and gene expression studies reveal that in most of the node-ablated embryos, the notochord in the trunk was either absent or interrupted, and the floor plate was absent in the ventral region of the reconstituted neural tube. The loss of the node did not affect the differentiation of the gut endoderm or the formation of the mid- and hindgut. In the node-ablated embryo, expression of the Pitx2 gene in the lateral plate mesoderm was no longer restricted to the left side but was found on both sides of the body or was completely absent from the lateral plate mesoderm. Therefore, the loss of the node results in the failure to delineate the laterality of the body axis. The node and its derivatives therefore play a critical role in the patterning of the ventral neural tube and lateral body axis but not of the anterior-posterior axis during early organogenesis.  相似文献   

3.
Fgf-8 encodes a secreted signaling molecule mediating key roles in embryonic patterning. This study analyzes the expression pattern, regulation, and function of this growth factor in the paraxial mesoderm of the avian embryo. In the mature somite, expression of Fgf-8 is restricted to a subpopulation of myotome cells, comprising most, but not all, epaxial and hypaxial muscle precursors. Following ablation of the notochord and floor plate, Fgf-8 expression is not activated in the somites, in either the epaxial or the hypaxial domain, while ablation of the dorsal neural tube does not affect Fgf-8 expression in paraxial mesoderm. Contrary to the view that hypaxial muscle precursors are independent of regulatory influences from axial structures, these findings provide the first evidence for a regulatory influence of ventral, but not dorsal axial structures on the hypaxial muscle domain. Sonic hedgehog can substitute for the ventral neural tube and notochord in the initiation of Fgf-8 expression in the myotome. It is also shown that Fgf-8 protein leads to an increase in sclerotomal cell proliferation and enhances rib cartilage development in mature somites, whereas inhibition of Fgf signaling by SU 5402 causes deletions in developing ribs. These observations demonstrate: (1) a regulatory influence of the ventral axial organs on the hypaxial muscle compartment; (2) regulation of epaxial and hypaxial expression of Fgf-8 by Sonic hedgehog; and (3) independent regulation of Fgf-8 and MyoD in the hypaxial myotome by ventral axial organs. It is postulated that the notochord and ventral neural tube influence hypaxial expression of Fgf-8 in the myotome and that, in turn, Fgf-8 has a functional role in rib formation.  相似文献   

4.
Different cell types that occupy the midline of vertebrate embryos originate within the Spemann-Mangold or gastrula organizer. One such cell type is hypochord, which lies ventral to notochord in anamniote embryos. We show that hypochord precursors arise from the lateral edges of the organizer in zebrafish. During gastrulation, hypochord precursors are closely associated with no tail-expressing midline precursors and paraxial mesoderm, which expresses deltaC and deltaD. Loss-of-function experiments revealed that deltaC and deltaD were required for her4 expression in presumptive hypochord precursors and for hypochord development. Conversely, ectopic, unregulated Notch activity blocked no tail expression and promoted her4 expression. We propose that Delta signaling from paraxial mesoderm diversifies midline cell fate by inducing a subset of neighboring midline precursors to develop as hypochord, rather than as notochord.  相似文献   

5.
Application of phosphatidylinositol-specific phospholipase C to early tailbud stage axolotl embryos reveals that a specific subset of morphogenetic movements requires glycosylphosphatidylinositol (GPI)-linked cell-surface proteins. These include pronephric duct extension, "gill bulge" formation, and embryonic elongation along the anteroposterior axis. The work of Kitchin (1949, J. Exp. Zool. 112, 393-416) led to the conclusion that extension of the notochord provided the motive force driving anteroposterior stretching in axolotl embryos, elongation of other tissues being a passive response. We therefore conjectured that axial mesoderm cells might display the GPI-linked proteins required for elongation of the embryo. However, we show here that removal of most of the neural plate and axial and paraxial mesoderm prior to neural tube closure does not prevent elongation of ventrolateral tissues. Tissue-extirpation and tissue-marking experiments indicate that elongation of the ventral trunk occurs via active, directed tissue rearrangements within the endoderm, directed by signals emanating from the blastopore region. Extension of both dorsal and ventral tissues requires GPI-linked proteins. We conclude that elongation of axolotl embryos requires active cell rearrangements within ventral as well as axial tissues. The fact that both types of elongation are prevented by removal of GPI-linked proteins implies that they share a common molecular mechanism.  相似文献   

