共查询到20条相似文献,搜索用时 15 毫秒
1.
Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5′UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5′UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure, as viral IRES, but are instead dependent upon short motifs and trans-acting factors for their function. 相似文献
2.
Basu A Das P Chaudhuri S Bevilacqua E Andrews J Barik S Hatzoglou M Komar AA Mazumder B 《Molecular and cellular biology》2011,31(22):4482-4499
Protein syntheses mediated by cellular and viral internal ribosome entry sites (IRESs) are believed to have many features in common. Distinct mechanisms for ribosome recruitment and preinitiation complex assembly between the two processes have not been identified thus far. Here we show that the methylation status of rRNA differentially influenced the mechanism of 80S complex formation on IRES elements from the cellular sodium-coupled neutral amino acid transporter 2 (SNAT2) versus the hepatitis C virus mRNA. Translation initiation involves the assembly of the 48S preinitiation complex, followed by joining of the 60S ribosomal subunit and formation of the 80S complex. Abrogation of rRNA methylation did not affect the 48S complex but resulted in impairment of 80S complex assembly on the cellular, but not the viral, IRESs tested. Impairment of 80S complex assembly on the amino acid transporter SNAT2 IRES was rescued by purified 60S subunits containing fully methylated rRNA. We found that rRNA methylation did not affect the activity of any of the viral IRESs tested but affected the activity of numerous cellular IRESs. This work reveals a novel mechanism operating on a cohort of cellular IRESs that involves rRNA methylation for proper 80S complex assembly and efficient translation initiation. 相似文献
3.
In recent years mechanism of internal initation of translation in eukaryotic cells commands the attention of molecular biologists
in increasing frequency. Ten years ago, experiments with picornaviruses demonstrated the ability of 40S ribosomal subunits
to bind to nucleotide sequences localized far from the 5′ ends of RNA molecules, and since then numerous viral and even cellular
RNAs were shown to be capable of internal initiation of translation. In the present survey, data on the localization, structure,
and functional load of these internal ribosome entry sites (IRES elements) of viral and cellular RNAs, as well as on proteins
capable of strong and highly specific binding to IRES elements, are discussed. A conclusion is that a unified model of structure
and fuctioning of viral and cellular IRES elements cannot be suggested. 相似文献
4.
5.
A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry
下载免费PDF全文

Terenin IM Dmitriev SE Andreev DE Royall E Belsham GJ Roberts LO Shatsky IN 《Molecular and cellular biology》2005,25(17):7879-7888
Rhopalosiphum padi virus (RhPV) is an insect virus of the Dicistroviridae family. Recently, the 579-nucleotide-long 5' untranslated region (UTR) of RhPV has been shown to contain an internal ribosome entry site (IRES) that functions efficiently in mammalian, plant, and insect in vitro translation systems. Here, the mechanism of action of the RhPV IRES has been characterized by reconstitution of mammalian 48S initiation complexes on the IRES from purified components combined with the toeprint assay. There is an absolute requirement for the initiation factors eIF2 and eIF3 and the scanning factor eIF1 to form 48S complexes on the IRES. In addition, eIF1A, eIF4F (or the C-terminal fragment of eIF4G), and eIF4A strongly stimulated the assembly of this complex, whereas eIF4B had no effect. Although the eIF4-dependent pathway is dominant in the RhPV IRES-directed cell-free translation, omission of either eIF4G or eIF4A or both still allowed the assembly of 48S complexes from purified components with approximately 23% of maximum efficiency. Deletions of up to 100 nucleotides throughout the 5'-UTR sequence produced at most a marginal effect on the IRES activity, suggesting the absence of specific binding sites for initiation factors. Only deletion of the U-rich unstructured 380-nucleotide region proximal to the initiation codon resulted in a complete loss of the IRES activity. We suggest that the single-stranded nature of the RhPV IRES accounts for its strong but less selective potential to bind key mRNA recruiting components of the translation initiation apparatus from diverse origins. 相似文献
6.
Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites 总被引:10,自引:0,他引:10
下载免费PDF全文

Studies on the control of eukaryotic translation initiation by a cap-independent recruitment of the 40S ribosomal subunit to internal messenger RNA sequences called internal ribosome entry sites (IRESs) have shown that these sequence elements are present in a growing list of viral and cellular RNAs. Here we discuss their prevalence, mechanisms whereby they may function and their uses in regulating gene expression. 相似文献
7.
A reporter gene construct was used to study the regulation of connexin43 (Cx43) expression, the major gap junction protein found in heart and uterus, in transfected cell lines. The construct had the firefly luciferase gene under the control of the Cx43 promoter. Inclusion of the 5'-untranslated region (UTR) of the mRNA in the construct increased luciferase expression by 70%. A bicistronic vector assay demonstrated that the Cx43 5'-UTR contains a strong internal ribosome entry site (IRES). Deletion analysis localized the IRES element to the upstream portion of the 5'-UTR. 相似文献
8.
