首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Incl1 conjugative plasmid Collb-P9 carries a psiB gene that prevents induction of the SOS response in host bacteria. This locus is located 2.5 kb downstream of the ssb (single-stranded DNA-binding protein) gene in the leading region. This portion of Collb is strikingly similar to part of the leading region of the otherwise distinct F plasmid. Expression of psiB and ssb is increased when the host cell is exposed to an SOS-inducing treatment or the Collb transfer system is derepressed. Moreover, expression of both genes on a derepressed plasmid is strongly enhanced in conjugatively infected recipient cells. Carriage of the psiB gene by Collb is shown to prevent a low level of SOS induction following conjugation. Plasmid ssb and psiB genes may function to promote installation of the replicon in the new cell.  相似文献   

2.
The IncN plasmid pKM101 (a derivative of R46), like the IncI1 plasmid ColIb-P9, carries a gene (ardA, for alleviation of restriction of DNA) encoding an antirestriction function. ardA was located about 4 kb from the origin of transfer, in the region transferred early during bacterial conjugation. The nucleotide sequence of ardA was determined, and an appropriate polypeptide with the predicted molecular weight of about 19,500 was identified in maxicells of Escherichia coli. Comparison of the deduced amino acid sequences of the antirestriction proteins of the unrelated plasmids pKM101 and ColIb (ArdA and Ard, respectively) revealed that these proteins have about 60% identity. Like ColIb Ard, pKM101 ArdA specifically inhibits both the restriction and modification activities of five type I systems of E. coli tested and does not influence type III (EcoP1) restriction or the 5-methylcytosine-specific restriction systems McrA and McrB. However, in contrast to ColIb Ard, pKM101 ArdA is effective against the type II enzyme EcoRI. The Ard proteins are believed to overcome the host restriction barrier during bacterial conjugation. We have also identified two other genes of pKM101, ardR and ardK, which seem to control ardA activity and ardA-mediated lethality, respectively. Our findings suggest that ardR may serve as a genetic switch that determines whether the ardA-encoded antirestriction function is induced during mating.  相似文献   

3.
PsiB, an anti-SOS protein, shown previously to prevent activation of RecA protein, was purified from the crude extract of PsiB overproducing cells. PsiB is probably a tetrameric protein, whose subunit has a sequence-deduced molecular mass of 15741 daltons. Using an immuno-assay with anti-PsiB antibodies, we have monitored PsiB cell concentrations produced by F and R6-5 plasmids: the latter type produces a detectable level of PsiB protein while the former does not. The discrepancy can be assigned to a Tn10 out-going promoter located upstream of psiB. When we inserted a Tn10 promoter upstream of F psiB, the F PsiB protein concentration reached the level of R6-5 PsiB. We describe here the physiological role that PsiB protein may have in the cell and how it causes an anti-SOS function. We observed that PsiB protein was transiently expressed by a wild-type F sex factor during its transmission to an Escherichia coli K-12 recipient. In an F+ x F- cross, PsiB concentration increased at least 10-fold in F- recipient bacteria after 90 minutes and declined thereafter; the psiB gene may be repressed when F plasmid replicates vegetatively. PsiB protein may be induced zygotically so as to protect F single-stranded DNA transferred upon conjugation. PsiB protein, when overproduced, may interfere with RecA protein at chromosomal single-stranded DNA sites generated by discontinuous DNA replication, thus causing an SOS inhibitory phenotype.  相似文献   

4.
Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems.  相似文献   

5.
The role of the DNA primase of IncP plasmids was examined with a derivative of RP4 containing Tn7 in the primase gene (pri). The mutant was defective in mediating bacterial conjugation, with the deficiency varying according to the bacterial strains used as donors and recipients. Complementation tests involving recombinant plasmids carrying cloned fragments of RP4 indicated that the primase acts to promote some event in the recipient cell after DNA transfer and that this requirement can be satisfied by plasmid primase made in the donor cell. It is proposed that the enzyme or its products or both are transmitted to the recipient cell during conjugation, and the role of the enzyme in the conjugative processing of RP4 is discussed. Specificity of plasmid primases was assessed with derivatives of RP4 and the IncI1 plasmid ColIb-P9, which is known to encode a DNA primase active in conjugation. When supplied in the donor cell, neither of the primases encoded by these plasmids substituted effectively in the nonhomologous conjugation system. Since ColIb primase provided in the recipient cell acted weakly on transferred RP4 DNA, it is suggested that the specificity of these enzymes reflects their inability to be transmitted via the conjugation apparatus of the nonhomologous plasmid.  相似文献   

