首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis that exercise causes an increase in the postexercise esophageal temperature threshold for onset of cutaneous vasodilation through an alteration of active vasodilator activity was tested in nine subjects. Increases in forearm skin blood flow and arterial blood pressure were measured and used to calculate cutaneous vascular conductance at two superficial forearm sites: one with intact alpha-adrenergic vasoconstrictor activity (untreated) and one infused with bretylium tosylate (bretylium treated). Subjects remained seated resting for 15 min (no-exercise) or performed 15 min of treadmill running at either 55, 70, or 85% of peak oxygen consumption followed by 20 min of seated recovery. A liquid-conditioned suit was used to increase mean skin temperature ( approximately 4.0 degrees C/h), while local forearm temperature was clamped at 34 degrees C, until cutaneous vasodilation. No differences in the postexercise threshold for cutaneous vasodilation between untreated and bretylium-treated sites were observed for either the no-exercise or exercise trials. Exercise resulted in an increase in the postexercise threshold for cutaneous vasodilation of 0.19 +/- 0.01, 0.39 +/- 0.02, and 0.53 +/- 0.02 degrees C above those of the no-exercise resting values for the untreated site (P < 0.05). Similarly, there was an increase of 0.20 +/- 0.01, 0.37 +/- 0.02, and 0.53 +/- 0.02 degrees C for the treated site for the 55, 70, and 85% exercise trials, respectively (P < 0.05). It is concluded that reflex activity associated with the postexercise increase in the onset threshold for cutaneous vasodilation is more likely mediated through an alteration of active vasodilator activity rather than through adrenergic vasoconstrictor activity.  相似文献   

2.
The hypothesis that baroreceptor unloading during dynamic limits cutaneous vasodilation by withdrawal of active vasodilator activity was tested in seven human subjects. Increases in forearm skin blood flow (laser-Doppler velocimetry) at skin sites with (control) and without alpha-adrenergic vasoconstrictor activity (vasodilator only) and in arterial blood pressure (noninvasive) were measured and used to calculate cutaneous vascular conductance (CVC). Subjects performed two similar dynamic exercise (119 +/- 8 W) protocols with and without baroreceptor unloading induced by application of -40 mmHg lower body negative pressure (LBNP). The LBNP condition was reversed (i.e., either removed or applied) after 15 min while exercise continued for an additional 15 min. During exercise without LBNP, the increase in body core temperature (esophageal temperature) required to elicit active cutaneous vasodilation averaged 0.25 +/- 0.08 and 0.31 +/- 0.10 degrees C (SE) at control and vasodilator-only skin sites, respectively, and increased to 0.44 +/- 0.10 and 0.50 +/- 0.10 degrees C (P < 0.05 compared with without LBNP) during exercise with LBNP. During exercise baroreceptor unloading delayed the onset of cutaneous vasodilation and limited peak CVC at vasodilator-only skin sites. These data support the hypothesis that during exercise baroreceptor unloading modulates active cutaneous vasodilation.  相似文献   

3.
To investigate quantitatively how sweating and cutaneous blood flow responses at the onset of dynamic exercise are affected by increasing exercise intensity in mildly heated humans, 18 healthy male subjects performed cycle exercise at 30, 50, and 70% of maximal O2 uptake (VO2 max) for 60 s in a warm environment. The study was conducted in a climatic chamber with a regulated ambient temperature of 35 degrees C and relative humidity of 50%. The subjects rested in the semisupine position in the chamber for 60 min, and then sweating rate (SR) and skin blood flow were measured during cycle exercise at three different intensities. Changes in the heart rate, rating of perceived exertion, and mean arterial blood pressure were proportional to increasing exercise intensity, whereas esophageal and mean skin temperatures were essentially constant throughout the experiment. The SR on the chest, forearm, and thigh, but not on the palm, increased significantly with increasing exercise intensity (P < 0.05). The mean SR of the chest, forearm, and thigh increased 0.05 mg.cm-2.min-1 with an increase in exercise intensity equivalent to 10% VO2 max. On the other hand, the cutaneous vascular conductance (CVC) on the chest, forearm, and palm decreased significantly with increasing exercise intensity (P < 0.05). The mean CVC of the chest and forearm decreased 5.5% and the CVC on the palm decreased 8.0% with an increase in exercise intensity equivalent to 10% VO2 max. In addition, the reduction in CVC was greater on the palm than on the chest and forearm at all exercise intensities (P < 0.01). We conclude that nonthermal sweating and cutaneous blood flow responses are exercise intensity dependent but directionally opposite at the onset of dynamic exercise in mildly heated humans. Furthermore, cutaneous blood flow responses to increased exercise intensity are greater in glabrous (palm) than in nonglabrous (chest and forearm) skin.  相似文献   

