首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioleaching review part B:   总被引:25,自引:0,他引:25  
This review describes the historical development and current state of metals leaching and sulfide mineral biooxidation by the minerals industries. During the past 20 years commercial processes employing microorganisms for mineral recovery have progressed from rather uncontrolled copper dump leaching to mineral oxidation and leaching in designed bioheaps for oxidation of refractory gold ores and for copper recovery. Also during this period of time, stirred tank bioleaching has been commercialized for cobalt recovery and for biooxidation of refractory gold ores. Chalcopyrite bioleaching in stirred tanks is on the verge of commercialization. Commercial applications of biohydrometallurgy have advanced due to favorable process economics and, in some cases, reduced environmental problems compared to conventional metal recovery processes such as smelting. Process development has included recognition of the importance of aeration of bioheaps, and improvements in stirred tank reactor design and operation. Concurrently, knowledge of the key microorganisms involved in these processes has advanced, aided by advances in molecular biology to characterize microbial populations.  相似文献   

2.

Background  

Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS). Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited.  相似文献   

3.
Biomining is the use of microorganisms to extract metals from sulfide and/or iron-containing ores and mineral concentrates. The iron and sulfide is microbially oxidized to produce ferric iron and sulfuric acid, and these chemicals convert the insoluble sulfides of metals such as copper, nickel and zinc to soluble metal sulfates that can be readily recovered from solution. Although gold is inert to microbial action, microbes can be used to recover gold from certain types of minerals because as they oxidize the ore, they open its structure, thereby allowing gold-solubilizing chemicals such as cyanide to penetrate the mineral. Here, we review a strongly growing microbially-based metal extraction industry, which uses either rapid stirred-tank or slower irrigation technology to recover metals from an increasing range of minerals using a diversity of microbes that grow at a variety of temperatures.  相似文献   

4.
Abstract

The microbiological leaching of refractory sulfide ores (pyrite, arsenopyrite) for recovery of gold is reviewed in this article. The underlying physiological, biochemical, and genetic fundamentals of the bacteria involved (Thiobacillus and Sulfolobus spp.) are complex and have yet to be elucidated in depth. The chemistry of acid and biological leaching of pyrite and arsenopyrite minerals is also complex, and many of the individual reactions are not known in detail. Bacterial leaching is discussed in relation to chemical speciation at acid pH values. Attempts to develop models for a better understanding of bioleaching processes are summarized. The importance of pH, redox potential, temperature, sulfur balance, and toxic metals is evaluated for optimizing conditions for bacterial activity. Gold is finely disseminated in refractory sulfide ores, thereby decreasing Au recoveries upon conventional cyanidation for gold dissolution. In the bioleaching process, bacteria remove the sulfide minerals by oxidative dissolution and thus expose Au to extraction with cyanide solution. Stirred tank reactors appear most suited for this biological leaching process. The overall oxidation of the sulfides is an important variable for gold recovery. Pilot- and commercial-scale bioleaching processes for gold-containing pyrite and arsenopyrite ores are reviewed. This application of mineral biotechnology competes favorably with pressure leaching and roasting processes, both of which are problematic and energy-intensive alternatives for pretreatment of auriferous pyrite/arsenopyrite ores.  相似文献   

5.
Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40–50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.  相似文献   

6.
Recent advances in microbial mining   总被引:2,自引:0,他引:2  
Microbial mining of copper sulphide ores, has been practiced on an industrial scale since the late 1950s. Since then, advances in microbial mining and the role of microorganisms involved in solubilization of metals have assumed commerical importance. The fact that bioleaching processes save energy, have a minimum pollution potential and are able to yield value-added by-products make these processes invaluable. The metal extraction processes using microorganisms, which are currently in active use, concern copper and uranium bioleaching. Biobeneficiation is also applied at an industrial scale for recovery of gold from arsenopyrites. The developments in these processes during the last 15 years, with particular reference to developing nations, are reviewed. Information gathered on molecular genetics of these microorganisms should lead to a better understanding and control of microbial leaching processes. Areas still needing research to sustain economic expansion of microbial mining techniques are indicated.The author is with the Agharkar Research Institute, Agarkar Road, Pune 411 004, India  相似文献   

7.
Abstract The acidophilic thermophilic archaebacteria Sulfolobus and Acidianus have the potential for applid use in the recovery of metal values from ores through the process of baterial leaching. These microbes readily adapt to the conditions of low pH and high concentrations of metals required for bacterial leaching. In addition, these archaebacteria can exist at high temperatures which can occur during the oxidation of metal sulfides in bioleaching reactors. The acidophilic of copper and molybdenum from chalcopyrite and molybdenite minerals, respectively. The microbes can also enhance the recovery of gold by oxidation of pyrite which occludes gold preventing recovery by standard metallurgical procedures. The ability of this group of microbes to facilitate metals recovery is yet to be developed on a commercial scale.  相似文献   

