首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1(T) was the first isolate within the phylum "Thermus-Deinococcus" to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1(T) is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

2.
Alginate is a family of linear copolymers of (1-->4)-linked beta-d-mannuronic acid and its C-5 epimer alpha-l-guluronic acid. The polymer is first produced as polymannuronic acid and the guluronic acid residues are then introduced at the polymer level by mannuronan C-5-epimerases. The structure of the catalytic A-module of the Azotobacter vinelandii mannuronan C-5-epimerase AlgE4 has been determined by x-ray crystallography at 2.1-A resolution. AlgE4A folds into a right-handed parallel beta-helix structure originally found in pectate lyase C and subsequently in several polysaccharide lyases and hydrolases. The beta-helix is composed of four parallel beta-sheets, comprising 12 complete turns, and has an amphipathic alpha-helix near the N terminus. The catalytic site is positioned in a positively charged cleft formed by loops extending from the surface encompassing Asp(152), an amino acid previously shown to be important for the reaction. Site-directed mutagenesis further implicates Tyr(149), His(154), and Asp(178) as being essential for activity. Tyr(149) probably acts as the proton acceptor, whereas His(154) is the proton donor in the epimerization reaction.  相似文献   

3.
The putative uridine diphosphate (UDP)-galactose 4-epimerase encoding gene, galE, was isolated from Avibacterium paragallinarum with the use of degenerate primers, colony hybridization and inverse PCR. The data revealed an open reading frame of 1017 bp encoding a protein of 338 amino acids with a molecular weight of 37 kDa and an isoelectric point of 5.5. High sequence homology was obtained with an 87, 91 and 89% sequence identity on protein level towards the galE genes from Actinobacillus pleuropneumoniae, Haemophilus influenza and Pasteurella multocida, respectively. To verify that the cloned galE gene encodes for a UDP-galactose 4-epimeras, this gene was cloned into the pYES-2 expression vector, followed by transformation in a Saccharomyces cerevisiae gal10 deletion strain. Complementation of the gal10 deletion mutant with the galE gene confirmed that this gene encodes a UDP-galactose 4-epimerase.  相似文献   

4.
In Escherichia coli and Salmonella enterica, the core oligosaccharide backbone of the lipopolysaccharide is modified by phosphoryl groups. The negative charges provided by these residues are important in maintaining the barrier function of the outer membrane. In contrast, Klebsiella pneumoniae lacks phosphoryl groups in its core oligosaccharide but instead contains galacturonic acid residues that are proposed to serve a similar function in outer membrane stability. Gla(KP) is a UDP-galacturonic acid C4-epimerase that provides UDP-galacturonic acid for core synthesis, and the enzyme was biochemically characterized because of its potentially important role in outer membrane stability. High-performance anion-exchange chromatography was used to demonstrate the UDP-galacturonic acid C4-epimerase activity of Gla(KP), and capillary electrophoresis was used for activity assays. The reaction equilibrium favors UDP-galacturonic acid over UDP-glucuronic acid in a ratio of 1.4:1, with the K(m) for UDP-glucuronic acid of 13.0 microM. Gla(KP) exists as a dimer in its native form. NAD+/NADH is tightly bound by the enzyme and addition of supplementary NAD+ is not required for activity of the purified enzyme. Divalent cations have an unexpected inhibitory effect on enzyme activity. Gla(KP) was found to have a broad substrate specificity in vitro; it is capable of interconverting UDP-glucose/UDP-galactose and UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine, albeit at much lower activity. The epimerase GalE interconverts UDP-glucose/UDP-galactose. Multicopy plasmid-encoded gla(KP) partially complemented a galE mutation in S. enterica and in K. pneumoniae; however, chromosomal gla(KP) could not substitute for galE in a K. pneumoniae galE mutant in vivo.  相似文献   

5.
MalF and MalG are the cytoplasmic membrane components of the binding protein-dependent ATP binding cassette maltose transporter in Escherichia coli. They are thought to form the transport channel and are thus of critical importance for the mechanism of transport. To study the contributions of individual transmembrane segments of MalF, we isolated 27 point mutations in membrane-spanning segments 3, 4, and 5. These data complement a previous study, which described the mutagenesis of membrane-spanning segments 6, 7, and 8. While most of the isolated mutations appear to cause assembly defects, L(323)Q in helix 5 could interfere more directly with substrate specificity. The phenotypes and locations of the mutations are consistent with a previously postulated structural model of MalF.  相似文献   