4.
Exercise induces shifts in the internal temperature threshold at which cutaneous vasodilation begins. To find whether this shift is accomplished through the vasoconstrictor system or the cutaneous active vasodilator system, two forearm sites (0.64 cm2) in each of 11 subjects were iontophoretically treated with bretylium tosylate to locally block adrenergic vasoconstrictor control. Skin blood flow was monitored by laser-Doppler flowmetry (LDF) at those sites and at two adjacent untreated sites. Mean arterial pressure (MAP) was measured noninvasively. Cutaneous vascular conductance was calculated as LDF/MAP. Forearm sweat rate was also measured in seven of the subjects by dew point hygrometry. Whole body skin temperature was raised to 38 degrees C, and supine bicycle ergometer exercise was then performed for 7-10 min. The internal temperature at which cutaneous vasodilation began was recorded for all sites, as was the temperature at which sweating began. The same subjects also participated in studies of heat stress without exercise to obtain vasodilator and sudomotor thresholds from rest. The internal temperature thresholds for cutaneous vasodilation were higher during exercise at both bretylium-treated (36.95 +/- 0.07 degrees C rest, 37.20 +/- 0.04 degrees C exercise, P less than 0.05) and untreated sites (36.95 +/- 0.06 degrees C rest, 37.23 +/- 0.05 degrees C exercise, P less than 0.05). The thresholds for cutaneous vasodilation during rest or during exercise were not statistically different between untreated and bretylium-treated sites (P greater than 0.05). The threshold for the onset of sweating was not affected by exercise (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
To determine the effect and underlying mechanisms of exercise training and the influence of age on the skin blood flow (SkBF) response to exercise in a hot environment, 22 young (Y; 18-30 yr) and 21 older (O; 61-78 yr) men were assigned to 16 wk of aerobic (A; YA, n = 8; OA, n = 11), resistance (R; YR, n = 7; OR, n = 3), or no training (C; YC, n = 7; OC, n = 7). Before and after treatment, subjects exercised at 60% of maximum oxygen consumption (VO2 max) on a cycle ergometer for 60 min at 36 degrees C. Cutaneous vascular conductance, defined as SkBF divided by mean arterial pressure, was monitored at control (vasoconstriction intact) and bretylium-treated (vasoconstriction blocked) sites on the forearm using laser-Doppler flowmetry. Forearm vascular conductance was calculated as forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure. Esophageal and skin temperatures were recorded. Only aerobic training (functionally defined a priori as a 5% or greater increase in VO2 max) produced a decrease in the mean body temperature threshold for increasing forearm vascular conductance (36.89 +/- 0.08 to 36.63 +/- 0.08 degrees C, P < 0.003) and cutaneous vascular conductance (36.91 +/- 0.08 to 36.65 +/- 0.08 degrees C, P < 0.004). Similar thresholds between control and bretylium-treated sites indicated that the decrease was mediated through the active vasodilator system. This shift was more pronounced in the older men who presented greater training-induced increases in VO2 max than did the young men (22 and 9%, respectively). In summary, older men improved their SkBF response to exercise-heat stress through the effect of aerobic training on the cutaneous vasodilator system.  相似文献   

