首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cutaneous lipogenesis was studied, using a guinea pig ear slice incubation technique, for the following precursors: acetate, propionate, butyrate, glucose, pyruvate, lactate, succinate, citrate, and selected amino acids. Active lipogenesis was observed with short-chain fatty acids, glucose, pyruvate, lactate, and with the amino acids, alanine, leucine, and isoleucine. Glucose was shown to play an important role in cutaneous lipogenesis; it is a major precursor of lipid and the only compound able to stimulate lipogenesis. Its incorporation into lipid is unaffected by either insulin or epinephrine. The incorporation rates of glucose-1- and glucose-6-(14)C were equal, suggesting the possibility that generation of NADPH by the pentose-phosphate pathway is minimal. Citrate, succinate, and pyruvate all failed to stimulate the incorporation of acetate; on the other hand, citrate, isocitrate, malate, malonate, and ATP caused inhibition of the incorporation of glucose. Significant incorporation of tritium from tritiated water was observed, and the order of magnitude suggests that it can be used as an independent assessment of the rate of cutaneous lipogenesis. Bicarbonate was not only able to stimulate the rate of incorporation of a variety of precursors but was also incorporated into fatty acids to a measurable extent. The mode of incorporation of propionate was unusual, since propionate-1-(14)C was incorporated into fatty acids at more than double the rate for propionate-2-(14)C, suggesting incorporation of the carboxyl carbon without the rest of the molecule. Mechanisms are suggested to account for the carbon dioxide fixation, but we are unable to completely explain the anomalous results for propionate.  相似文献   

2.
Vasopressin and angiotensin II inhibited lipogenesis (measured with 3H2O) in hepatocytes from fed rats. Inhibition was also observed with hepatocytes from fed rats which had been depleted of glycogen in vitro and incubated with lactate + pyruvate (5 mM + 0.5 mM) as substrates. The inhibitory actions of the hormones are therefore independent of hormone-mediated changes in glycogenolytic or glycolytic flux from glycogen, and thus the site(s) of hormone action must be subsequent to the formation of lactate. (-)Hydroxycitrate, a specific inhibitor of ATP-citrate lyase, decreased lipogenesis in hepatocytes from fed rats incubated with lactate + pyruvate by approx. 51% but had little effect on lipogenesis in glycogen-depleted hepatocytes similarly incubated. There was parallel inhibition of incorporation of 14C from [U-14C]lactate into fatty acid and lipogenesis as measured with 3H2O in each case. Thus depletion of glycogen, or conceivably the process of glycogen-depletion (incubation with dibutyryl cyclic AMP) causes a change in the rate-determining step(s) for lipogenesis from lactate. Vasopressin and angiotensin II also decreased lipogenesis and incorporation of 14C into fatty acids in glycogen-depleted hepatocytes provided with [U-14C]proline as opposed to [U-14C]-lactate. However, proline-stimulated lipogenesis was inhibited by (-)hydroxycitrate, and proline-stimulated lipogenesis and incorporation of 14C from [U-14C]-proline were not decreased in parallel by this inhibitor (inhibition of 52% and 85% respectively). It is inferred that lactate and proline stimulate lipogenesis by different mechanisms and incorporation of 14C from [U-14C]proline and [U-14C]lactate into fatty acid occurs via different routes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

4.
Glial cells play a pivotal role in brain fatty acid metabolism and membrane biogenesis. However, the potential regulation of lipogenesis and cholesterologenesis by fatty acids in glial cells has been barely investigated. Here, we show that physiologically relevant concentrations of various saturated, monounsaturated, and polyunsaturated fatty acids significantly reduce [1-(14)C]acetate incorporation into fatty acids and cholesterol in C6 cells. Oleic acid was the most effective at depressing lipogenesis and cholesterologenesis; a decreased label incorporation into cellular palmitic, stearic, and oleic acids was detected, suggesting that an enzymatic step(s) of de novo fatty acid biosynthesis was affected. To clarify this issue, the activities of acetyl-coenzyme A carboxylase (ACC) and FAS were determined with an in situ digitonin-permeabilized cell assay after incubation of C6 cells with fatty acids. ACC activity was strongly reduced ( approximately 80%) by oleic acid, whereas no significant change in FAS activity was observed. Oleic acid also reduced the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). The inhibition of ACC and HMGCR activities is corroborated by the decreases in ACC and HMGCR mRNA abundance and protein levels. The downregulation of ACC and HMGCR activities and expression by oleic acid could contribute to the reduced lipogenesis and cholesterologenesis.  相似文献   

