首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 722 毫秒
1.
Phenology, irradiance, and temperature characteristics of an edible brown alga, Undaria pinnatifida (Laminariales), were examined from the southernmost natural population in Japan, both by culturing gametophytes and examining the photosynthetic activity of sporophytes using dissolved oxygen sensors and pulse amplitude-modulated chlorophyll fluorometer (IMAGING-PAM). Our surveys confirmed that sporophytes were present between winter and early summer, but absent by July. IMAGING-PAM experiments were used to measure maximum effective quantum yield (ΦII at 0 μmol photons m?2 s?1) for each of 14 temperatures (8–36 °C). Oxygen production was also determined over a coarser temperature gradient. Net photosynthesis and ΦII (at 0 μmol photons m?2 s?1) were observed to be temperature-dependent; the maximum ΦII was estimated to be 0.67, occurred at 21.2 °C, and was nearly identical to the optimal temperature of the net photosynthetic rate (21.7 °C). A net photosynthesis–irradiance (P–E) model revealed that saturation irradiance (E k) was 119.5 μmol photons m?1 s?1, and the compensation irradiance (E c) was 17.4 μmol photons m?1 s?1. Culture experiments on the gametophytes revealed that most individuals could not survive temperatures over 28 °C and that growth rates were severely inhibited. Based on our observations, temperatures greater than 20 °C are likely to influence photosynthetic activity and gametophyte survival, and therefore, it is possible that this species might become locally extinct if seawater temperatures in this region continue to rise.  相似文献   

2.
In this paper we study the outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors (3.0 m3). Experiments were performed modifying the dilution rate and evaluating biomass productivity and quality, in addition to the overall performance of the system. Results confirm that T. lutea can be produced outdoors on a commercial scale in continuous mode, obtaining productivities of up to 20 g m?2 day?1 of biomass, which are rich in proteins (45 % d.wt.) and lipids (25 % d.wt.). The utilization of this type of photobioreactor allows one to control the levels of contamination and pH within the cultures, but daily variations in solar radiation impose elevated dissolved oxygen concentrations and insufficient temperature conditions on the cells inside the reactor. Excessive dissolved oxygen reduces biomass productivity to 68 % of that which is maximal, whereas inadequate temperature reduces it to 63 % of maximum. Thus, by optimally controlling these parameters, biomass productivity can be almost doubled. These results confirm the potential for producing this valuable strain on a commercial scale in optimally designed/operated tubular photobioreactors as a viable biotechnological industry.  相似文献   

3.
In this study, the pullulanase gene from Bacillus deramificans was efficiently expressed in Brevibacillus choshinensis. The optimal medium for protein expression was determined through a combination of single-factor experiments and response surface methodology. The initial pH of the medium and the culture temperature were optimized. The pullulanase yield increased 10.8-fold through medium and condition optimization at the shake-flask level. From the results of these experiments, the dissolved oxygen level was optimized in a 3-L fermentor. Under these optimized conditions, the pullulanase activity and the specific pullulanase productivity reached 1005.8 U/mL and 110.5 × 103 U/g dry cell weight, respectively, with negligible intracellular expression. The Brevibacillus choshinensis expression system has proven to be valuable for the extracellular production of pullulanase.  相似文献   

4.
A novel lab-scale tubular closed photobioreactor was developed and used for the assessment of the photosynthetic activity of an alkaliphilic microalgae mixed consortium under non-substrate limitation (i.e., bicarbonate excess), controlled irradiance, and mixing conditions. Two prominent haloalkaliphilic strains were identified as members of the consortium: Halospirulina sp. and Picochlorum sp. The photobioreactor (vol?=?0.5 L) consists of two interconnected U-shaped borosilicate glass tubes (internal diameter 2 cm) reaching a surface/volume ratio of 200 m2 m?3. This configuration specifically addressed the issue of the homogeneous light distribution among the microalgae suspended cells cultured by using fixed equidistant cool white light LEDs nearby the surface of the glass tubes. A soft homogeneous pneumatic mixing (i.e., airlift) was implemented in the culture fostering Reynolds numbers around 3000. The photosynthetic activity of the microalgae consortium was evaluated during different short-term kinetic assays by fitting the dynamics of the dissolved oxygen concentration to an oxygenic kinetic model. The photobioreactor operated in a closed loop allowed to control the produced oxygen by the extraction of the cumulated gas in the headspace. The use of this novel photobioreactor allowed the photosynthetic activity of microalgae suspended cells to be assessed, where the dissolved oxygen concentration and irradiance were the main parameters affecting the oxygenic rates under alkaline pH.  相似文献   