8.
Effectiveness of different pure and mixed cultures of three moderately thermophilic, extremely acidophilic bacterial strains (Acidimicrobium ferrooxidans ICP, Sulfobacillus sibiricus N1, Acidithiobacillus caldus KU) were investigated for biooxidation of highly refractory polymetallic gold ore concentrates. Despite of its complex mineralogy and the presence of a mixture of potentially inhibitory metals and metalloids, the concentrate was readily dissolved in defined mixed cultures including both iron and sulfur oxidizers, releasing as much as 80% of soluble Fe and 61% of soluble As. Factors to affect microbial mineral dissolution efficiencies (i.e. microbial As(III) oxidation ability, formation of secondary mineral precipitation (e.g. jarosite, elemental sulfur, scorodite, anglesite), and microbial population dynamics during biooxidation) were studied, based on which roles of individual microbes and their synergistic interactions during biooxidation were discussed. Applying the biooxidation pretreatment using the most efficient mixed cultures containing all three strains significantly improved the recovery of both Au (from 1.1% to 86%) and Ag (from 3.2% to 87%). Finally, this study provides one of the very few available comparisons of the effectiveness of different pretreatment techniques for refractory gold ore concentrates: Compared with other abiotic pretreatment approaches (roasting, pressure oxidation, and alkali dissolution), biooxidation was shown to be one of the most effective options in terms of the recovery of Au and Ag.  相似文献   

9.
The quest for quality mineral resources has led to the development of many technologies that can be used to refine minerals. Biohydrometallurgy is becoming an increasingly acceptable technology worldwide because it is cheap and environmentally friendly. This technology has been successfully developed for some sulphidic minerals such as gold and copper. In spite of wide acceptability of this technology, there are limitations to its applications especially in the treatment of non-sulphidic minerals such as iron ore minerals. High levels of elements such as potassium (K) and phosphorus (P) in iron ore minerals are known to reduce the quality and price of these minerals. Hydrometallurgical methods that are non-biological involving the use of chemicals are usually used to deal with this problem. However, recent advances in mining technologies favour green technologies, known as biohydrometallurgy, with minimal impact on the environment. This technology can be divided into two, namely bioleaching and biobeneficiation. This review focuses on Biobeneficiation of iron ore minerals. Biobeneficiation of iron ore is very challenging due to the low price and chemical constitution of the ore. There are substantial interests in the exploration of this technology for improving the quality of iron ore minerals. In this review, current developments in the biobeneficiation of iron ore minerals are considered, and potential solutions to challenges faced in the wider adoption of this technology are proposed.  相似文献   

10.
Microorganisms have been geologically active in mineral formation, mineral diagenesis and sedimentation via direct action of their enzymes or indirectly through chemical action of their metabolic products. This property of microorganisms is being harnessed during the recent years for extraction of metals from their ores, especially from low-grade ores. In the present study bioleaching of copper from its low-grade chalcopyrite ore using 26 isolates of acidophilic fungi is reported. Most of these fungal strains belonged to the genera Aspergillus, Penicillium and Rhizopus. The leaching experiments were conducted in Czepek Dox minimal medium containing 1% (100 mesh) ore with shaking at room temperature for 20 days. Out of these, 4 isolates exhibited significant bioleaching activities. Maximum leaching of copper (78 mg/L) was observed with Aspergillus flavus (DSF-8) and Aspergillus niger (DOF-1). Nutritional and environmental conditions for optimum bioleaching were standardized. Present study indicates the usefulness of acidophilic fungi in bioleaching of copper from its low-grade ores.  相似文献   

11.
Biomining comprises of processing and extraction of metal from their ores and concentrates using microbial techniques. Currently this is used by the mining industry to extract copper, uranium and gold from low grade ores but not for low grade manganese ore in industrial scale. The study of microbial genomes, metabolites and regulatory pathways provide novel insights to the metabolism of bioleaching microorganisms and their synergistic action during bioleaching operations. This will promote understanding of the universal regulatory responses that the biomining microbial community uses to adapt to their changing environment leading to high metal recovery. Possibility exists of findings ways to imitate the entire process during industrial manganese biomining endeavor. This paper reviews the current status of manganese biomining research operations around the world, identifies factors that drive the selection of biomining as a processing technology, describes challenges in exploiting these innovations, and concludes with a discussion of Mn biomining’s future.  相似文献   