6.
The patterning and differentiation of the vertebrate endoderm requires signaling from adjacent tissues. In this report, we demonstrate that signals from the notochord are critical for the development of the hypochord, which is a transient, endodermally derived structure that lies immediately ventral to the notochord in the amphibian and fish embryo. It appears likely that the hypochord is required for the formation of the dorsal aorta in these organisms. We show that removal of the notochord during early neurulation leads to the complete failure of hypochord development and to the elimination of expression of the hypochord marker, VEGF. Removal of the notochord during late neurulation, however, does not interfere with hypochord formation. These results suggest that signals arising in the notochord instruct cells in the underlying endoderm to take on a hypochord fate during early neural stages, and that the hypochord does not depend on further notochord signals for maintenance. In reciprocal experiments, when the endoderm receives excess notochord signaling, a significantly enlarged hypochord develops. Overall, these results demonstrate that, in addition to patterning neural and mesodermal tissues, the notochord plays an important role in patterning of the endoderm.  相似文献   

7.
The mechanisms of dorsoventral patterning in the vertebrate neural tube   总被引:5,自引:0,他引:5  
We describe the essential features of and the molecules involved in dorsoventral (DV) patterning in the neural tube. The neural tube is, from its very outset, patterned in this axis as there is a roof plate, floor plate, and differing numbers and types of neuroblasts. These neuroblasts develop into different types of neurons which express a different range of marker genes. Early embryological experiments identified the notochord and the somites as being responsible for the DV patterning of the neural tube and we now know that 4 signaling molecules are involved and are generated by these surrounding structures. Fibroblast growth factors (FGFs) are produced by the caudal mesoderm and must be down-regulated before neural differentiation can occur. Retinoic acid (RA) is produced by the paraxial mesoderm and is an inducer of neural differentiation and patterning and is responsible for down-regulating FGF. Sonic hedgehog (Shh) is produced by the notochord and floor plate and is responsible for inducing ventral neural cell types in a concentration-dependent manner. Bone morphogenetic proteins (BMPs) are produced by the roof plate and are responsible for inducing dorsal neural cell types in a concentration-dependent manner. Subsequently, RA is used twice more. Once from the somites for motor neuron differentiation and secondly RA is used to define the motor neuron subtypes, but in the latter case it is generated within the neural tube from differentiating motor neurons rather than from outside. These 4 signaling molecules also interact with each other, generally in a repressive fashion, and DV patterning shows how complex these interactions can be.  相似文献   

8.
The hypochord of the zebrafish embryo (Danio rerio) emerges at the 9-somite stage as a single row of cells in the dorsomedial endoderm immediately ventral to the notochord. It is recognizable from the 2(nd) or 3(rd) somite and extends along the trunk to the same extent as the somites. A basal lamina surrounds the hypochord and its cells are slightly larger than the nearby endoderm cells. TEM studies have shown that the hypochord cells contain, in addition to mitochondria, well-developed rough endoplasmic reticula and Golgi networks, indicating synthetic activity. Once formed, the hypochord will stay in close association with the notochord, and this axial complex gradually moves dorsally, separating the hypochord from the endoderm as a one-cell-wide, rod-like structure that is bean-shaped in transverse section. This is the situation in the 15-somite embryo, at the level of the 4-5(th) somites. In the gap between the hypochord and the endoderm, angioblast cells aggregate and start to form the dorsal aorta, which becomes intimately associated with the hypochord. In the 17-somite embryo the aortic rudiment is established just ventral to the hypochord as a tube with a lumen. As development proceeds, the size of the hypochord decreases. In the pec fin embryo the hypochord is still recognizable in the posterior trunk, but has apparently vanished in anterior regions. The temporal correlation between the appearance of the hypochord and the formation of the dorsal aorta, coupled with the intimate relationship between these structures, suggest that the hypochord may play a role in the positioning of the dorsal aorta.  相似文献   