Laura Rocchi Annalisa Pacilli Rajni Sethi Marianna Penzo Robert J. Schneider Davide Treré Maurizio Brigotti Lorenzo Montanaro 《Nucleic acids research》2013,41(17):8308-8318
Dyskerin is a nucleolar protein encoded by the DKC1 gene that (i) stabilizes the RNA component of the telomerase complex, and (ii) drives the site-specific pseudouridilation of rRNA. It is known that the partial lack of dyskerin function causes a defect in the translation of a subgroup of mRNAs containing internal ribosome entry site (IRES) elements such as those encoding for the tumor suppressors p27 and p53. In this study, we aimed to analyze what is the effect of the lack of dyskerin on the IRES-mediated translation of mRNAs encoding for vascular endothelial growth factor (VEGF). We transiently reduced dyskerin expression and measured the levels of the IRES-mediated translation of the mRNA encoding for VEGF in vitro in transformed and primary cells. We demonstrated a significant increase in the VEGF IRES-mediated translation after dyskerin knock-down. This translational modulation induces an increase in VEGF production in the absence of a significant upregulation in VEGF mRNA levels. The analysis of a list of viral and cellular IRESs indicated that dyskerin depletion can differentially affect IRES-mediated translation. These results indicate for the first time that dyskerin inhibition can upregulate the IRES translation initiation of specific mRNAs. 相似文献
9.
A cell cycle-dependent internal ribosome entry site 总被引:10,自引:0,他引:10
The eukaryotic mRNA 5' cap structure facilitates translation. However, cap-dependent translation is impaired at mitosis, suggesting a cap-independent mechanism for mRNAs translated during mitosis. Translation of ornithine decarboxylase (ODC), the rate-limiting enzyme in the biosynthesis of polyamines, peaks twice during the cell cycle, at the G1/S transition and at G2/M. Here, we describe a cap-independent internal ribosome entry site (IRES) in the ODC mRNA that functions exclusively at G2/M. This ensures elevated levels of polyamines, which are implicated in mitotic spindle formation and chromatin condensation. c-myc mRNA also contains an IRES that functions during mitosis. Thus, IRES-dependent translation is likely to be a general mechanism to synthesize short-lived proteins even at mitosis, when cap-dependent translation is interdicted. 相似文献
10.
Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism 总被引:1,自引:0,他引:1
Young RM Wang SJ Gordan JD Ji X Liebhaber SA Simon MC 《The Journal of biological chemistry》2008,283(24):16309-16319
11.
Although studies on viral gene expression were essential for the discovery of internal ribosome entry sites (IRESs), it is becoming increasingly clear that IRES activities are present in a significant number of cellular mRNAs. Remarkably, many of these IRES elements initiate translation of mRNAs encoding proteins that protect cells from stress (when the translation of the vast majority of cellular mRNAs is significantly impaired). The purpose of this review is to summarize the progress on the discovery and function of cellular IRESs. Recent findings on the structures of these IRESs and specifically regulation of their activity during nutritional stress, differentiation, and mitosis will be discussed. 相似文献
12.
The p53 tumour suppressor protein has a crucial role in cell-cycle arrest and apoptosis. Previous reports show that the p53 messenger RNA is translated to produce an amino-terminal-deleted isoform (DeltaN-p53) from an internal initiation codon, which acts as a dominant-negative inhibitor of full-length p53. Here, we show that two internal ribosome entry sites (IRESs) mediate the translation of both full-length and DeltaN-p53 isoforms. The IRES directing the translation of full-length p53 is in the 5'-untranslated region of the mRNA, whereas the IRES mediating the translation of DeltaN-p53 extends into the protein-coding region. The two IRESs show distinct cell-cycle phase-dependent activity, with the IRES for full-length p53 being active at the G2-M transition and the IRES for DeltaN-p53 showing highest activity at the G1-S transition. These results indicate a novel translational control of p53 gene expression and activity. 相似文献
13.
14.
Keith A. Spriggs Laura C. Cobbold Simon H. Ridley Mark Coldwell Andrew Bottley Martin Bushell Anne E. Willis Kenneth Siddle 《Nucleic acids research》2009,37(17):5881-5893
Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5′-UTR of the mRNA encoding human insulin receptor (hIR) contains a functional IRES. RNAi-mediated knockdown showed that the protein PTB was required for maximum IRES activity. Electrophoretic mobility shift assays confirmed that PTB1, PTB2 and nPTB, but not unr or PTB4, bound to hIR mRNA, and deletion mapping implicated a CCU motif 448 nt upstream of the initiator AUG in PTB binding. The IR-IRES was functional in a number of cell lines, and most active in cells of neuronal origin, as assessed by luciferase reporter assays. The IRES was more active in confluent than sub-confluent cells, but activity did not change during differentiation of 3T3-L1 fibroblasts to adipocytes. IRES activity was stimulated by insulin in sub-confluent cells. The IRES may function to maintain expression of IR protein in tissues such as the brain where mRNA translation by cap-dependent scanning is less effective. 相似文献
15.
16.