5.
Proline and hepatic lipogenesis   总被引:1,自引:0,他引:1  
The effects of proline on lipogenesis in isolated rat hepatocytes were determined and compared with those of lactate, an established lipogenic precursor. Proline or lactate plus pyruvate increased lipogenesis (measured with 3H2O) in hepatocytes from fed rats depleted of glycogen in vitro and in hepatocytes from starved rats. Lactate plus pyruvate but not proline increased lipogenesis in hepatocytes from starved rats. ( - )-Hydroxycitrate, an inhibitor of ATP-citrate lyase, partially inhibited incorporation into saponifiable fatty acid of 3H from 3H2O and 14C from [U-14C]lactate with hepatocytes from fed rats. Incorporation of 14C from [U-14C]proline was completely inhibited. Similar complete inhibition of incorporation of 14C from [U-14C]proline by ( - )-hydroxycitrate was observed with glycogen-depleted hepatocytes or hepatocytes from starved rats. Inhibition of phosphoenolpyruvate carboxykinase by 3-mercaptopicolinate did not inhibit the incorporation into saponifiable fatty acid of 3H from 3H2O or 14C from [U-14C]proline or [U-14C]lactate. Both 3-mercaptopicolinate and ( - )-hydroxycitrate increased lipogenesis (measured with 3H2O) in the absence or presence of lactate or proline with hepatocytes from starved rats. The results are discussed with reference to the roles of phosphoenolpyruvate carboxykinase, mitochondrial citrate efflux, ATP-citrate lyase and acetyl-CoA carboxylase in proline- or lactate-stimulated lipogenesis.  相似文献   

6.
The effect of a single oral dose of dieldrin (30 mg/kg body weight) on lipid metabolism in rats was studied. Liver lipids content increased and this increase was mainly in the triglyceride fraction. The incorporation of acetate-14C into fatty acids was decreased indicating an inhibition of lipogenesis. Fatty acid oxidation was increased. Palmitate-14C incorporation into the triglyceride fraction was enhanced pointing to an overall increased utilization of fatty acids.  相似文献   

7.
The rates of glycolysis and lipogenesis in isolated perfused liver of well-fed rats were studied. When liver was allowed to synthesize [14C]glycogen prior to perfusion, no more than 9% of the degraded [14C]glycogen was recovered in lactate and 6% in lipid. Addition of glucose, fructose and sorbitol enhanced concomitantly the formation of lactate and pyruvate and the rate of release of triglyceride and free fatty acid. Glucose was less efficient than fructose or sorbitol. The incorporation of 14C from these 14C-labelled substrates into lactate, pyruvate and lipids confirmed their role as carbon sources. Incorporation of 14C into the glycerol moiety of neutral lipid exceeded that found in the fatty acids, suggesting that these substrates contributed largely to the esterification of fatty acids. The total rate of de novo fatty acid synthesis was correlated with the formation of lactate and pyruvate. It is concluded that increased rates of aerobic glycolysis are related to increased rates of lipogenesis.  相似文献   

