首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macromolecular complexes containing presenilins (PS1 and PS2), nicastrin, anterior pharynx defective phenotype 1 (APH-1), and PS enhancer 2 (PEN-2) mediate the intramembranous, gamma-secretase cleavage of beta-amyloid precursor protein (APP), Notch, and a variety of type 1 membrane proteins. We previously demonstrated that PEN-2 is critical for promoting endoproteolysis of PS1 and that the proximal two-thirds of transmembrane domain (TMD) 1 of PEN-2 is required for binding with PS1. In this study, we sought to identify the structural domains of PS1 that are necessary for binding with PEN-2. To address this issue, we generated a series of constructs encoding PS1 mutants harboring deletions or replacements of specific TMDs of PS1-NTF, and examined the effects of encoded molecules on interactions with PEN-2, stabilization and endoproteolysis of PS1, and gamma-secretase activity. We now show that PS1 TMDs 1 and 2 and the intervening hydrophilic loop are dispensable for binding to PEN-2. Furthermore, analysis of chimeric PS1 molecules that harbor replacements of each TMD with corresponding transmembrane segments from the sterol regulatory element-binding protein cleavage activating protein (SCAP) revealed that the PS1-SCAP TMD4 mutant failed to coimmunoprecipitate endogenous PEN-2, strongly suggesting that the fourth TMD of PS1 is required for interaction with PEN-2. Further mutational analyses revealed that the "NF" sequence within the TMD4 of PS1 is the minimal motif that is required for binding with PEN-2, promoting PS1 endoproteolysis and gamma-secretase activity.  相似文献   

2.
Presenilins (PS) are thought to contain the active site for presenilinase endoproteolysis of PS and gamma-secretase cleavage of substrates. The structural requirements for PS incorporation into the gamma-secretase enzyme complex, complex stability and maturation, and appropriate presenilinase and gamma-secretase activity are poorly understood. We used rescue assays to identify sequences in transmembrane domain one (TM1) of PS1 required to support presenilinase and gamma-secretase activities. Swap mutations identified an N-terminal TM1 domain that is important for gamma-secretase activity only and a C-terminal TM1 domain that is essential for both presenilinase and gamma-secretase activities. Exchange of residues 95-98 of PS1 (sw95-98) completely abolishes both activities while the familial Alzheimer's disease mutation V96F significantly inhibits both activities. Reversion of residue 96 back to valine in the sw95-98 mutant rescues PS function, identifying V96 as the critical residue in this region. The TM1 mutants do not bind to an aspartyl protease transition state analog gamma-secretase inhibitor, indicating a conformational change induced by the mutations that abrogates catalytic activity. TM1 mutant PS1 molecules retain the ability to interact with gamma-secretase substrates and gamma-secretase complex members, although Nicastrin stability is decreased by the presence of these mutants. gamma-Secretase complexes that contain V96F mutant PS1 molecules display a partial loss of function for gamma-secretase that alters the ratio of amyloid-beta peptide species produced, leading to the amyloid-beta peptide aggregation that causes familial Alzheimer's disease.  相似文献   

3.
Gamma-secretase is a multiprotein complex responsible for the intramembranous cleavage of the amyloid precursor protein and other type I transmembrane proteins. Mutations in Presenilin, the catalytic core of this complex, cause Alzheimer disease. Little is known about the structure of the protein and even less about the catalytic mechanism, which involves proteolytic cleavage in the hydrophobic environment of the cell membrane. It is basically unclear how water, needed to perform hydrolysis, is provided to this reaction. Presenilin transmembrane domains 6 and 7 seem critical in this regard, as each bears a critical aspartate contributing to catalytic activity. Current models imply that both aspartyl groups should closely oppose each other and have access to water. This is, however, still to be experimentally verified. Here, we have performed cysteine-scanning mutagenesis of both domains and have demonstrated that several of the introduced residues are exposed to water, providing experimental evidence for the existence of a water-filled cavity in the catalytic core of Presenilin. In addition, we have demonstrated that the two aspartates reside within this cavity and are opposed to each other in the native complex. We have also identified the conserved tyrosine 389 as a critical partner in the catalytic mechanism. Several additional amino acid substitutions affect differentially the processing of gamma-secretase substrates, implying that they contribute to enzyme specificity. Our data suggest the possibility that more selective gamma-secretase inhibitors could be designed.  相似文献   