6.
Horizontal transfer of antibiotic resistance genes carried by conjugative plasmids poses a serious health problem. As conjugative relaxases are transported to recipient cells during bacterial conjugation, we investigated whether blocking relaxase activity in the recipient cell might inhibit conjugation. For that purpose, we used an intrabody approach generating a single-chain Fv antibody library against the relaxase TrwC of conjugative plasmid R388. Recombinant single-chain Fv antibodies were engineered for cytoplasmic expression in Escherichia coli cells and either selected in vitro for their specific binding to TrwC, or in vivo by their ability to interfere with conjugation using a high-throughput mating assay. Several intrabody clones were identified showing specific inhibition against R388 conjugation upon cytoplasmic expression in the recipient cell. The epitope recognized by one of these intrabodies was mapped to a region of TrwC containing Tyr-26 and involved in the conjugative DNA-processing termination reaction. These findings demonstrate that the transferred relaxase plays an important role in the recipient cell and open a new approach to identify specific inhibitors of bacterial conjugation.  相似文献   

7.
Wastewater treatment plants (WWTPs) are designed to robustly treat polluted water. They are characterized by ceaseless flows of organic, chemical and microbial matter, followed by treatment steps before environmental release. WWTPs are hotspots of horizontal gene transfer between bacteria via conjugative plasmids, leading to dissemination of potentially hazardous genetic material such as antimicrobial resistance genes (AMRGs). While current focus is on the threat of AMRGs spreading and their environmental maintenance, conjugative plasmid transfer dynamics within and between bacterial communities still remains largely uncharted. Furthermore, current in vitro methods used to assess conjugation in complex microbiomes do not include in situ behaviours of recipient cells, resulting in partial understanding of transfers. We investigated the in vitro conjugation capacities of WWTP microbiomes from inlet sewage and outlet treated water using the broad‐host range IncP‐1 conjugative plasmid, pKJK5. A thorough molecular approach coupling metagenomes to 16S rRNA DNA/cDNA amplicon sequencing was established to characterize microbiomes using the ecological concept of functional response groups. A broad diversity of recipient bacterial phyla for the plasmid was observed, especially in WWTP outlets. We also identified permissive bacteria potentially able to cross WWTPs and engage in conjugation before and after water treatment. Bacterial activity and lifestyle seem to influence conjugation extent, as treated water copiotrophs were the most represented strategist amongst transconjugants. Correlation analysis highlighted possible plasmid transmission routes into communities between the sewage to the environment, with identification of keystone members (e.g., Arcobacter) potentially involved in cross‐border exchanges between distant Gram‐positive and Gram‐negative phyla.  相似文献   

8.
Animesh Ray  Ron Skurray 《Plasmid》1984,11(3):272-275
The leading region of the F plasmid is, by definition, the first part of the plasmid DNA to be transferred to the recipient cell during conjugation. Restriction fragments of the leading region, when cloned into the plasmid vector pACYC184, extended the maintenance of the normally unstable p15A-derived vector replicon in rec+ Escherichia coli K-12 cells. Mutations in the host's general recombination systems were found to influence the maintenance of these hybrid plasmids.  相似文献   

9.
In order to establish a gene transfer system for yeast by promiscuous conjugation, we constructed plasmid pAY101 which contained an oriT sequence derived from RK2 (IncP) and the yeast TRP1 and ARS1 genes. A conjugation mixture consisted of yeast Saccharomyces cerevisiae, E. coli harboring pAY101, and E. coli carrying a helper plasmid with mob and tra. In the conjugation mixture a tryptophan-requiring yeast mutant (trp1) was converted to be prototrophic for tryptophan at a frequency of about 10(-5) to 10(-3) per recipient cell. This E. coli-yeast conjugation system required the mob, tra, oriT, TRP1 and ARS1 genes. The mob and tra genes were trans-acting elements as in an E. coli conjugation system. The mobilization was inhibited by nalidixic acid as in a typical bacterial conjugation. DNA analysis indicated that the plasmid pAY101 was transferred from E. coli to S. cerevisiae, and retained its original structure and function in yeast host cells.  相似文献   