8.
1. Lipogenesis was studied in mice re-fed for up to 21 days after starvation. At appropriate times [U-(14)]glucose was given by stomach tube and incorporation of (14)C into various lipid fractions measured. 2. In mice starved for 48hr. and then re-fed for 4 days with a diet containing 1% of corn oil, incorporation of (14)C from [U-(14)C]glucose into liver fatty acids and cholesterol was respectively threefold and eightfold higher than in controls fed ad libitum. The percentages by weight of fatty acids and cholesterol in the liver also increased and reached peaks after 7 days. Both the radioactivity and weights of the fractions returned to control values after 10-14 days' re-feeding. These changes could be diminished by re-feeding the mice with a diet containing 20% of corn oil. Incorporation of (14)C from [U-(14)C]glucose into extrahepatic fatty acids (excluding those of the epididymal fat pads) was not elevated during re-feeding with a diet containing either 1% or 20% of corn oil. However, incorporation of (14)C from [U-(14)C]glucose into the fatty acids of the epididymal fat pads was increased in mice re-fed with either diet, as compared with non-starved controls. 3. Lipogenesis was also studied in mice alternately fed and starved. Mice given a diet containing 1% of corn oil for 6hr./day for 4 weeks lost weight initially and never attained the weight or carcass fat content of controls fed ad libitum. Incorporation of (14)C from dietary [U-(14)C]-glucose into the fatty acids of the epididymal fat pads was elevated threefold in the mice allowed limited access to food, although the incorporation into the remainder of the extrahepatic fatty acids was not different from that found for controls. Mice given a diet containing 20% of corn oil for 6hr./day adapted to the limited feeding regimen quicker and in 4 weeks did attain the weight and carcass fat content of controls. Incorporation of (14)C from [U-(14)C]glucose into the fatty acids of the epididymal fat pads and the remainder of the extrahepatic fatty acids was respectively fivefold and threefold higher than in controls fed ad libitum. 4. The elevation in liver lipogenesis during re-feeding was greatest on a diet containing 1% of corn oil, whereas in extrahepatic tissues the increase in lipogenesis was greater when the mice were re-fed or were allowed limited access to a diet containing 20% of corn oil. These results suggest that the causes of the increased rate of incorporation of (14)C from [U-(14)C]glucose into fatty acids during re-feeding may be different in liver from that in extrahepatic tissues.  相似文献   

9.
This study compared the effects of certain metabolites (either singly or in various combinations) and the methods of measuring lipogenesis (using either 14C-acetate or 3H2O incorporation into lipids) on total lipid synthesis and insulin-stimulated total lipid synthesis in the isolated rat hepatocyte. There were quantitative and qualitative differences between 14C-acetate and 3H2O incorporation into lipids; metabolites acutely affected both lipogenesis and insulin-stimulated lipogenesis with either isotope; and insulin's effect on lipogenesis was greater when measured by 14C-acetate incorporation. It is suggested that a particular choice of incubation media and isotope may inadvertently bias a study of insulin-stimulated lipogenesis and that metabolite supply plays a major role in regulating insulin-stimulated lipogenesis.  相似文献   

10.
Thyroidectomy decreased the content of short-chain fatty acids and increased the content of long-chain fatty acids in the mammary glands of lactating rats. This effect was replicated in the glands of untreated rats limited to the same food intake as the thyroidectomized animals. Thyroidectomy decreased the incorporation of [6-(14)C]glucose into short-chain fatty acids and increased the incorporation into longer-chain acids. Restriction of the food intake of untreated animals did not cause a similar shift of the incorporation pattern. The possibility that the thyroxine effect on lipogenesis is secondary to its effect on carbohydrate metabolism is discussed.  相似文献   

11.
Incorporation of tritium from tritiated water into lipid fractions was measured in isolated hepatocytes from rainbow trout (Salmo gairdneri) acclimated to 5 degrees C and 20 degrees C. Hepatocytes from cold-acclimated trout exhibited significantly higher rates of tritium incorporation into both fatty acid and sterol fractions at assay temperatures of 15 degrees C and 20 degrees C than did hepatocytes from warm-acclimated trout. Tritium incorporation into the fatty acid fraction was nearly temperature independent in hepatocytes from warm-acclimated trout (Q10 = 1.39) but markedly temperature dependent (Q10 = 2.63) in hepatocytes from cold-acclimated trout; in contrast, rates of sterol synthesis were more temperature dependent in warm-acclimated trout. At 5 degrees C, fatty acid lipogenesis comprised a significantly greater percentage of the total tritium incorporation in hepatocytes from warm-acclimated trout and the percentage of total lipogenesis attributable to fatty acids decreased significantly in warm-acclimated trout as the assay temperature increased; the opposite trends were observed in cold-acclimated trout.  相似文献   