4.
The gamma-secretase complex catalyzes the cleavage of the amyloid precursor protein in its transmembrane domain resulting in the formation of the amyloid beta-peptide and the cytoplasmic APP intracellular domain. The active gamma-secretase complex is composed of at least four subunits: presenilin (PS), nicastrin, Aph-1, and Pen-2, where the presence of all components is critically required for gamma-cleavage to occur. The PS proteins are themselves subjected to endoproteolytic cleavage resulting in the generation of an N-terminal and a C-terminal fragment that remain stably associated as a heterodimer. Here we investigated the effects of modifications on the C terminus of PS1 on PS1 endoproteolysis, gamma-secretase complex assembly, and activity in cells devoid of endogenous PS. We report that certain mutations and, in particular, deletions of the PS1 C terminus decrease gamma-secretase activity, PS1 endoproteolysis, and gamma-secretase complex formation. We demonstrate that the N- and C-terminal PS1 fragments can associate with each other in mutants having C-terminal truncations that cause loss of interaction with nicastrin and Aph-1. In addition, we show that the C-terminal fragment of PS1 alone can mediate interaction with nicastrin and Aph-1 in PS null cells expressing only the C-terminal fragment of PS1. Taken together, these data suggest that the PS1 N- and C-terminal fragment intermolecular interactions are independent of an association with nicastrin and Aph-1, and that nicastrin and Aph-1 interact with the C-terminal part of PS1 in the absence of an association with full-length PS1 or the N-terminal fragment.  相似文献   

5.
The γ-secretase complex is a member of the family of intramembrane cleaving proteases, involved in the generation of the Aβ peptides in Alzheimer disease. One of the four subunits of the complex, presenilin, harbors the catalytic site, although the role of the other three subunits is less well understood. Here, we studied the role of the smallest subunit, Pen-2, in vivo and in vitro. We found a profound Notch-deficiency phenotype in Pen-2-/- embryos confirming the essential role of Pen-2 in the γ-secretase complex. We used Pen-2-/- fibroblasts to investigate the structure-function relation of Pen-2 by the scanning cysteine accessibility method. We showed that glycine 22 and proline 27 in hydrophobic domain 1 of Pen-2 are essential for complex formation and stability of γ-secretase. We also demonstrated that hydrophobic domain 1 and the loop domain of Pen-2 are located in a water-containing cavity and are in short proximity to the presenilin C-terminal fragment. We finally demonstrated the essential role of Pen-2 for the proteolytic activity of the complex. Our study supports the hypothesis that Pen-2 is more than a structural component of the γ-secretase complex and may contribute to the catalytic mechanism of the enzyme.  相似文献   

6.
Nicastrin (NCT) is a type I integral membrane protein that is one of the four essential components of the gamma-secretase complex, a protein assembly that catalyzes the intramembranous cleavage of the amyloid precursor protein and Notch. Other gamma-secretase components include presenilin-1 (PS1), APH-1, and PEN-2, all of which span the membrane multiple times. The mechanism by which NCT associates with the gamma-secretase complex and regulates its activity is unclear. To avoid the misfolding phenotype often associated with introducing deletions or mutations into heavily glycosylated and disulfide-bonded proteins such as NCT, we produced chimeras between human (hNCT) and Caenorhabditis elegans NCT (ceNCT). Although ceNCT did not associate with human gamma-secretase components, all of the ceNCT/hNCT chimeras interacted with gamma-secretase components from human, C. elegans, or both, indicating that they folded correctly. A region at the C-terminal end of hNCT, encompassing the last 50 residues of its ectodomain, the transmembrane domain, and the cytoplasmic domain was important for mediating interactions with human PS1, APH-1, and PEN-2. This finding is consistent with the fact that the bulk of the gamma-secretase complex proteins resides within the membrane, with relatively small extramembranous domains. Finally, hNCT associated with hAPH-1 in the absence of PS, consistent with NCT and APH-1 forming a subcomplex prior to association with PS1 and PEN-2 and indicating that the interactions between NCT with PS1 may be indirect or stabilized by the presence of APH-1.  相似文献   