6.
We investigated the effect of head-down bed rest (HDBR) for 14 days on thermoregulatory sweating and cutaneous vasodilation in humans. Fluid intake was ad libitum during HDBR. We induced whole body heating by increasing skin temperature for 1 h with a water-perfused blanket through which hot water (42 degrees C) was circulated. The experimental room was air-conditioned (27 degrees C, 30-40% relative humidity). We measured skin blood flow (chest and forearm), skin temperatures (chest, upper arm, forearm, thigh, and calf), and tympanic temperature. We also measured sweat rate by the ventilated capsule method in which the skin area for measurement was drained by dry air conditioned at 27 degrees C under similar skin temperatures in both trials. We calculated cutaneous vascular conductance (CVC) from the ratio of skin blood flow to mean blood pressure. From tympanic temperature-sweat rate and -CVC relationships, we assessed the threshold temperature and sensitivity as the slope response of variables to a given change in tympanic temperature. HDBR increased the threshold temperature for sweating by 0.31 degrees C at the chest and 0.32 degrees C at the forearm, whereas it reduced sensitivity by 40% at the chest and 31% at the forearm. HDBR increased the threshold temperature for cutaneous vasodilation, whereas it decreased sensitivity. HDBR reduced plasma volume by 11%, whereas it did not change plasma osmolarity. The increase in the threshold temperature for sweating correlated with that for cutaneous vasodilation. In conclusion, HDBR attenuated thermoregulatory sweating and cutaneous vasodilation by increasing the threshold temperature and decreasing sensitivity. HDBR increased the threshold temperature for sweating and cutaneous vasodilation by similar magnitudes, whereas it decreased their sensitivity by different magnitudes.  相似文献   

7.
This study examined how local forearm temperature (Tloc) affects the responsiveness of the cutaneous vasculature to a reflex drive for vasoconstriction. We observed responses in forearm blood flow (FBF) and arterial blood pressure to a 5-min bout of supine leg exercise of moderate intensity (125-175 W) after the forearm had been locally warmed to 36, 38, 40, or 42 degrees C for 48 min. With exercise, FBF fell by 1.82 +/- 0.23, 4.06 +/- 0.58, and 3.64 +/- 1.48 ml X 100 ml-1 X min-1 at 36, 38, and 40 degrees C, respectively, and rose by 2.16 +/- 0.57 ml X 100 ml X min-1 at a Tloc of 42 degrees C (mean +/- SE). Forearm vascular conductance (FVC) fell with the onset of exercise by averages of 2.77 +/- 0.57, 7.02 +/- 0.51, 5.36 +/- 0.85, and 4.17 +/- 0.79 ml X 100 ml-1 X min-1 X 100 mmHg-1 at 36, 38, 40, and 42 degrees C, respectively. Second-order polynomial regression analysis indicated that the reductions in FVC were greatest near a Tloc of 39 degrees C and that at a Tloc of 40 or 42 degrees C the cutaneous vasoconstrictor response to the onset of exercise is attenuated. Although elevated Tloc can be used to increase base-line FBF levels to make cutaneous vasoconstrictor responses more obvious, the direct effects of Tloc on this response must also be considered. We conclude that the optimum Tloc for observing reflex cutaneous vasoconstriction is near 39 degrees C.  相似文献   