5.
Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m?2 d?1 on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m?2 d?1 (by rotation out of direct irradiance) to 79 mol photons m?2 d?1 (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L?1, photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m?2 s?1 photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L?1), the culture was irradiated up to 2,000 μmol photons m?2 s?1 to overcome light limitation with biomass yields of 0.7 g CDW mol photons?1 and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.  相似文献   

6.
To understand characteristics of cyanobacterial granules from Lake Taihu, dissolved oxygen (DO), pH, and redox potential (Eh) microelectrodes were used to investigate physiological responses within these granules under different irradiance, temperature, and external pH levels. DO and pH levels increased with rising irradiance, while the Eh had an opposite trend. High light combined with high temperature decreased photosynthesis of the cyanobacterial granules. DO diffused from the surrounding water to the granules at low irradiance; however, DO began to diffuse from the granules to the water at high irradiance owing to increased photosynthesis. Dynamic changes of DO, pH, and Eh levels existed within the cyanobacterial granules under light–dark cycles. High DO levels within intercellular space of the cyanobacterial granules are another important buoyancy regulation mechanism. An external initial pH affected photosynthesis of the cyanobacteria in the granules. DO and pH levels of the granules in slightly alkaline solution (pH 8–9) were higher than those in highly alkaline solution (pH 10). Such physical and chemical characteristics within cyanobacterial granules in eutrophic water allowed them to outcompete other aquatic algae. The characterization of the physiological microenvironment within these cyanobacterial granules provides a new research approach to a better bloom management.  相似文献   

7.
Phenology, irradiance and temperature characteristics of a freshwater benthic red alga, Nemalionopsis tortuosa Yoneda et Yagi (Thoreales), were examined from Kagoshima Prefecture, southern Japan for the conservation of this endemic and endangered species. Field surveys confirmed that algae occurred in shaded habitats from winter to early summer, and disappeared during August through November. A net photosynthesis–irradiance (PE) model revealed that net photosynthetic rate quickly increased and saturated at low irradiances, where the saturating irradiance (Ek) and compensation irradiance (Ec) were 10 (8–12, 95% credible interval (CRI)) and 8 (6–10, 95% CRI) μmol photon m?2 s?1, respectively. Gross photosynthesis and dark respiration was determined over a range of temperatures (8–36°C) by dissolved oxygen measurements, and revealed that the maximum gross photosynthetic rate was highest at 29.5 (27.4–32.0, 95%CRI) °C. Dark respiration also increased linearly when temperature increased from 8°C to 36°C, indicating that the increase in dark respiration at higher temperature most likely caused decreases in net photosynthesis. The maximum quantum yield (Fv/Fm) that was determined using a pulse amplitude modulated‐chlorophyll fluorometer (Imaging‐PAM) was estimated to be 0.51 (0.50–0.52, 95%CRI) and occurred at an optimal temperature of 21.7 (20.1–23.4, 95%CRI) °C. This species can be considered well‐adapted to the relatively low natural irradiance and temperature conditions of the shaded habitat examined in this study. Our findings can be applied to aid in the creation of a nature‐reserve to protect this species.  相似文献   

8.
A deterministic simulation model was developed to predict production rates of the marine prymnesiophyteIsochrysis galbana in an outdoor algal mass culture system. The model consists of photoadapation, gross photosynthesis and respiration sections. Actual physiological and biophysical laboratory data, obtained from steady state cultures grown under a wide range of irradiance levels, were used in calculating productivity. The resulting values were used to assess optimal operational parameters to maximize algal biomass production. The model predicted a yearly averaged production rate of 9.7 g C m?2d?1, which compared well with field data reported in the literature. The model evaluated the effect of pond depth and chlorophyll concentration on potential production rate in various seasons. The model predicted that a yearly averaged chlorophyll areal density of 0.65 g m?2 will yield the maximal production rate. Chlorophyll areal density should be seasonally adjusted to give maximal production. This adjustment could be done either by changing pond depth or chlorophyll concentration. The model predicted that under optimal operational conditions, the diurnal respiration losses averaged 35% of gross photosynthesis. The calculated growth rate for maximal productivity ranged between 0.15 and 0.24 d?1, suggesting an optimal hydraulic retention time of 6.7 and 4.2 d for various seasons.  相似文献   