7.
8.
Macromolecular complexes containing presenilins (PS), nicastrin (NCT), APH-1, and PEN-2 mediate the gamma-secretase cleavage of the beta-amyloid precursor protein and Notch. APH-1 and NCT stabilize the PS1 holoprotein, whereas PEN-2 is critical for endoproteolysis of PS1. To define the structural domains of PEN-2 that are necessary for mediating PS1 endoproteolysis and gamma-secretase activity, we coexpressed APH-1, NCT, and PS1 together with a series of PEN-2 mutants, which harbored deletions in hydrophilic segments, or chimeric PEN-2 molecules that contained heterologous transmembrane domains (TMDs). We now report that with the exception of the PEN-2 variants with deletions proximal to the TMDs, the vast majority of the deletion variants were functional. Mutants that were nonfunctional were also unstable but were rescued by transposition of a heterologous sequence containing conservative amino acid substitutions into the deleted region. Notably, the carboxyl-terminal hydrophilic domain of PEN-2 was dispensable for promoting PS1 endoproteolysis but was critical for stabilizing the resulting PS1 derivatives. More importantly, we demonstrated that a chimeric PEN-2 with a replacement of the TMD2 with the TMD1 from sterol regulatory element binding protein 1 (SREBP-1) is fully functional but that a chimeric PEN-2 with a replacement of the TMD1 with the TMD2 from SREBP-1 is not. The function of this latter chimera was rescued by the replacement of the proximal two-thirds of the SREBP-1 TMD2 with the proximal two-thirds of the authentic TMD1 from PEN-2. These results suggest that the proximal two-thirds of the PEN-2 TMD1 is functionally important for endoproteolysis of PS1 holoproteins and the generation of PS1 fragments, essential components of the gamma-secretase complex.  相似文献   

9.
The discovery that a deficiency of presenilin 1 (PS1) decreases the production of amyloid beta-protein (Abeta) identified the presenilins as important mediators of the gamma-secretase cleavage of beta-amyloid precursor protein (APP). Recently, we found that two conserved transmembrane (TM) aspartates in PS1 are critical for Abeta production, providing evidence that PS1 either functions as a required diaspartyl cofactor for gamma-secretase or is itself gamma-secretase. Presenilin 2 (PS2) shares substantial sequence and possibly functional homology with PS1. Here, we show that the two TM aspartates in PS2 are also critical for gamma-secretase activity, providing further evidence that PS2 is functionally homologous to PS1. Cells stably co-expressing TM Asp --> Ala mutations in both PS1 and PS2 show further accumulation of the APP-derived gamma-secretase substrates, C83 and C99. The production of Abeta is reduced to undetectable levels in the conditioned media of these cells. Furthermore, endoproteolysis of the exogenous Asp mutant PS2 is absent, and endogenous PS1 C-terminal fragments are diminished to undetectable levels. Therefore, the co-expression of PS1 and PS2 TM Asp --> Ala mutants suppresses the formation of any detectable PS1 or PS2 heterodimeric fragments and essentially abolishes the production of Abeta. These results explain the residual Abeta production seen in PS1-deficient cells and demonstrate the absolute requirement of functional presenilins for Abeta generation. We conclude that presenilins, and their TM aspartates in particular, are attractive targets for lowering Abeta therapeutically to prevent Alzheimer's disease.  相似文献   

10.
11.
The Alzheimer disease-associated presenilin (PS) proteins apparently provide the active site of gamma-secretase, an unusual intramembrane-cleaving aspartyl protease. PSs principally occur as high molecular weight protein complexes that contain nicastrin (Nct) and additional so far unidentified components. Recently, PEN-2 has been implicated in gamma-secretase function. Here we identify PEN-2 as a critical component of PS1/gamma-secretase and PS2/gamma-secretase complexes. Strikingly, in the absence of PS1 and PS1/PS2, PEN-2 levels are strongly reduced. Similarly, PEN-2 levels are reduced upon RNA interference-mediated down-regulation of Nct. On the other side, down-regulation of PEN-2 by RNA interference is associated with reduced PS levels, impaired Nct maturation, and deficient gamma-secretase complex formation. We conclude that PEN-2 is an integral gamma-secretase complex component and that gamma-secretase complex components are expressed in a coordinated manner.  相似文献   