9.
10.
Labelling of Hensen's node in a 6-somite stage chick embryo by the quail/chick chimera method has revealed that, while moving caudalwards as the embryo elongates, the node leaves in its wake not only the notochord but also the floor plate and a longitudinal strand of dorsal endoderm. The node itself contains cells endowed with the capacity to yield midline cells (i.e. notochord and floor plate) along the whole length of the neural axis. Caudal node cells function as stem cells. They are responsible for the apical growth of the cord of cells that are at the origin of the midline structures since, if removed, neither the notochord nor the floor plate, are formed caudally to the ablation. The embryo extends however in the absence of midline cells and a neural tube develops posterior to the excision. Only dorsal molecular markers are detectable on this neural tube (e.g. Pax3 and Slug). The posterior region of the embryo in which the structures secreting Shh are missing undergo cell death within the 24 to 48 hours following its formation. Unpublished results indicate that rescue of the posterior region of the embryo can be obtained by implantation of Shh secreting cells. One of the critical roles of floor plate and notochord is therefore to inhibit the cell death programme in the axial and paraxial structures of the embryo at gastrulation and neurulation stages.  相似文献   

11.
12.
The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic overexpression experiments, we show that, similar to the requirements for prechordal plate mesendoderm fates, uninterrupted and high levels of Cyclops signalling are required for induction and specification of a complete ventral neural tube.  相似文献   

13.
A secreted signaling factor, Sonic hedgehog (Shh), has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. At caudal levels of the neuraxis, Shh is secreted by the notochord and floor plate during the period that ventral cell fates are specified. At anterior prosencephalic levels that give rise to the telencephalon, however, neither the prechordal mesoderm nor the ventral neural tube expresses Shh at the time that the overt ventral character of the telencephalon becomes evident. Thus, the precise role and timing of Shh signaling relevant to the specification of ventral telencephalic identity remains unclear. By analysing neural cell differentiation in chick neural plate explants we provide evidence that neural cells acquire molecular properties characteristic of the ventral telencephalon in response to Shh signals derived from the anterior primitive streak/Hensen's node region at gastrula stages. Exposure of prospective anterior prosencephalic cells to Shh at this early stage is sufficient to initiate a temporal program of differentiation that parallels that of neurons generated normally in the medial ganglionic eminence subdivision of the ventral telencephalon.  相似文献   

14.
BACKGROUND: Fate mapping studies have shown that progenitor cells of three vertebrate embryonic midline structures - the floorplate in the ventral neural tube, the notochord and the dorsal endoderm - occupy a common region prior to gastrulation. This common region of origin raises the possibility that interactions between midline progenitor cells are important for their specification prior to germ layer formation. RESULTS: One of four known zebrafish homologues of the Drosophila melanogaster cell-cell signaling gene Delta, deltaA (dlA), is expressed in the developing midline, where progenitor cells of the ectodermal floorplate, mesodermal notochord and dorsal endoderm lie close together before they occupy different germ layers. We used a reverse genetic strategy to isolate a missense mutation of dlA, dlAdx2, which coordinately disrupts the development of floorplate, notochord and dorsal endoderm. The dlAdx2 mutant embryos had reduced numbers of floorplate and hypochord cells; these cells lie above and beneath the notochord, respectively. In addition, mutant embryos had excess notochord cells. Expression of a dominant-negative form of Delta protein driven by mRNA microinjection produced a similar effect. In contrast, overexpression of dlA had the opposite effect: fewer trunk notochord cells and excess floorplate and hypochord cells. CONCLUSION: Our results indicate that Delta signaling is important for the specification of midline cells. The results are most consistent with the hypothesis that developmentally equivalent midline progenitor cells require Delta-mediated signaling prior to germ layer formation in order to be specified as floorplate, notochord or hypochord.  相似文献   