9.
Photosynthetic microalgae have received much attention as a microbial source of diverse useful biomaterials through CO2 fixation and various types of photo-bioreactors have been developed for efficient microalgal cultivation. Herein, we developed a novel thin-film photo-bioreactor, which was made of cast polypropylene film, considering outdoor mass cultivation. To develop optimal design of photo-bioreactor, we tested performance of three shapes of thin-film photo-bioreactors (flat, horizontal and vertical tubular shapes) and various parts in the bioreactor. Collectively, vertical tubular bioreactor with H/D ratio 6:1 and cylindrical stainless steel spargers showed the most outstanding performance. Furthermore, the photo-bioreactor was successfully applied to the cultivation of other microalgae such as Chlamydomonas reinhardtii and Chlorella vulgaris. The scalability of photo-bioreactor was confirmed by gradually increasing culture volume from 4 to 25 L and the biomass productivity of each reactor was quite consistent (0.05–0.07 g/L/day) during the cultivation of H. pluvialis under indoor and outdoor conditions. Especially, we also achieved dry cell weight of 4.64 g/L and astaxanthin yield of 218.16 mg/L through long-term cultivation (100 days) under outdoor condition in 15 L photo-bioreactor using Haematococcus pluvialis, which means that the astaxanthin yield from outdoor cultivation is equal or superior to that obtained from controlled indoor condition. Therefore, these results indicate that we can apply this approach to development of optimal photo-bioreactor for the large-scale culture of microalgae and production of useful biomaterials under outdoor condition.  相似文献   

10.
Effect of temperatures and illumination of temperate winter on photosynthesis and respiration was studied in the psychrophilic microalgae, Koliella antarctica (Trebouxiophyceae). Outdoor and indoor algal cultures were compared. Photosynthetic as well as respiration rates increased as light and temperature increased, until 35 °C, more in outdoor than in indoor cells, in agreement with the calculated Q10 values. K. antarctica showed important strategy mechanisms of adaption to the several temperature and light conditions. These significant photo-acclimation and thermo-acclimation abilities make it possible to cultivate Koliella for different uses, under less expensive outdoor conditions. Therefore, K. antarctica shows important strategy mechanisms of adaption to various temperature and light conditions; moreover, by varying the culture conditions, it is possible to modulate and optimize the growth and accordingly the biomass production. This is a very interesting point since it has been proved that this microalga is a promising potential source of functional ingredients, such as polyunsaturated fatty acids and carotenoids, suitable for industrial purposes.  相似文献   

11.
Overproduction and accumulation of melanin cause a number of skin diseases. The inhibitors of tyrosinase are important for the treatment of skin diseases associated with hyper-pigmentation after UV exposure and application in cosmetics for whitening and depigmentation. Reactive oxygen species (ROS) including hydrogen peroxide are generated by chemical substances and metabolic intermediates and cause various diseases including cancer and heart diseases. We have isolated four different lactic acid bacteria (LAB) strains from dairy cow feces and investigated the tyrosinase inhibition and anti-oxidative effects of culture filtrates prepared from the isolated bacteria, which are designated as EA3, EB2, PC2, and PD3. To investigate optimal culture conditions isolated LAB strains, the measurements of tyrosinase inhibitory and anti-oxidative activities were performed. The results of tyrosinase inhibitory activities revealed that Enterococcus sp. EA3 showed about 65% at culture conditions (14 h, 30 °C, pH 8, and 0% NaCl), Enterococcus sp. EB2 about 65% at culture conditions (12 h, 30 °C, pH 9, and 0% NaCl), Pediococcus sp. PC2 about 80% at culture conditions (20 h, 30 °C, pH 6, and 0% NaCl), and Pediococcus sp. PD3 about 80% at culture conditions (20 h, 30 °C, pH 8, and 0% NaCl), respectively. In addition, anti-oxidative activities against four different LAB strains showed approximately more than 30% at optimal conditions for the measurements of tyrosinase inhibitory activities. From the results, we have suggested that the isolated four LAB strains could be useful for a potential agent for developing anti-oxidants and tyrosinase inhibitors.  相似文献   