6.
7.
The complete nucleotide sequences of the genes encoding aldose 1-epimerase (mutarotase) (galM) and UDPglucose 4-epimerase (galE) and flanking regions of Streptococcus thermophilus have been determined. Both genes are located immediately upstream of the S. thermophilus lac operon. To facilitate the isolation of galE, a special polymerase chain reaction-based technique was used to amplify the region upstream of galM prior to cloning. The galM protein was homologous to the mutarotase of Acinetobacter calcoaceticus, whereas the galE protein was homologous to UDPglucose 4-epimerase of Escherichia coli and Streptomyces lividans. The amino acid sequences of galM and galE proteins also showed significant similarity with the carboxy-terminal and amino-terminal domains, respectively, of UDPglucose 4-epimerase from Kluyveromyces lactis and Saccharomyces cerevisiae, suggesting that the yeast enzymes contain an additional, yet unidentified (mutarotase) activity. In accordance with the open reading frames of the structural genes, galM and galE were expressed as polypeptides with apparent molecular masses of 39 and 37 kilodaltons, respectively. Significant activities of mutarotase and UDPglucose 4-epimerase were detected in lysates of E. coli cells containing plasmids encoding galM and galE. Expression of galE in E. coli was increased 300-fold when the gene was placed downstream of the tac promoter. The gene order for the gal-lac gene cluster of S. thermophilus is galE-galM-lacS-lacZ. The flanking regions of these genes were searched for consensus promoter sequences and further characterized by primer extension analysis. Analysis of mRNA levels for the gal and lac genes in S. thermophilus showed a strong reduction upon growth in medium containing glucose instead of lactose. The activities of the lac (lactose transport and beta-galactosidase) and gal (UDPglucose 4-epimerase) proteins of lactose- and glucose-grown S. thermophilus cells matched the mRNA levels.  相似文献   

8.
9.
In Neisseria sp., SGNH family esterases are involved in bacterial pathogenesis as well as cell wall peptidoglycan maturation. Here, a novel enantioselective SGNH family esterase (NmSGNH1) from Neisseria meningitidis, which has sequence similarity to carbohydrate esterase (CE3) family, was catalytically characterized and functionally explored. NmSGNH1 exhibited a wide range of substrate specificities including naproxol acetate, tert-butyl acetate, glucose pentaacetate as well as p-nitrophenyl esters. Deletion of C-terminal residues (NmSGNH1Δ11) led to the altered substrate specificity, reduced catalytic activity, and increased thermostability. Furthermore, a hydrophobic residue of Leu92 in the substrate-binding pocket was identified to be critical in catalytic activity, thermostability, kinetics, and enantioselectivity. Interestingly, immobilization of NmSGNH1 by hybrid nanoflowers (hNFs) and crosslinked enzyme aggregates (CLEAs) showed increased level of activity, recycling property, and enhanced stability. Finally, synthesis of butyl acetate, oleic acid esters, and fatty acid methyl esters (FAMEs) were verified. In summary, this work provides a molecular understanding of substrate specificities, catalytic regulation, immobilization, and industrial applications of a novel SGNH family esterase from Neisseria meningitidis.  相似文献   

10.
Bloom syndrome protein forms an oligomeric ring structure and belongs to a group of DNA helicases showing extensive homology to the Escherichia coli DNA helicase RecQ, a suppressor of illegitimate recombination. After over-production in E.coli, we have purified the RecQ core of BLM consisting of the DEAH, RecQ-Ct and HRDC domains (amino acid residues 642-1290). The BLM(642-1290) fragment could function as a DNA-stimulated ATPase and as a DNA helicase, displaying the same substrate specificity as the full-size protein. Gel-filtration experiments revealed that BLM(642-1290) exists as a monomer both in solution and in its single-stranded DNA-bound form, even in the presence of Mg(2+) and ATPgammaS. Rates of ATP hydrolysis and DNA unwinding by BLM(642-1290) showed a hyperbolic dependence on ATP concentration, excluding a co-operative interaction between ATP-binding sites. Using a lambda Spi(-) assay, we have found that the BLM(642-1290) fragment is able to partially substitute for the RecQ helicase in suppressing illegitimate recombination in E.coli. A deletion of 182 C-terminal amino acid residues of BLM(642-1290), including the HRDC domain, resulted in helicase and single-stranded DNA-binding defects, whereas kinetic parameters for ATP hydrolysis of this mutant were close to the BLM(642-1290) values. This confirms the prediction that the HRDC domain serves as an auxiliary DNA-binding domain. Mutations at several conserved residues within the RecQ-Ct domain of BLM reduced ATPase and helicase activities severely as well as single-stranded DNA-binding of the enzyme. Together, these data define a minimal helicase domain of BLM and demonstrate its ability to act as a suppressor of illegitimate recombination.  相似文献   

11.
12.
13.
Timson DJ 《The FEBS journal》2005,272(23):6170-6177
UDP-galactose 4-epimerase (GALE, EC 5.1.3.2) catalyses the interconversion of UDP-glucose and UDP-galactose. Point mutations in this enzyme are associated with the genetic disease, type III galactosemia, which exists in two forms - a milder, or peripheral, form and a more severe, or generalized, form. Recombinant wild-type GALE, and nine disease-causing mutations, have all been expressed in, and purified from, Escherichia coli in soluble, active forms. Two of the mutations (N34S and G319E) display essentially wild-type kinetics. The remainder (G90E, V94M, D103G, L183P, K257R, L313M and R335H) are all impaired in turnover number (k cat) and specificity constant (k cat/Km), with G90E and V94M (which is associated with the generalized form of galactosemia) being the most affected. None of the mutations results in a greater than threefold change in the Michaelis constant (Km). Protein-protein crosslinking suggests that none of the mutants are impaired in homodimer formation. The L183P mutation suffers from severe proteolytic degradation during expression and purification. N34S, G90E and D103G all show increased susceptibility to digestion in limited proteolysis experiments. Therefore, it is suggested that reduced catalytic efficiency and increased proteolytic susceptibility of GALE are causative factors in type III galactosemia. Furthermore, there is an approximate correlation between the severity of these defects in the protein structure and function, and the symptoms observed in patients.  相似文献   