12.
Biomining processes have been used successfully on a commercial scale for the recovery of metals, the most important of which are copper, uranium and gold. These processes are based on the activity of chemoautolithotrophic bacteria which are able to use either iron or sulfur as their energy source and which grow in highly acid conditions. In general, low-rate dump and heap leaching processes are used for copper recovery while the biooxidation of difficult-to-treat gold-bearing arsenopyrite ores is carried out commercially in highly aerated stirred tank reactors. Because of the high levels of bacterial activity required, limitations in the growth rate of the microorganisms which were not apparent in low-rate processes have become an important factor. A key to the commercialization of the gold-bearing arsenopyrite biooxidation process was the development of a rapidly-growing, arsenic-resistant bacterial consortium. The empirical technique of mutation and selection in a continuous-flow system was used to improve the ability of the bacteria to decompose the ore. This approach resulted in a dramatic initial enhancement in growth rate but a plateau in improvement of performance has been reached. Further advances will require a more direct approach based on an understanding of the underlying physiological mechanisms and an application of the tools of molecular biology. Considerable advances have been made in our understanding of the molecular biology of Thiobacillus ferrooxidans. However much less is known about the other biomining bacteria. Recent studies using 16S rRNA analysis techniques have indicated that T. ferrooxidans may play a smaller role in continuous flow stirred tank biomining processes than was previously thought. Received 20 November 1997/ Accepted in revised form 2 March 1998  相似文献   

13.
Acidophiles in bioreactor mineral processing   总被引:5,自引:0,他引:5  
Mineral processing in bioreactors has become established in several countries during the past decade with industrial application of iron- and sulfur-oxidizing bacteria to release occluded gold from mineral sulfides. Cobalt extraction in bioreactors has also been commercialized, and development of high-temperature biooxidation of copper sulfides has reached pilot-plant scale. A variety of potentially useful mineral sulfide-oxidizing thermophiles have been recognized, but the most active strains have not been fully characterized. Received: July 11, 1999 / Accepted: December 27, 1999  相似文献   

14.
Selective enrichments enabled the recovery of moderately thermophilic isolates with copper bioleaching ability from a spent copper sulfide heap. Phylogenetic and physiological characterization revealed that the isolates were closely related to Sulfobacillus thermosulfidooxidans, Acidithiobacillus caldus and Acidimicrobium ferrooxidans. While isolates exhibited similar physiological characteristics to their corresponding type strains, in general they displayed similar or greater tolerance of high copper, zinc, nickel and cobalt concentrations. Considerable variation was found between species and between several strains related to S. thermosulfidooxidans. It is concluded that adaptation to metals present in the bioleaching heap from which they were isolated contributed to but did not entirely explain high metals tolerances. Higher metals tolerance did not confer stronger bioleaching performance, suggesting that a physical, mineralogical or chemical process is rate limiting for a specific ore or concentrate.  相似文献   

15.
Abstract

The bioleaching efficiency and mechanism of recovery of cobalt (Co) and nickel from laterites and pyritic ores by Aspergillus niger were investigated. Recoveries of Co from laterites and pyritic ores by direct bioleaching were 65.9?±?1.8% and 4.9?±?2.7%, respectively, while 30.9?±?0.6% and 10.9?±?6.2% recovery of Ni were obtained from laterites and pyritic ores, respectively. Recovery of Co via indirect bioleaching in the absence of the fungal biomass from laterite was significantly lower when compared with Co released by direct bioleaching. In the latter, hyphal penetration and colonization of the laterites were clearly observed by scanning electron microscopy (SEM). X-ray powder diffraction (XRPD) analysis of mineral phases before and after bioleaching indicated that cobalt-bearing goethite was the main phase bioleached in the laterites. No significant difference was found between Co recoveries from synthesized cobalt-bearing goethite by both direct and indirect bioleaching. Therefore, we propose that two processes are involved in bioleaching from laterites: (1) cobalt-bearing goethite was exposed via direct interactions between the fungus and the minerals and (2) cobalt-bearing goethite was dissolved by released metabolites of A. niger, such as organic acids. An incongruent pattern of Co and Fe bioleaching from the laterites was also a feature of the metal recovery process.  相似文献   

16.
Genomics, metagenomics and proteomics in biomining microorganisms   总被引:1,自引:0,他引:1  
The use of acidophilic, chemolithotrophic microorganisms capable of oxidizing iron and sulfur in industrial processes to recover metals from minerals containing copper, gold and uranium is a well established biotechnology with distinctive advantages over traditional mining. A consortium of different microorganisms participates in the oxidative reactions resulting in the extraction of dissolved metal values from ores. Considerable effort has been spent in the last years to understand the biochemistry of iron and sulfur compounds oxidation, bacteria-mineral interactions (chemotaxis, quorum sensing, adhesion, biofilm formation) and several adaptive responses allowing the microorganisms to survive in a bioleaching environment. All of these are considered key phenomena for understanding the process of biomining. The use of genomics, metagenomics and high throughput proteomics to study the global regulatory responses that the biomining community uses to adapt to their changing environment is just beginning to emerge in the last years. These powerful approaches are reviewed here since they offer the possibility of exciting new findings that will allow analyzing the community as a microbial system, determining the extent to which each of the individual participants contributes to the process, how they evolve in time to keep the conglomerate healthy and therefore efficient during the entire process of bioleaching.  相似文献   