10.
Integrative and conjugative elements (ICEs), also known as conjugative transposons, are mobile genetic elements that can transfer from one bacterial cell to another by conjugation. ICEBs1 is integrated into the trnS-leu2 gene of Bacillus subtilis and is regulated by the SOS response and the RapI-PhrI cell-cell peptide signaling system. When B. subtilis senses DNA damage or high concentrations of potential mating partners that lack the element, ICEBs1 excises from the chromosome and can transfer to recipients. Bacterial conjugation usually requires a DNA relaxase that nicks an origin of transfer (oriT) on the conjugative element and initiates the 5'-to-3' transfer of one strand of the element into recipient cells. The ICEBs1 ydcR (nicK) gene product is homologous to the pT181 family of plasmid DNA relaxases. We found that transfer of ICEBs1 requires nicK and identified a cis-acting oriT that is also required for transfer. Expression of nicK leads to nicking of ICEBs1 between a GC-rich inverted repeat in oriT, and NicK was the only ICEBs1 gene product needed for nicking. NicK likely mediates conjugation of ICEBs1 by nicking at oriT and facilitating the translocation of a single strand of ICEBs1 DNA through a transmembrane conjugation pore.  相似文献   

11.
Engineering barriers to the spread of specific genes are of great interest both to increase the predictability of recombinant microorganisms used for environmental applications and to study the role of gene transfer in the adaptation of microbial communities to changing environments. We report here a new gene containment circuit based on a toxin-antidote pair that targets the cell DNA, i.e. the type II EcoRI restriction-modification system. The set-up involved linkage of the ecoRIR lethal gene encoding the EcoRI endonuclease (toxin) to the contained character in a plasmid and chromosomal insertion of the ecoRIM gene encoding the cognate EcoRI methylase (antidote) that protects the target DNA from restriction. Transfer of the contained character to a recipient cell lacking the antidote caused EcoRI-mediated chromosomal breaks, leading to cell death, thereby preventing gene spread. Using transformation and conjugation as mechanisms of DNA transfer and different environmentally relevant bacteria as recipients, we have shown that the potentially universal EcoRI-based containment system decreases gene transfer frequencies by more than four orders of magnitude. Analyses of the survivors escaping killing revealed a number of possible inactivation mechanisms.  相似文献   

12.
Animesh Ray  Ron Skurray 《Plasmid》1983,9(3):262-272
A segment of the F plasmid DNA, located between the origin of transfer and the primary F replication region, is the first to enter the recipient cell during conjugation.PstI,SalI, andSmaI restriction endonuclease sites have been mapped within this leading region in conjugational DNA transfer and chimeric plasmids carrying overlapping fragments of the region have been constructed. Analyses of polypeptides synthesized by maxicells carrying these chimeric plasmids have shown four new polypeptides ofMr 27,800, 23,100, 14,400, and 11,000 to be encoded by sequences within the leading region.  相似文献   

13.
The ColIb-P9 (IncI1)-encoded conjugation system supports transfer of the plasmid T-strand plus hundreds of molecules of the Sog polypeptides determined by the plasmid primase gene. Here, we report that Sog primase is abundantly donated to the recipient cell from cells carrying a non-transferable ColIb plasmid deleted of the nic site essential for DNA export. Such DNA-independent secretion of Sog primase is typical of authentic conjugation, both in being blocked when the recipient cell specifies the entry exclusion function of ColIb and in requiring the thin I1 pilus encoded by the ColIb pil system under the mating conditions used. It is proposed that Sog polypeptides form a complex with the ColIb T-strand during conjugation and aid DNA transport through processive secretion of the proteins into the recipient cell. Functional and genetic relationships between the ColIb conjugation system and other type IV secretion pathways are discussed.  相似文献   