15.
The Ciona forkhead/HNF-3beta gene (Ci-fkh) is expressed in the primary axial tissues of the developing tadpole, including the notochord, endoderm, and rudimentary floor plate of the CNS. In an effort to determine the basis for this complex pattern of expression we have conducted a detailed analysis of the Ci-fkh 5'-regulatory region. Different 5' sequences were attached to a lacZ reporter gene and analyzed in electroporated Ciona embryos. A short regulatory sequence (AS) located approximately 1.7 kb upstream of the transcribed region is shown to be essential for expression in all three axial tissues. The proximal 20 bp of the AS contains overlapping Snail repressor elements and a T-box motif. Deleting these sequences causes the loss of reporter gene expression in the endoderm, as well as expanded expression in the neural tube. These results suggest that a T-box gene such as Ci-VegTR activates Ci-fkh expression in the endoderm, while the Ci-Sna repressor excludes expression from the lateral ependymal cells and restricts the Ci-fkh pattern to the rudimentary floor plate in ventral regions of the neural tube. We also present evidence for Ci-fkh positive autofeedback, whereby the Ci-Fkh protein binds to critical activator sites within the Ci-fkh 5'-regulatory region and helps maintain high levels of expression. We discuss these results with respect to forkhead/HNF-3beta regulation in vertebrates.  相似文献   

16.
We have identified a novel frog gene, Pintallavis (the Catalan for lipstick), that is related to the fly fork head and rat HNF-3 genes. Pintallavis is expressed in the organizer region of gastrula embryos as a direct zygotic response to dorsal mesodermal induction. Subsequently, Pintallavis is expressed in axial midline cells of all three germ layers. In axial mesoderm expression is graded with highest levels posteriorly. Midline neural plate cells that give rise to the floor plate transiently express Pintallavis, apparently in response to induction by the notochord. Overexpression of Pintallavis perturbs the development of the neural axis, suppressing the differentiation of anterior and dorsal neural cell types but causing an expansion of the posterior neural tube. Our results suggest that Pintallavis functions in the induction and patterning of the neural axis.  相似文献   

17.
In mouse, lefty genes play critical roles in the left-right (L-R) axis determination pathway. Here, we characterize the Xenopus lefty-related factor antivin (Xatv). Xatv expression is first observed in the marginal zone early during gastrulation, later becoming restricted to axial tissues. During tailbud stages, axial expression resolves to the neural tube floorplate, hypochord, and (transiently) the notochord anlage, and is joined by dynamic expression in the left lateral plate mesoderm (LPM) and left dorsal endoderm. An emerging paradigm in embryonic patterning is that secreted antagonists regulate the activity of intercellular signaling factors, thereby modulating cell fate specification. Xatv expression is rapidly induced by dorsoanterior-type mesoderm inducers such as activin or Xnr2. Xatv is not an inducer itself, but antagonizes both Xnr2 and activin. Together with its expression pattern, this suggests that Xatv functions during gastrulation in a negative feedback loop with Xnrs to affect the amount and/or character of mesoderm induced. Our data also provide insights into the way that lefty/nodal signals interact in the initiation of differential L-R morphogenesis. Right-sided misexpression of Xnr1 (endogenously expressed in the left LPM) induces bilateral Xatv expression. Left-sided Xatv overexpression suppresses Xnr1/XPitx2 expression in the left LPM, and leads to severely disturbed visceral asymmetry, suggesting that active 'left' signals are critical for L-R axis determination in frog embryos. We propose that the induction of lefty/Xatv in the left LPM by nodal/Xnr1 provides an efficient self-regulating mechanism to downregulate nodal/Xnr1 expression and ensure a transient 'left' signal within the embryo.  相似文献   