12.
Two secretases are involved in the generation of amyloid beta-peptide, the principal component of amyloid plaques in the brains of Alzheimer's disease patients. While beta-secretase is a classical aspartyl protease, gamma-secretase activity is associated with a high molecular weight complex. One of the complex components, which is critically required for gamma-secretase activity is nicastrin (NCT). Here we investigate the assembly of NCT into the gamma-secretase complex. NCT mutants either lacking the entire cytoplasmic tail, the cytoplasmic tail, and the transmembrane domain (TMD), or containing a set of heterologous TMDs were expressed in cells with strongly reduced levels of endogenous NCT. Maturation of exogenous NCT, gamma-secretase complex formation and proteolytic function was then investigated. This revealed that the cytoplasmic tail of NCT is dispensable for gamma-secretase complex assembly and function. In contrast, the authentic TMD of NCT is critically required for the interaction with gamma-secretase complex components and for formation of an active gamma-secretase complex. Neither soluble NCT lacking any membrane anchor nor NCT containing a heterologous TMD were inserted into the gamma-secretase complex. We identified the N-terminal region of the NCT TMD as a functionally important entity of NCT. These data thus demonstrate that NCT interacts with other gamma-secretase complex components via its TMD.  相似文献   

13.
Kornilova AY  Kim J  Laudon H  Wolfe MS 《Biochemistry》2006,45(24):7598-7604
Gamma-secretase is a founding member of membrane-embedded aspartyl proteases that cleave substrates within transmembrane domains, and this enzyme is an important target for the development of therapeutics for Alzheimer's disease. The structure of gamma-secretase and its precise catalytic mechanism still remain largely unknown. Gamma-secretase is a complex of four integral membrane proteins, with presenilin (PS) as the catalytic component. To gain structural and functional information about the nine-transmembrane domain (TMD) presenilin, we employed a cysteine mutagenesis/disulfide cross-linking approach. Here we report that native Cys92 is close to both Cys410 and Cys419, strongly implying that TMD1 and TMD8 are adjacent to each other. This structural arrangement also suggests that TMD8 is distorted from an ideal helix. Importantly, binding of an active site directed inhibitor, but not a docking site directed inhibitor, reduces the ability of the native cysteine pairs of PS1 to cross-link upon oxidation. These findings suggest that the conserved cysteines of TMD1 and TMD8 contribute to or allosterically interact with the active site of gamma-secretase.  相似文献   

14.
The gamma-secretase complex catalyzes intramembrane proteolysis of a number of transmembrane proteins, including amyloid precursor protein, Notch, ErbB4, and E-cadherin. gamma-Secretase is known to contain four major protein constituents: presenilin (PS), nicastrin, Aph-1, and Pen-2, all of which are integral membrane proteins. There is increasing evidence that the formation of the complex and the stability of the individual components are tightly controlled in the cell, assuring correct composition of functional complexes. In this report, we investigate the topology, localization, and mechanism for destabilization of Pen-2 in relation to PS function. We show that PS1 regulates the subcellular localization of Pen-2: in the absence of PS, Pen-2 is sequestered in the endoplasmic reticulum (ER) and not transported to post-ER compartments, where the mature gamma-secretase complexes reside. PS deficiency also leads to destabilization of Pen-2, which is alleviated by proteasome inhibitors. In keeping with this, we show that Pen-2, which adopts a hairpin structure with the N and C termini facing the luminal space, is ubiquitylated prior to degradation and presumably retrotranslocated from the ER to the cytoplasm. Collectively, our data suggest that failure to become incorporated into the gamma-secretase complex leads to degradation of Pen-2 through the ER-associated degradation-proteasome pathway.  相似文献   