8.
To clarify the influence of internal and skin temperature on the active cutaneous vasodilation during exercise, the body temperature thresholds for the onset of active vasodilation during light or moderate exercise under different ambient temperature conditions were compared. Seven male subjects performed 30 min of a cycling exercise at 20 % or 50 % of peak oxygen uptake in a room maintained at 20, 24, or 28 °C. Esophageal (Tes) and mean skin temperature (Tsk) as measured by a thermocouple, deep thigh temperature (Tdt) by the zero-heat-flow (ZHF) method, and forearm skin blood flow by laser-Doppler flowmetry (LDF) were monitored. The mean arterial pressure (MAP) was also monitored non-invasively, and the cutaneous vascular conductance (CVC) was calculated as the LDF/MAP. Throughout the experiment, the Tsk at ambient temperatures of 20, 24, and 28 °C were approximately 30, 32, and 34 °C, respectively, for both 20 % and 50 % exercise. During 50 % exercise, the Tes or Tdt thresholds for the onset of the increase in CVC were observed to be similar among the 20, 24, and 28 °C ambient conditions. During 20 % exercise, the increase in Tes and Tdt was significantly lower than those found at 50 %, and the onset of the increase in CVC was only observed at 28 °C. These results suggest that the onset of active vasodilation was affected more strongly by the internal or exercising tissue temperatures than by the skin temperatures during exercise performed at a moderate load in comparison to a light load under Tsk variations ranging from 30 °C to 34 °C. Therefore, the modification by skin temperature of the central control on cutaneous vasomotor tone during exercise may differ between different exercise loads.  相似文献   

9.
We examined whether less convective heat loss during exercise at high altitude than at sea level was partially caused by reduced cutaneous vasodilation due to enhanced plasma water loss into contracting muscles and whether it was caused by hypoxia rather than by hypobaria. Seven young men performed cycling exercise for 40 min at 50% peak aerobic power in normoxia at (710 mmHg) 610 m, determined before the experiments, in three trials: 1) normobaric normoxia at 610 m (CNT), 2) hypobaric hypoxia [low pressure and low oxygen (LPLO)] at 3,200 m (510 mmHg), 3) normobaric hypoxia [normal pressure and low oxygen (NPLO)] at 610 m, in an artificial climate chamber where atmospheric temperature and relative humidity were maintained at 30°C and 50%, respectively. Subjects in CNT and LPLO breathed room air, whereas those in NPLO breathed a mixed gas of 14% O? balanced N?, equivalent to the gas composition in LPLO. We measured change in PV (ΔPV), oxygen consumption rate (Vo?), mean arterial blood pressure (MBP), esophageal temperature (T(es)), mean skin temperature (T(sk)), forearm skin blood flow (FBF), and sweat rate (SR) during exercise. Although Vo?, MBP, T(sk), and SR responses during exercise were similar between trials (P > 0.05), the sensitivity of forearm vascular conductance (FBF/MBP) in response to increased T(es) was lower in LPLO and NPLO than in CNT (P < 0.05), whereas that of SR was not, resulting in a greater increase in T(es) from minute 5 to 40 of exercise in LPLO and NPLO than in CNT (P = 0.026 and P = 0.011, respectively). ΔPV during exercise was twofold greater in LPLO and NPLO than in CNT. These variables were not significantly different between LPLO and NPLO. Thus reduced convective heat loss during exercise at 3,200 m was partially caused by reduced cutaneous vasodilation due to enhanced PV loss. Moreover, this may be caused by hypoxia rather than by hypobaria.  相似文献   

10.
To determine the cutaneous and resting skeletal muscle vascular responses to prolonged exercise, total forearm blood flow (FBF-plethysmography) (5 men) and forearm muscle blood flow (MBF-[125I]antipyrine clearance) (4 men) were measured throughout 55-60 min of bicycle exercise (600-750 kpm/min). Heart rate (HR) and esophageal temperature (Tes) were also measured throughout exercise. FBF showed only small changes during the first 10 min followed by progressive increments during the 10-40 min interval and smaller rises thereafter. For the full 60 min of exercise, there was an average increase in FBF of 8.26 ml/100 ml-min. MBF showed an initial fall with the onset of exercise (on the average from 3.84 to 2.13 ml/100 ml-min) which was sustained or fell further as exercise continued, indicating that increments in FBF were confined to skin. Much of the increase in FBF occurred despite essentially constant Tes. Results suggest that the progressive decrements in central venous pressure, stroke volume, and arterial pressure previously seen during prolonged exercise are due in part to progressive increments in cutaneous blood flow and volume.  相似文献   