14.
Nayar S  Brahma A  Barat B  Bhattacharyya D 《Biochemistry》2004,43(31):10212-10223
UDP-galactose 4-epimerase serves as a prototype model of class II oxidoreductases that use bound NAD as a cofactor. This enzyme from Kluyveromyces fragilis is a homodimer with a molecular mass of 75 kDa/subunit. Continuous monitoring of the conversion of UDP-galactose (UDP-gal) to UDP-glucose (UDP-glu) by the epimerase in the presence of the coupling enzyme UDP-glucose dehydrogenase and NAD shows a kinetic lag of up to 80 s before a steady state is reached. The disappearance of the lag follows first-order kinetics (k = 3.22 x 10(-2) s(-1)) at 25 degrees C at enzyme and substrate concentrations of 1.0 nM and 1 mM, respectively. The observed lag is not due to factors such as insufficient activity of the coupling enzyme, association or dissociation or incomplete recruitment of NAD by epimerase, product activation, etc., but was a true expression of the activity of the prepared enzyme. Dissociation of the bound ligand(s) by heat followed by analysis with reverse-phase HPLC, TLC, UV-absorption spectrometry, mass spectrometry, and NMR showed that in addition to 1.78 mol of NAD/dimer, the epimerase also contains 0.77 mol of 5'-UMP/dimer. The latter is a strong competitive inhibitor. Preincubation of the epimerase with the substrate UDP-gal or UDP-glu replaces the inhibitor and also abolishes the lag, which reappeared after the enzyme was treated with 5'-UMP. The lag was not observed as long as the cells were in the growing phase and galactose in the growth medium was limiting, suggesting that association with 5'-UMP is a late log-phase phenomenon. The stoichiometry and conserved amino acid sequence around the NAD binding site of multimeric class I (classical dehydrogenases) and class II oxidoreductases, as reported in the literature, have been compared. It shows that each subunit is independently capable of being associated with one molecule of NAD, suggestive of two NAD binding sites of epimerase per dimer.  相似文献   

15.
UDPglucose-4-epimerase (EC 5.1.3.2) from Saccharomyces fragilis is inactivated by 0.1 mM 5,5'-dithiobis-(2-nitrobenzoate) in 6 min. Unlike p-chloromercuribenzoate-inactivated or heat-inactivated enzymes, the dithiobisnitrobenzoate-inactivated enzyme retains the dimeric structure and NAD is not dissociated from the protein moiety. Inactivation of the enzyme by dithiobisnitrobenzoate can not therefore be attributed to any subsequent loss of structural integrity or to the detachment of the cofactor from the apoenzyme. The inactivated enzyme can be almost fully reactivated in the presence of mercaptoethanol and characteristic properties of native enzyme are regained. The inactivation by dithiobisnitrobenzoate can be substantially protected by UDPglucose or UDPgalactose indicating a possible critical involvement of one or more sulfhydryl groups at the active site.  相似文献   

16.
17.
18.
19.
20.
【背景】灵芝多糖是灵芝的重要活性物质之一。UDP-葡萄糖4-差向异构酶(UDP-glucose 4-epimerase,UGE,EC 5.1.3.2)是灵芝多糖合成途径中糖供体生成的重要酶,其参与了UDP-葡萄糖与UDP-半乳糖的相互转化,与多糖中半乳糖残基含量密切相关。【目的】通过对来源于灵芝的UGE基因进行异源表达,丰富灵芝多糖糖供体合成途径重要酶的酶学特性信息,深入了解灵芝多糖代谢合成途径。【方法】以灵芝菌株(Ganoderma lingzhi) CGMCC 5.26的cDNA为模板,克隆得到UGE基因GL30389,并在Escherichia coli BL21(DE3)中诱导表达,产物纯化后进行酶学性质、酶动力学、底物专一性及转化率的研究。【结果】灵芝UGE的分子量为45 kDa。最适反应pH值为6.0,在pH 7.0—9.0范围内有较好的稳定性;最适反应温度为30℃,温度在40℃时稳定性最好。Fe2+和Mg2+对UGE有激活作用。以UDP-葡萄糖为底物时,Km为0.824 mmol/L,Vmax为769.230 μmol/(L·min),kcat为1.333 s—1,kcat/Km为1.618 L/(mmol·s)。灵芝UGE对D-葡萄糖、半乳糖醛酸及N-乙酰葡萄糖胺有催化活性。通过优化pH、温度、底物与酶的配比、添加金属离子将转化率从16.0%提升至39.4%。【结论】灵芝UGE与植物来源的UGE酶学性质较为相似,其催化效率优于大部分细菌来源的UGE。本研究丰富了灵芝多糖糖供体合成途径重要酶的酶学特性信息,有利于深入了解灵芝多糖代谢合成途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号