15.
gamma-Secretase is a lipid-embedded, intramembrane-cleaving aspartyl protease that cleaves its substrates twice within their transmembrane domains (TMD): once near the cytosolic leaflet (at S3/epsilon) and again in the middle of the TMD (at S4/gamma). To address whether this unusual process occurs in two independent or interdependent steps, we investigated how mutations at the S3/epsilon site in Notch1-based substrates impact proteolysis. We demonstrate that such mutations greatly inhibit not only gamma-secretase-mediated cleavage at S3 but also at S4, independent of their impact on NICD stability. These results, together with our previous observations, suggest that hydrolysis at the center of the Notch transmembrane domain (S4/gamma) is dependent on the S3/epsilon cleavage. Notch (and perhaps all gamma-secretase substrates) may be cleaved by sequential proteolysis starting at S3.  相似文献   

16.
One of the most prominent drug targets for the treatment of Alzheimer disease is gamma-secretase, a multi-protein complex responsible for the generation of the amyloid-beta peptide. The catalytic core of the complex lies on presenilin, a multi-spanning membrane protease, the activity of which depends on two aspartate residues located in transmembrane domains 6 and 7. We have recently shown by cysteine-scanning mutagenesis that these aspartates are facing a water-filled cavity in the lipid bilayer, demonstrating how proteolytic cleavage of the substrates can be taking place within the membrane. Here, we demonstrate that transmembrane domain 9 and hydrophobic domain VII in the large cytoplasmic loop of presenilin are dynamic structural parts of this cavity. Hydrophobic domain VII is associated with transmembrane domain 7 in the membrane, probably facilitating the entrance of water molecules in the catalytic site. Transmembrane domain 9, on the other hand, exhibits a highly flexible structure, potentially involved in the transport of substrates to the catalytic site, as well as in the binding of gamma-secretase inhibitors. The conserved proline-alanine-leucine motif at the cytoplasmic part of this domain is extremely close to the catalytic Asp257 and is crucial for conformational changes leading to the activation of the catalytic site. We, also, identify a unique mutant in this domain (I437C) that specifically blocks amyloid-beta peptide production without affecting the processing of the physiologically indispensable Notch substrate. Our data are finally combined to propose a model for the architectural organization and activation of the catalytic site of presenilin.  相似文献   

17.
Gamma-secretase is a protease complex composed of presenilin (PS), nicastrin (NCT), APH-1, and PEN-2, which catalyzes intramembrane cleavage of several type I transmembrane proteins including the Alzheimer's disease-associated beta-amyloid precursor protein. We generated stable RNA interference-mediated PEN-2 knockdown cells to probe mutant PEN-2 variants for functional activity. Knockdown of PEN-2 was associated with impaired NCT maturation and deficient PS1 endoproteolysis, which was efficiently rescued by wild type or N-terminally tagged PEN-2 but not by C-terminally tagged PEN-2 or by the C-terminally truncated PEN-2-DeltaC mutant. Although the latter mutants rescued the PS1 holoprotein accumulation associated with the PEN-2 knockdown, they failed to restore normal levels of the PS1 N- and C-terminal fragments and to maturate NCT. PEN-2-DeltaC was highly unstable and rapidly turned over by proteasomal degradation consistent with its failure to become stably incorporated into the gamma-secretase complex. In addition, expression of PEN-2-DeltaC caused a selective instability of the PS1 N-/C-terminal fragment heterodimer that underwent proteasomal degradation, whereas NCT and APH-1 were stable. Interestingly, when we knocked down PEN-2 in the background of the endoproteolysis-deficient PS1 Deltaexon9 mutant, immature NCT still accumulated, demonstrating that PEN-2 is also required for gamma-secretase complex maturation when PS endoproteolysis cannot occur. Taken together, our data suggest that PEN-2 is required for the stabilization of the PS fragment heterodimer within the gamma-secretase complex following PS endoproteolysis. This function critically depends on the PEN-2 C terminus. Moreover, our data show that PEN-2 is generally required for gamma-secretase complex maturation independent of its activity in PS1 endoproteolysis.  相似文献   