11.
The purpose of the present study was to examine whether intensity of exercise affects skin blood flow response to exercise. For this purpose, six healthy men cycled, in a random order on different days, for 15 min at 50, 60, 70, 80, and 90% of their maximum oxygen consumption (VO2max) at a room temperature of 25 degrees C. At the end of exercise, esophageal temperature (Tes) averaged 37.4 +/- 0.2, 37.7 +/- 0.2, 37.9 +/- 0.2, 38.6 +/- 0.3, and 38.9 +/- 0.4 degrees C (SE) at the 50, 60, 70, 80, and 90% work loads, respectively. At the two highest work loads, no steady state was observed in Tes. Skin blood flow was estimated by measuring forearm blood flow (FBF) with strain-gauge plethysmography and by laser-Doppler flowmetry on the upper back. Both techniques showed that skin blood flow response to rising Tes was markedly reduced at the 90% work load compared with other work loads. At the end of exercise, FBF averaged 7.5 +/- 1.7, 10.7 +/- 3.1, 9.6 +/- 2.1, 11.3 +/- 2.6, and 5.4 +/- 1.3 (SE) ml.min-1.100 ml-1 (P less than 0.01) at the 50, 60, 70, 80, and 90% VO2max work loads, respectively. The corresponding values for Tes threshold for cutaneous vasodilation (FBF) were 37.42 +/- 0.16, 37.48 +/- 0.13, 37.59 +/- 0.13, 37.79 +/- 0.19, and 38.20 +/- 0.22 degrees C (P less than 0.05) at 50, 60, 70, 80, and 90% VO2max, respectively. In two subjects, no cutaneous vasodilation was observed at the 90% work load.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The purpose of this study was to determine whether blood flow (BF) and vascular resistance (VR) are controlled differently in the nonactive arm and leg during submaximal rhythmic exercise. In eight healthy men we simultaneously measured BF to the forearm and calf (venous occlusion plethysmography) and arterial blood pressure (sphygmomanometry) and calculated whole limb VR before (control) and during 3 min of cycling with the contralateral leg at 38, 56, and 75% of peak one-leg O2 uptake (VO2). During the initial phase of exercise (0-1.5 min) at all work loads, BF increased and VR decreased in the forearm (P less than 0.05), whereas calf BF and VR remained at control levels. Thereafter, BF decreased and VR increased in parallel and progressive fashion in both limbs. At end exercise, forearm BF and VR were not different from control values (P greater than 0.05); however, in the calf, BF tended to be lower (P less than 0.05 at 75% peak VO2 only) and VR was higher (23 +/- 9, 44 +/- 14, and 88 +/- 23% above control at 38, 56, and 75% of peak VO2, respectively, all P less than 0.05). In a second series of studies, forearm and calf skin blood flow (laser-Doppler velocimetry) and arterial pressure were measured during the same levels of exercise in six of the subjects. Compared with control, skin BF was unchanged and VR was increased (P less than 0.05) in the forearm by end exercise at all work loads, whereas calf skin BF increased (P less than 0.05) and VR decreased (P less than 0.05). The present findings indicate that skeletal muscle and skin VR are controlled differently in the nonactive forearm and calf during the initial phase of rhythmic exercise with the contralateral leg. Skeletal muscle vasodilation occurs in the forearm but not in the calf; forearm skin vasoconstricts, whereas calf skin vasodilates. Finally, during exercise a time-dependent vasoconstriction occurs in the skeletal muscle of both limbs.  相似文献   