12.
Use of the isolated perfused rat lung in studies on lung lipid metabolism   总被引:1,自引:0,他引:1  
A procedure for the use of the isolated perfused rat lung in studies on metabolic regulation has been developed. The procedure, reasonably uncomplicated, yet physiological, maintains the lung so that edema is not observed. The phospholipid content remains normal, and incorporation of [1-(14)C]-palmitate, [2-(14)C]acetate, and [U-(14)C]glucose is linear with time for a minimum of 2 hr. The incorporation of [1-(14)C]-palmitate and [2-(14)C]acetate into the total lung phospholipid fraction and into the phosphatidylcholine and phospatidylethanolamine fractions has been studied. Increasing the concentration of palmitate in the medium from 0.14 to 0.51 mm increased by 60% the incorporation of [1-(14)C]palmitate into the total lung phospholipid fraction at 2 hr. When the palmitate concentration of the medium was 0.14 mm, addition of 0.11 and 0.79 mm oleate to the medium decreased [1-(14)C]palmitate incorporation into the total lung phospholipid fraction at 2 hr by 37 and 49%, respectively. The results suggest that the incorporation of exogenous fatty acids, present in the medium perfusing the lung, into lung phospholipids may depend upon the fatty acid composition of the medium. Known specific acyltransferase activities may be responsible for the ordered incorporation of available fatty acids into lung phospholipids.  相似文献   

13.
The paper deals with a regulatory effect of the redox state of nicotinamide coenzymes on glyceroneogenesis in the epididymal fatty tissues involving incorporation of [2-14C] pyruvate into synthetized de novo blood glucose, glycerol and fatty acids of triacyglycerines. Large values of the NAD+/NADH and NADP+/NADPH ratios in cytoplasm and mitochondria promote a high rate of lipogenesis and glucose oxidation processes, which is pronounced in a more intense 14C incorporation into fatty acids than in triacylglycerol glycerols. A decrease in the NAD+/NADH ratio and an increase in the reducing ability of NAD-pairs under fasting intensify glyceroneogenesis in the fatty tissue. The incorporation of [14C] pyruvate into blood glucose in 3.6 times as high, the radioactivity of fatty acids lowers. Nicotinamide administered to animals after fastening inhibits glyceroneogenesis in the fatty tissue, lowering considerably the incorporation of [14C] pyruvate into triacylglycerol glycerol and blood glucose.  相似文献   

14.
The contribution of hepatic glycogen to lipogenesis was studied in isolated, intact rat hepatocytes. To establish its importance as a substrate for lipogenesis, the glycogen of isolated hepatocytes was prelabelled with 14C from glucose. Evidence is presented that neither glucose nor glycogen constitute major sources of carbon for de novo synthesis of fatty acids and that less than 1% of glycogen is converted into fatty acids.  相似文献   

15.
1. The effects of fasting on the neutral lipid synthesis to insulin and/or epinephrine in isolated fat cells have been examined using [1-14C]glucose. 2. The ability of adipocytes from starved rats to synthesize fatty acids from both labeled substrates was markedly diminished compared to adipocytes from control rats. 3. The response of lipogenic stimulation to insulin at all concentrations tested was greatly diminished in adipocytes from 24 hr starved rats. 4. [1-14C]glucose utilization rates in the absence or in the presence of insulin were not significantly different in adipocytes from 24 hr starved rats as compared with control adipocytes, although basal and insulin stimulated glyceride-glycerol synthesis were significantly higher in starved adipocytes. 5. Epinephrine acutely inhibited [1-14C]acetate incorporation into fatty acids for insulin-stimulated lipogenesis in control adipocytes, in contrast, this lipolytic agent strongly increased [1-14C]glucose conversion to triacylglycerols. 6. In both cases, the differences in lipid synthesis capacities found in both nutritional states were abolished by epinephrine.  相似文献   

16.
1. Short-term effects of lipolytic agents in the absence or in the presence of insulin on fatty acid biosynthesis have been examined, in terms of the control rate of [1-14C]acetate incorporation into labeled fatty acids in the presence of glucose, as stimulator of lipogenesis by generating NADPH for the process. 2. The relationship between lipogenesis and lipolysis in the absence or in the presence of insulin was compared with a variety of adenylate cyclase activators. 3. The data obtained reveal that a reciprocal relationship exists between lipogenesis and lipolysis. 4. The changes in the activity of hexose monophosphate shunt produced by activation or inhibition of lipogenic process has been studied. 5. The regulation of the hexose monophosphate shunt activity mainly by the intracellular fatty acyl-CoA concentration and NADPH/NADP ratio is discussed.  相似文献   