17.
Mineral resources have been counted as public assets with economic benefit since time immemorial. Due to the rising issue of decreasing mineral deposits, recovery of metals from several waste residues has become progressively more essential. Novel and efficient recycling processes have been on the rise globally. Manganese (Mn) as the fourth most industrially applicable metal generates an extensive quantity of metallic waste which not only leads to loss of precious metal but also results in environmental toxicity. Globally, around 7 million tons of high-grade ores are produced, whereas 8 million tons of Mn alloys are produced yearly. Therefore, it is of greater significance to recover and recycle Mn from various waste residues. Various physical and biological techniques have been developed for recycling Mn from waste residues. Traditional Mn extraction processes are costly and labor intensive in nature, on the contrary, bioleaching techniques using diverse microorganism’s, form the basis of an efficient, eco-friendly, and economically sustainable process of metal recovery. The quick progress in current methodologies to counteract the fast consumption of innate mineral resources involves the proper utilization of unused waste residues containing industrially important metals like Mn. This review focuses to enumerate diverse features of Mn recovery, efficient methodologies, bioleaching of Mn, merits of Mn bioleaching, and applications of recycled Mn along with the futuristic applications. Manganese recovery by means of bioleaching will play a major role in changing the present situation where innate assets are quickly diminishing and substitute for metal recovery methodologies are the demand of this time.  相似文献   

18.
Bioleaching and bioprecipitation of nickel and iron from laterites   总被引:2,自引:0,他引:2  
Abstract: Leaching of silicate ores, particularly nickel laterites, with the aid of heterotrophic organisms has been briefly reviewed. Samples of laterite ores from Greece were characterised mineralogically and a number of microorganisms isolated from them. One of these organisms (code FI) was successfully acclimatized to 6400 ppm nickel. Samples of the high-grade Greek Kastoria nickel laterite were leached with sulphuric acid and a number of organic acids. Sulphuric and citric acids extracted over 60 and 40% of the contained nickel, respectively, but the other acids employed were less efficient leachants. Oxalic acid precipitated nickel oxalate. Roughly the same extraction of iron was observed. The main leaching parameter was confirmed to be hydrogen ion concentration, although complexation with organic anions was a contributor. Organism FI (a strain of Penicillium ) was used in comparison with organisms from various culture collections to bioleach nickel from samples of the low-grade Greek Litharakia nickel laterite. The organisms were cultivated in a mixture of a sugar-based nutrient mineral medium and finely ground ore. Several penicillia and aspergilli leached 55–60% of the contained nickel and cobalt, and 25–35% of the iron when sucrose was the carbon source, but FI was not efficient. However, in molasses medium, Fl extracted nearly 40% of the nickel. Biosorption and bioprecipitation reactions were observed. The mechanism of bioleaching or in situ leaching is discussed in terms of close physical and chemical association between the fungal hyphae and mineral phases in the ore. This accounted for the low overall hydrogen ion concentration observed during bioleaching.  相似文献   

19.
Naturally occurring, copper-resistant microorganisms are common in the environment. This review discusses the mechanism of copper resistance, which is not yet clearly understood, though the copper resistance conferred by a plasmid pPT23D has been elucidated at the molecular level. The different applications of copper-resistant microorganisms are described, including commerical bloleaching of copper ores. The construction of novel bioleaching strains through recombinant DNA technology may be possible. Biosorbents, the non-living microbial blomass, have been successfully used for metal recovery operations and are also reviewed.  相似文献   

20.
There are two principal types of nickel (Ni) deposits: sulfide and laterite ores. Interest in low-grade Ni-laterite ores has increased in recent years as high-grade Ni-sulfide deposits are being quickly depleted. However, processing of Ni laterites has proven technically difficult and costly, and the development of alternative low-cost biotechnologies for Ni solubilization has been encouraged. In this context, by the first time, a sample of Brazilian Ni-laterite ore was analyzed mineralogically and subjected to bioleaching tests using a heterotrophic Bacillus subtilis strain. SEM-analysis indicated that the primary Ni carrier mineral is goethite. Chemical analysis of different grain size fractions indicated a homogeneous distribution of Ni. XRF-analysis showed that the ore consists mainly in lizardite (32.6% MgO) and contains1.0% NiO (0.85% Ni). Bioleaching batch experiments demonstrated that about 8.1% Ni (0.7 mg Ni/g ore) were solubilized by the B. subtilis after 7 days. Application of microwave heating as a Ni-laterite pretreatment was also tested. This pretreatment increased the bioextraction of Ni from 8% to 26% (2.3 mg Ni g−1 ore).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号