13.
Trunk (HT), limb (HL), and whole-body (HDIR = HT + HL + Hforehead) skin-to-water heat flows were measured by heat flow transducers on nine men immersed head out in water at critical temperature (TCW = 30 +/- 2 degrees C) and below [overall water temperature (TW) range = 22-32 degrees C] after up to 3 h at rest and exercise. Body heat flow was also determined indirectly (HM) from metabolic rate corrected for changes in heat stores. At rest at TCW [O2 uptake (VO2) = 0.33 +/- 0.07 l/min, n = 7], HT = 52.3 +/- 14.2 (SD) W, HL = 56.4 +/- 14.6 W, HDIR = 120 +/- 27 W, and HM = 111 +/- 29 W (significantly different from HDIR). TW markedly affected HDIR but only slightly affected HM (n = 22 experiments at TW different from TCW plus 7 experiments at TCW). During light exercise (3 MET) at TCW (VO2 = 1.06 +/- 0.26 l/min, n = 9), HT = 122 +/- 43 W, HL = 130 +/- 27 W, HDIR = 285 +/- 69 W, and HM = 260 +/- 60 W. During severe exercise (7 MET) at TCW (VO2 = 2.27 +/- 0.50 l/min, n = 4), HT = 226 +/- 100 W, HL = 262 +/- 61 W, HDIR = 517 +/- 148 W, and HM = 496 +/- 98 W. Lowering TW at 7-MET exercise (n = 9, plus 4 at TCW) had no effect on HDIR and HM. In conclusion, resting HL and HT are equal. At TW less than TCW at rest, HDIR greater than HM, showing that unexpectedly the shell was still cooling. During exercise, HL increases more than HT but less than expected from the heat production of the working limbs. Therefore some heat produced by the limbs is probably transported by blood to the trunk. During heavy exercise, HDIR is constant at all considered TW; apparently it is regulated by some thermally dependent mechanism, such as a progressive cutaneous vasodilation occurring as TW increases.  相似文献   

14.
Mechanisms underlying the cutaneous vasodilation in response to an increase in core temperature remain unresolved. The purpose of this study was to determine a potential contribution of transient receptor potential vanilloid type 1 (TRPV-1) channels to reflex cutaneous vasodilation. Twelve subjects were equipped with four microdialysis fibers on the ventral forearm, and each site randomly received 1) 90% propylene glycol + 10% lactated Ringer (vehicle control); 2) 10 mM l-NAME; 3) 20 mM capsazepine to inhibit TRPV-1 channels; 4) combined 10 mM l-NAME + 20 mM capsazepine. Whole body heating was achieved via water-perfused suits sufficient to raise oral temperature at least 0.8°C above baseline. Maximal skin blood flow was achieved by local heating to 43°C and infusion of 28 mM nitroprusside. Systemic arterial pressure (SAP) was measured, and skin blood flow was monitored via laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was calculated as LDF/SAP and normalized to maximal vasodilation (%CVC(max)). Capsazepine sites were significantly reduced compared with control (50 ± 4%CVC(max) vs. 67 ± 5%CVC(max), respectively; P < 0.05). l-NAME (33 ± 3%CVC(max)) and l-NAME + capsazepine (30 ± 4%CVC(max)) sites were attenuated compared with control (P < 0.01) and capsazepine (P < 0.05); however, there was no difference between l-NAME and combined l-NAME + capsazepine. These data suggest TRPV-1 channels participate in reflex cutaneous vasodilation and TRPV-1 channels may account for a portion of the NO component. TRPV-1 channels may have a direct neural contribution or have an indirect effect via increased arterial blood temperature. Whether the TRPV-1 channels directly or indirectly contribute to reflex cutaneous vasodilation remains uncertain.  相似文献   