18.
Li G  Yan Q  Oen HO  Lennarz WJ 《Biochemistry》2003,42(37):11032-11039
Wbp1p, a type I transmembrane protein, is an essential component of oligosaccharyl transferase (OT), which consists of nine different subunits in yeast. It has been proposed that three subunits, Wbp1p, Ost2p, and Swp1p, physically interact with each other, but the mechanism of these interactions is unknown. To explore the mode of interaction, we have focused on the single-transmembrane protein, Wbp1p, and made several deletions and mutations within the short cytosolic domain and the transmembrane domain. Our results show that the deletion of the cytosolic domain has no effect on cell growth, but mutation of all 17 amino acids in the transmembrane domain to 17 Leu residues or replacement of the transmembrane and cytosolic domains with the counterparts of Ost1p results in lethality. Immunoprecipitation experiments show that Wbp1p mutated in these two ways is not incorporated into the OT complex. This finding suggests that the transmembrane domain of Wbplp may mediate its association with the other subunits. A series of mutations of the transmembrane domain have revealed that block alterations in the half of the transmembrane domain facing the lumen of the endoplasmic reticulum (ER) impaired cell viability. Seven single-Lys mutants in the same domain were temperature sensitive for growth at 37 degrees C. In contrast, block mutations in the other half of the transmembrane domain facing the cytosol did not result in lethality and indicated that this portion of the transmembrane domain was not involved in stable incorporation of Wbp1p into the OT complex.  相似文献   

19.
Gamma-secretase is a member of a new class of proteases with an intramembrane catalytic site and cleaves numerous type I membrane proteins, including the amyloid beta-protein precursor (APP) and the Notch receptor. Biochemical and genetic studies have identified four membrane proteins as components of gamma-secretase: a heterodimeric form of presenilin (PS), composed of its N- and C-terminal fragments (PS-NTF and PS-CTF, respectively), a highly glycosylated, mature form of nicastrin (NCT), Aph-1, and Pen-2. However, it is unclear how these components interact physically with each other and assemble into functional complexes. We and others recently found that Aph-1 interacts with a less glycosylated, immature form of nicastrin as an intermediate toward full assembly of gamma-secretase. Here we show that (1) the detergent dodecyl beta-d-maltoside (DDM) mediates the dissociation and inactivation of active gamma-secretase in a concentration-dependent manner, (2) DDM-dependent dissociation of the active gamma-secretase complex generates two major inactive complexes (Pen-2-PS1-NTF and mNCT-Aph-1) and two minor inactive complexes (mNCT-Aph1-PS1-CTF and PS1-NTF-PS1-CTF), and (3) Pen-2 can also associate with the PS holoprotein in complexes devoid of NCT and Aph-1. Taken together, our results demonstrate that Pen-2 interacts with PS-NTF within active gamma-secretase and offer a model for how the components of active gamma-secretase interact physically with each other.  相似文献   

20.
gamma-Secretase is an enzymatic activity responsible for the final cleavage of the amyloid precursor protein leading to the production of the amyloid beta-peptide (Abeta). gamma-Secretase is likely an aspartyl protease, since its activity can be inhibited by both pepstatin and active-site directed aspartyl protease inhibitors. Recent work has indicated that presenilins 1 and 2 may actually be the gamma-secretase enzymes. Presenilin (PS) mutations, which lead to an increase in the production of a longer form of Abeta, are also the most common cause of familial Alzheimer's disease (FAD). Therefore, in an attempt to better characterize the substrate preferences of gamma-secretase, we performed experiments to determine how FAD-linked mutations in PS1 would affect the generation of Abeta peptides from full length precursor substrates that we have previously demonstrated to be proteolytically cleaved at alternative sites and/or by enzymatic activities that are pharmacologically distinct. Presenilin mutations increased the production of Abeta peptides from sites distal to the primary cleavage site ('longer' peptides) and in several cases also decreased production of 'shorter' peptides. These results support a model in which the FAD-linked mutants subtly alter the conformation of the gamma-secretase complex to favor the production of long Abeta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号