Some viral and cellular messages use an alternative mechanism to initiate protein synthesis that involves internal recruitment of the ribosome to an internal ribosome entry site (IRES). The Dicistroviridae intergenic regions (IGR) have been studied as model IRESs to understand the mechanism of IRES-mediated translation. In this study, the in vivo activity of IGR IRESs were compared. Our analysis demonstrates that Class I and II IGR IRESs have comparable translation efficiency in yeast and that Class II is significantly more active in mammalian cells. Furthermore, while Class II IGR IRES activity was enhanced in yeast grown at a higher temperature, temperature did not affect IGR IRES activity in mammalian cells. This suggests that Class II IRESs may not function optimally with yeast ribosomes. Examination of chimeric IGR IRESs, established that the IRES strength and temperature sensitivity are mediated by the ribosome binding domain. In addition, the sequence of the first translated codon is also an important determinant of IRES activity. Our findings provide us with a comprehensive overview of IGR IRES activities and allow us to begin to understand the differences between Classes I and II IGR IRESs. 相似文献
17.
Cytoplasmic serine hydroxymethyltransferase (cSHMT) enzyme levels are elevated by the expression of the heavy chain ferritin (H ferritin) cDNA in cultured cells without corresponding changes in mRNA levels, resulting in enhanced folate-dependent de novo thymidylate biosynthesis and impaired homocysteine remethylation. In this study, the mechanism whereby H ferritin regulates cSHMT expression was determined. cSHMT translation is shown to be regulated by an H ferritin-responsive internal ribosome entry site (IRES) located within the cSHMT mRNA 5'-untranslated region (5'-UTR). The cSHMT 5'-UTR exhibited IRES activity during in vitro translation of bicistronic mRNA templates, and in MCF-7 and HeLa cells transfected with bicistronic mRNAs. IRES activity was depressed in H ferritin-deficient mouse embryonic fibroblasts and elevated in cells expressing the H ferritin cDNA. H ferritin was shown to interact with the mRNA-binding protein CUGBP1, a protein known to interact with the alpha and beta subunits of eukaryotic initiation factor eIF2. Small interference RNA-mediated depletion of CUGBP1 decreased IRES activity from bicistronic templates that included the cSHMT 3'-UTR in the bicistronic construct. The identification of this H ferritin-responsive IRES represents a mechanism that accounts for previous observations that H ferritin regulates folate metabolism. 相似文献
18.
The hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma. The development of alternative antiviral therapies is warranted because current treatments for the HCV infection affect only a limited number of patients and lead to significant toxicities. The HCV genome is exclusively present in the RNA form; therefore, ribozyme strategies to target certain HCV sequences have been proposed as anti-HCV treatments. In this study, we determined which regions of the internal ribosome entry site (IRES) of HCV are accessible to ribozymes by employing an RNA mapping strategy that is based on a trans-splicing ribozyme library. We then discovered that the loop regions of the domain IIIb of HCV IRES appeared to be particularly accessible. Moreover, to verify if the target sites that were predicted to be accessible are truly the most accessible, we assessed the ribozyme activities by comparing not only the trans-splicing activities in vitro but also the trans-cleavage activities in cells of several ribozymes that targeted different sites. The ribozyme that could target the most accessible site identified by mapping studies was then the most active with high fidelity in cells as well as in vitro. These results demonstrate that the RNA mapping strategy represents an effective method to determine the accessible regions of target RNAs and have important implications for the development of various antiviral therapies which are based on RNA such as ribozyme, antisense, or siRNA. 相似文献
19.
A second look at the second messenger hypothesis 总被引:1,自引:0,他引:1
Several hundred hormones, neurotransmitters, growth factors and other "first messengers" bind to specific cell membrane receptors and induce a myriad of effects: short term, transport, metabolic, mitotic and regulation of thousands of specific genes. Yet, less than a dozen "second messengers" have been clearly established to date. Even allowing for the discovery of a large number of additional second messengers, there remains a paradox in terms of information-transfer within the cell: how can so many specific signals produce so many effects through so few relatively nonspecific intermediates? We consider several possible solutions to this paradox, including the hypothesis that signal specificity is encoded in part in the primary structure of the receptor. 相似文献
20.
Eukaryotic mRNAs possess a poly(A) tail that enhances translation via the (7)mGpppN cap structure or internal ribosome entry sequences (IRESs). Here we address the question of how cellular IRESs recruit the ribosome and how recruitment is augmented by the poly(A) tail. We show that the poly(A) tail enhances 48S complex assembly by the c-myc IRES. Remarkably, this process is independent of the poly(A) binding protein (PABP). Purification of native 48S initiation complexes assembled on c-myc IRES mRNAs and quantitative label-free analysis by liquid chromatography and mass spectrometry directly identify eIFs 2, 3, 4A, 4B, 4GI, and 5 as components of the c-myc IRES 48S initiation complex. Our results demonstrate for the first time that the poly(A) tail augments the initiation step of cellular IRES-driven translation and implicate a distinct subset of translation initiation factors in this process. The mechanistic distinctions from cap-dependent translation may allow specific translational control of the c-myc mRNA and possibly other cellular mRNAs that initiate translation via IRESs. 相似文献