15.
The purpose of this study was to examine the hypothesis that the operating point of the cardiopulmonary baroreflex resets to the higher cardiac filling pressure of exercise associated with the increased cardiac filling volumes. Eight men (age 26 +/- 1 yr; height 180 +/- 3 cm; weight 86 +/- 6 kg; means +/- SE) participated in the present study. Lower body negative pressure (LBNP) was applied at 8 and 16 Torr to decrease central venous pressure (CVP) at rest and during steady-state leg cycling at 50% peak oxygen uptake (104 +/- 20 W). Subsequently, two discrete infusions of 25% human serum albumin solution were administered until CVP was increased by 1.8 +/- 0.6 and 2.4 +/- 0.4 mmHg at rest and 2.9 +/- 0.9 and 4.6 +/- 0.9 mmHg during exercise. During all protocols, heart rate, arterial blood pressure, and CVP were recorded continuously. At each stage of LBNP or albumin infusion, forearm blood flow and cardiac output were measured. During exercise, forearm vascular conductance increased from 7.5 +/- 0.5 to 8.7 +/- 0.6 U (P = 0.024) and total systemic vascular conductance from 7.2 +/- 0.2 to 13.5 +/- 0.9 l.min(-1).mmHg(-1) (P < 0.001). However, there was no significant difference in the responses of both forearm vascular conductance and total systemic vascular conductance to LBNP and the infusion of albumin between rest and exercise. These data indicate that the cardiopulmonary baroreflex had been reset during exercise to the new operating point associated with the exercise-induced change in cardiac filling volume.  相似文献   

16.
Our aim was to test the hypothesis that apnea-induced hemodynamic responses during dynamic exercise in humans differ between those who show strong bradycardia and those who show only mild bradycardia. After apnea-induced changes in heart rate (HR) were evaluated during dynamic exercise, 23 healthy subjects were selected and divided into a large response group (L group; n = 11) and a small response group (S group; n = 12). While subjects performed a two-legged dynamic knee extension exercise at a work load that increased HR by 30 beats/min, apnea-induced changes in HR, cardiac output (CO), mean arterial pressure (MAP), arterial O(2) saturation (Sa(O(2))), forearm blood flow (FBF), and leg blood flow (LBF) were measured. During apnea, HR in the L group (54 ± 2 beats/min) was lower than in the S group (92 ± 3 beats/min, P < 0.05). CO, Sa(O(2)), FBF, LBF, forearm vascular conductance (FVC), leg vascular conductance (LVC), and total vascular conductance (TVC) were all reduced, and MAP was increased in both groups, although the changes in CO, TVC, LBF, LVC, and MAP were larger in the L group than in the S group (P < 0.05). Moreover, there were significant positive linear relationships between the reduction in HR and the reductions in TVC, LVC, and FVC. We conclude that individuals who show greater apnea-induced bradycardia during exercise also show greater vasoconstriction in both active and inactive muscle regions.  相似文献   

17.
We sought to investigate further the roles of sweating, ACh spillover, and nitric oxide (NO) in the neurally mediated cutaneous vasodilation during body heating in humans. Six subjects were heated with a water-perfused suit while cutaneous blood flow was measured with a laser-Doppler flowmeter. After a rise in core temperature (1. 0 +/- 0.1 degrees C) and the establishment of cutaneous vasodilation, atropine and subsequently the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) were given to the forearm via a brachial artery catheter. After atropine infusion, cutaneous vascular conductance (CVC) remained constant in five of six subjects, whereas L-NAME administration blunted the rise in CVC in three of six subjects. A subsequent set of studies using intradermal microdialysis probes to selectively deliver drugs into forearm skin confirmed that atropine did not affect CVC. However, perfusion of L-NAME resulted in a significant decrease in CVC (37 +/- 4%, P < 0.05). The results indicate that neither sweating nor NO release via muscarinic receptor activation is essential to sustain cutaneous dilation during heating in humans.  相似文献   