18.
Structure and developmental expression are described for amphioxus AmphiVent, a homolog of vertebrate Vent genes. In amphioxus, AmphiVent-expressing ventral mesoderm arises at midneurula by outgrowth from the paraxial mesoderm, but in vertebrates, Vent-expressing ventral mesoderm originates earlier, at the gastrula stage. In other embryonic tissues (nascent paraxial mesoderm, neural plate, endoderm, and tailbud), AmphiVent and its vertebrate homologs are expressed in similar spatiotemporal domains, indicating conservation of many Vent gene functions during chordate evolution. The ventral mesoderm evidently develops precociously in vertebrates because their relatively large embryos probably require an early and extensive deployment of the mesoderm-derived circulatory system. The vertebrate ventral mesoderm, in spite of its strikingly early advent, still resembles the nascent ventral mesoderm of amphioxus in expressing Vent homologs. This coincidence may indicate that Vent homologs in vertebrates and amphioxus play comparable roles in ventral mesoderm specification.  相似文献   

19.
Hensen's node, also called the chordoneural hinge in the tail bud, is a group of cells that constitutes the organizer of the avian embryo and that expresses the gene HNF-3(&bgr;). During gastrulation and neurulation, it undergoes a rostral-to-caudal movement as the embryo elongates. Labeling of Hensen's node by the quail-chick chimera system has shown that, while moving caudally, Hensen's node leaves in its wake not only the notochord but also the floor plate and a longitudinal strand of dorsal endodermal cells. In this work, we demonstrate that the node can be divided into functionally distinct subregions. Caudalward migration of the node depends on the presence of the most posterior region, which is closely apposed to the anterior portion of the primitive streak as defined by expression of the T-box gene Ch-Tbx6L. We call this region the axial-paraxial hinge because it corresponds to the junction of the presumptive midline axial structures (notochord and floor plate) and the paraxial mesoderm. We propose that the axial-paraxial hinge is the equivalent of the neuroenteric canal of other vertebrates such as Xenopus. Blocking the caudal movement of Hensen's node at the 5- to 6-somite stage by removing the axial-paraxial hinge deprives the embryo of midline structures caudal to the brachial level, but does not prevent formation of the neural tube and mesoderm located posteriorly. However, the whole embryonic region generated posterior to the level of Hensen's node arrest undergoes widespread apoptosis within the next 24 hours. Hensen's node-derived structures (notochord and floor plate) thus appear to produce maintenance factor(s) that ensures the survival and further development of adjacent tissues.  相似文献   

20.
Patterning of the ventral head has been attributed to various cell populations, including endoderm, mesoderm, and neural crest. Here, we provide evidence that head and heart development may be influenced by a ventral midline endodermal cell population. We show that the ventral midline endoderm of the foregut is generated directly from the extreme rostral portion of Hensen's node, the avian equivalent of the Spemann organizer. The endodermal cells extend caudally in the ventral midline from the prechordal plate during development of the foregut pocket. Thus, the prechordal plate appears as a mesendodermal pivot between the notochord and the ventral foregut midline. The elongating ventral midline endoderm delimits the right and left sides of the ventral foregut endoderm. Cells derived from the midline endoderm are incorporated into the endocardium and myocardium during closure of the foregut pocket and fusion of the bilateral heart primordia. Bilateral ablation of the endoderm flanking the midline at the level of the anterior intestinal portal leads to randomization of heart looping, suggesting that this endoderm is partitioned into right and left domains by the midline endoderm, thus performing a function similar to that of the notochord in maintaining left-right asymmetry. Because of its derivation from the dorsal organizer, its extent from the forebrain through the midline of the developing face and pharynx, and its participation in formation of a single midline heart tube, we propose that the ventral midline endoderm is ideally situated to function as a ventral organizer of the head and heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号