17.
Stimulation of VLDL production by increasing fatty acid availability is now well established. However, a possible regulatory role of glycerol, another lipid precursor, in VLDL synthesis by the liver has not yet been substaniated. The present experiments investigate this problem using the isolated perfused rat liver. [14C] Glycerol uptake and metabolism were studied at two different glycerol concentrations: 1 mumol/perfusate (control) or 1.6 mmol/perfusate. VLDL production and lipid synthesis were investigated using [14C]leucine and several labelled fatty acids as precursors in control and glycerol-overloaded livers. Neoglycogenesis and lipogenesis from glycerol carbons are negligible in our conditions. The absolute amount of glycerol, but not the precentage, taken up by the liver, increased after raising its concentration in the perfusate. A major part of exogenous (plasmatic) glycerol was esterified with endogenous (non plasmatic) fatty acids. Incorporation of radioactive fatty acids into liver or plasma lipids was lower than in the the control group. Significant differences were observed between saturated and unsaturated fatty acids used as lipid precursors. Production of VLDL as assessed by radioactive leucine and fatty acid incorporation in the VLDL of the perfusate was depressed by glycerol. Glycerol partly inhibits the normal stimulation of VLDL production by plasmatic fatty acid overload.  相似文献   

18.
During the growth (35 g-340 g), and as compared to results obtained with a lipid-free diet or a diet containing long-chain fatty acids, high levels of Tri C8 : O or Tri C12 : O did not change the quantitative aspects of proteinogenesis and lipogenesis balances. The incorporation of Tri C8 : O into the diet did not change the fatty acid composition of body lipid stores while the incorporation of Tri C12 : O induced a lipogenesis characterized by the disappearance of about 50% of the n-9 and n-7 unsaturated fatty acids, the emergence of an equivalent amount of saturated fatty acids in C12 and C14, and the decrease of hexadecanoic or palmitic acid concentration. Titers of saturated fatty acids with a melting point higher than 40 degrees C increased from 34% to 64%. Results suggested an efficient inhibition of fatty acid biosynthesis de novo by C12 : O, associated with an impossibility for microsomal enzymes to assume the elongation of a sufficient amount of C12 : O to maintain C16 : O concentration and to furnish an important amount of substrate (C18 : O) to delta-9-stearoyl coenzyme A desaturase for oleic acid synthesis. Introducing dodecanoic acid into the diet of growing animals appears to be the most efficient method for increasing the degree of saturation of body lipids without changing the concentrations of long-chain saturated fatty acids.  相似文献   

19.
In order to determine the main organ of fatty acid synthesis de novo in the dog, glucose-C incorporation into fatty acids and glucose-1-C oxidation to CO2 were measured by means of glucose-U-14C and glucose-1-14C in samples of adipose and hepatic tissues of 16 animals. For comparison of the two organs the data were referred to the respective DNA content. The rate of glucose-C incorporation into fatty acids of adipose tissue exceeded that of hepatic tissue about 1000-fold. Therefore, the adipose tissue is to be considered the almost exclusive organ of lipogenesis in the adult dog. Glucose-1-C oxidation and glucose-C incorporation in adipose tissue were correlated by r = 0.887. Consequences of these results may be of concern in model experiments using dogs.  相似文献   

20.
1. Administration of cycloheximide (an inhibitor of protein synthesis) to lactating rats raised the concentrations of amino acids, and in particular, the branched-chain amino acids (valine, leucine and isoleucine) in blood, liver and mammary gland. 2. Inhibition of protein synthesis increased the incorporation in vivo of L-[U-14C]leucine into lipids of mammary gland and liver. 3. Cycloheximide treatment caused no immediate change in the overall rate of lipogenesis in vivo (measured with 3H2O) in mammary gland but increased the rate in liver 3-fold; this latter effect also occurred in livers of virgin rats. 4. The increased rate of hepatic lipogenesis was not accompanied by significant changes in the plasma insulin concentration or the activity of acetyl-CoA carboxylase. 5. Although cycloheximide decreased the entry of total triacylglycerol into the circulation it did not alter the rate of secretion of newly synthesized saponifiable lipid. 6. Cycloheximide slightly stimulated lipogenesis from endogenous substrates in isolated hepatocytes, but this effect was abolished when lactate was the exogenous substrate. 7. Administration of cycloheximide to virgin rats decreased liver glycogen and increased the hepatic content of glucose 6-phosphate, pyruvate and lactate. 8. It is concluded that (a) there is no short-term link between the rate of protein synthesis and lipogenesis in the lactating mammary gland and (b) the increased rate of hepatic lipogenesis in cycloheximide-treated rats is mainly due to stimulation of glycogenolysis, glycolytic flux and consequent increased availability of pyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号