18.
We evaluated postexercise venous pooling as a factor leading to previously reported increases in the postexercise esophageal temperature threshold for cutaneous vasodilation (ThVD) and sweating (ThSW). Six subjects were randomly exposed to lower body positive pressure (LBPP) and to no LBPP after an exercise and no-exercise treatment protocol. The exercise treatment consisted of 15 min of upright cycling at 65% of peak oxygen consumption, and the no-exercise treatment consisted of 15 min upright seated rest. Immediately after either treatment, subjects donned a liquid-conditioned suit used to regulate mean skin temperature and then were positioned within an upright LBPP chamber. The suit was first perfused with 20 degrees C water to control and stabilize skin and core temperature before whole body heating. Subsequently the skin was heated ( approximately 4.0 degrees C/h) until cutaneous vasodilation and sweating occurred. Forearm skin blood flow and arterial blood pressure were measured noninvasively and were used to calculate cutaneous vascular conductance during whole body heating. Sweat rate response was estimated from a 5.0-cm2 ventilated capsule placed on the upper back. Postexercise ThVD and ThSW were both significantly elevated (0.27 +/- 0.04 degrees C and 0.25 +/- 0.04 degrees C, respectively) compared with the no-exercise trial without LBPP (P < 0.05). However, the postexercise increases in both ThVD and ThSW were reversed with the application of LBPP. Our results support the hypothesis that the postexercise warm thermal responses of cutaneous vasodilation and sweating are attenuated by baroreceptor modulation via lower body venous pooling.  相似文献   

19.
Aging appears to attenuate leg blood flow during exercise; in contrast, such data are scant and do not support this contention in the arm. Therefore, to determine whether aging has differing effects on blood flow in the arm and leg, eight young (22 +/- 6 yr) and six old (71 +/- 15 yr) subjects separately performed dynamic knee extensor [0, 3, 6, 9 W; 20, 40, 60% maximal work rate (WRmax)] and handgrip exercise (3, 6, 9 kg at 0.5 Hz; 20, 40, 60% WRmax). Arterial diameter, blood velocity (Doppler ultrasound), and arterial blood pressure (radial tonometry) were measured simultaneously at each of the submaximal workloads. Quadriceps muscle mass was smaller in the old (1.6 +/- 0.1 kg) than the young (2.1 +/- 0.2 kg). When normalized for this difference in muscle mass, resting seated blood flow was similar in young and old subjects (young, 115 +/- 28; old, 114 +/- 39 ml x g(-1) x min(-1)). During exercise, blood flow and vascular conductance were attenuated in the old whether expressed in absolute terms for a given absolute workload or more appropriately expressed as blood flow per unit muscle mass at a given relative exercise intensity (young, 1,523 +/- 329; old, 1,340 +/- 157 ml x kg(-1) x min(-1) at 40% WRmax). In contrast, aging did not affect forearm muscle mass or attenuate rest or exercise blood flow or vascular conductance in the arm. In conclusion, aging induces limb-specific alterations in exercise blood flow regulation. These alterations result in reductions in leg blood flow during exercise but do not impact forearm blood flow.  相似文献   

20.
The effect of 33 h of wakefulness on the control of forearm cutaneous blood flow and forearm sweating during exercise was studied in three men and three women. Subjects exercised for 30 min at 60% peak O2 consumption while seated behind a cycle ergometer (Ta = 35 degrees C, Pw = 1.0 kPa). We measured esophageal temperature (Tes), mean skin temperature, and arm sweating continuously and forearm blood flow (FBF) as an index of skin blood flow, twice each minute by venous occlusion plethysmography. During steady-state exercise, Tes was unchanged by sleep loss. The sensitivity of FBF to Tes was depressed an average of 30% (P less than 0.05) after 33 h of wakefulness with a slight decrease (-0.15 degrees C, P less than 0.05) in the core temperature threshold for vasodilatory onset. Sleep loss did not alter the Tes at which the onset of sweating occurred; however, sensitivity of arm sweating to Tes tended to be lower but was not significant. Arm skin temperature was not different between control and sleep loss experiments. Reflex cutaneous vasodilation during exercise appeared to be reduced by both central and local factors after 33 h of wakefulness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号