14.
R64-11(+) donor cells that are thermosensitive for vegetative DNA replication will synthesize DNA at the restrictive temperature when recipient minicells are present. This is conjugal DNA replication because it is R64-11 DNA that is being synthesized and there is no DNA synthesis if minicells that cannot be recipients of R64-11 DNA are used. The plasmid DNA present in the donor cells before mating is transferred to recipient minicells within the first 20 min of mating, but additional copies of plasmid DNA synthesized during the mating continue to be transferred for at least 90 min. However, the transfer of R64-11 DNA to minicells is not continuous because the plasmid DNA in minicells is the size of one R64-11 molecule or smaller, and there are delays between the rounds of plasmid transfer. DNA is synthesized in minicells during conjugation, but this DNA has a molecular weight much smaller than that of R64-11. Thus, recipient minicells are defective and are not able to complete the synthesis of a DNA strand complementary to the single-stranded R64-11 DNA received from the donor cell.  相似文献   

15.
Virulence and antibiotic resistance genes transfer between bacteria by bacterial conjugation. Conjugation also mediates gene transfer from bacteria to eukaryotic organisms, including yeast and human cells. Predicting when and where genes transfer by conjugation could enhance our understanding of the risks involved in the release of genetically modified organisms, including those being developed for use as vaccines. We report here that Salmonella enterica serovar Typhimurium conjugated inside cultured human cells. The DNA transfer from donor to recipient bacteria was proportional to the probability that the two types of bacteria occupied the same cell, which was dependent on viable and invasive bacteria and on plasmid tra genes. Based on the high frequencies of gene transfer between bacteria inside human cells, we suggest that such gene transfers occur in situ. The implications of gene transfer between bacteria inside human cells, particularly in the context of antibiotic resistance, are discussed.  相似文献   

16.
17.
The homology region between the DNA of plasmid RP1ts::Tn601 and chromosome of the thermotolerant methylotrophic bacterium Methylobacterium sp. SKF240 has been constructed by transposon Tn601 translocation into the chromosome. The clones of Methylobacterium sp. SKF240 having integrated the plasmid RP1 into the chromosome have been obtained by conjugation on the basis of above mentioned genetic technique. The integration of plasmid RP1 into the chromosomal DNA of the methylotroph has been confirmed by the genetic and electrophoretic methods. Clones harbouring the integrated plasmid are able to transfer the chromosomal genes for methionine and isoleucine-valine synthesis to the recipient cells of P. aeruginosa PAO ML4262 by conjugation.  相似文献   

18.
19.
Donor bacteria containing JCFL39, a temperature-sensitive traD mutant of the F sex factor, were used at the nonpermissive temperature to accumulate stable mating pairs with recipient cells. At this stage in conjugation, extracellular F pili were removed by treatment with 0.01% sodium dodecyl sulfate. Upon then shifting to the permissive temperature for JCFL39, transfer of the F plasmid was observed. The mating pairs that were accumulated with JCFL39 at the nonpermissive temperature were readily observed by electron microscopy in wall-to-wall contact with the recipient bacteria. These results demonstrate that the traD product, which is known to be required in transferring DNA to a recipient bacterium, acts after the stage at which extracellular F pili are required. In addition, we concluded that DNA transfer takes place while donor and recipient cells are in surface contact and not necessarily through an extended F pilus as envisioned in some models of bacterial conjugation.  相似文献   

20.
Anti-restriction proteins ArdA and Ocr are specific inhibitors of type I restriction-modification enzymes. The IncI1 transmissible plasmid ColIb-P9 ardA and bacteriophage T7 0.3(ocr) genes were cloned in pUC18 vector. Both ArdA (ColIb-P9) and Ocr (T7) proteins inhibit both restriction and modification activities of the type I restriction-modification enzyme (EcoKI) in Escherichia coli K12 cells. ColIb-P9 ardA, T7 0.3(ocr), and the Photorhabdus luminescens luxCDABE genes were cloned in pZ-series vectors with the P(ltetO-1) promoter, which is tightly repressible by the TetR repressor. Controlling the expression of the lux-genes encoding bacterial luciferase demonstrates that the P(ltetO-1) promoter can be regulated over an up to 5000-fold range by supplying anhydrotetracycline to the E. coli MG1655Z1 tetR(+) cells. Effectiveness of the anti-restriction activity of the ArdA and Ocr proteins depended on the intracellular concentration. It is shown that the dissociation constants K(d) for ArdA and Ocr proteins with EcoKI enzyme differ 1700-fold: K(d) (Ocr) = 10(-10) M, K(d) (ArdA) = 1.7.10(-7) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号