12.
A matrix of photobioreactors integrated with metabolic sensors was used to examine the combined impact of light and temperature variations on the growth and physiology of the biofuel candidate microalgal species Nannochloropsis oculata. The experiments were performed with algal cultures maintained at a constant 20°C versus a 15°C to 25°C diel temperature cycle, where light intensity also followed a diel cycle with a maximum irradiance of 1920 µmol photons m−2 s−1. No differences in algal growth (Chlorophyll a) were found between the two environmental regimes; however, the metabolic processes responded differently throughout the day to the change in environmental conditions. The variable temperature treatment resulted in greater damage to photosystem II due to the combined effect of strong light and high temperature. Cellular functions responded differently to conditions before midday as opposed to the afternoon, leading to strong hysteresis in dissolved oxygen concentration, quantum yield of photosystem II and net photosynthesis. Overnight metabolism performed differently, probably as a result of the temperature impact on respiration. Our photobioreactor matrix has produced novel insights into the physiological response of Nannochloropsis oculata to simulated environmental conditions. This information can be used to predict the effectiveness of deploying Nannochloropsis oculata in similar field conditions for commercial biofuel production.  相似文献   

13.
The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L?1 day?1), lipid productivity (80.7 mg lipid·L?1 day?1) and lipid concentration (252 mg lipid·L?1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.  相似文献   

14.
Different pilot-scale outdoor photobioreactors using medium recycling were operated in a greenhouse under different environmental conditions and the growth rates (0.1 to 0.5 day?1) obtained evaluated in order to compare them with traditional systems used in aquaculture. The annualized volumetric growth rate for Nannochloropsis gaditana was 0.26 g l?1 day?1 (peak 0.4 g l?1 day?1) at 0.4 day?1 in a 5-cm wide flat-panel bioreactor (FP-PBR). The biomass productivity achieved in this reactor was 10-fold higher than in traditional reactors, reaching values of 28 % and 45 % dry weight (d.w.) of lipids and proteins, respectively, with a 4.3 % (d.w.) content of eicosapentaenoic acid (EPA). A model for predicting EPA productivity from N. gaditana cultures that takes into account the existence of photolimitation and photoinhibition of growth under outdoor conditions is presented. The effect of temperature and average irradiance on EPA content is also studied. The maximum EPA productivity attained is 30 mg l?1 day?1.  相似文献   

15.
In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH?6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg?L?1) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U?mL?1 on fructose and 17.2 U?mL?1 on glycerol). This was further increased in high cell density fed-batch processes up to 55 U?mL?1, reflecting a levansucrase concentration of 0.52 g?L?1. This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.  相似文献   

16.
Tubular photobioreactor design for algal cultures.   总被引:3,自引:0,他引:3  
Principles of fluid mechanics, gas-liquid mass transfer, and irradiance controlled algal growth are integrated into a method for designing tubular photobioreactors in which the culture is circulated by an airlift pump. A 0.2 m(3) photobioreactor designed using the proposed approach was proved in continuous outdoor culture of the microalga Phaeodactylum tricornutum. The culture performance was assessed under various conditions of irradiance, dilution rates and liquid velocities through the tubular solar collector. A biomass productivity of 1.90 g l(-1) d(-1) (or 32 g m(-2) d(-1)) could be obtained at a dilution rate of 0.04 h(-1). Photoinhibition was observed during hours of peak irradiance; the photosynthetic activity of the cells recovered a few hours later. Linear liquid velocities of 0.50 and 0.35 m s(-1) in the solar collector gave similar biomass productivities, but the culture collapsed at lower velocities. The effect of dissolved oxygen concentration on productivity was quantified in indoor conditions; dissolved oxygen levels higher or lower than air saturation values reduced productivity. Under outdoor conditions, for given levels of oxygen supersaturation, the productivity decline was greater outdoors than indoors, suggesting that under intense outdoor illumination photooxidation contributed to loss of productivity in comparison with productivity loss due to oxygen inhibition alone. Dissolved oxygen values at the outlet of solar collector tube were up to 400% of air saturation.  相似文献   

17.
This study aims to develop a low-cost microalgae culture system which uses a simple closed vessel as photobioreactor to save manufacturing cost, waves for mixing to save energy cost, and high concentration of bicarbonate for carbon supply to avoid the high cost of CO2-bubbling pipeline construction on the ocean as well as to control pH by buffering the effect of bicarbonate/carbonate. To test this idea, the alkalihalophilic cyanobacterium Euhalothece sp. was cultured with 1.0 M NaHCO3 in small-scale floating photobioreactors (PBRs) on 10-cm-high artificial waves at first. The final biomass concentration was up to 0.91 and 1.47 g L?1 for indoor and outdoor cultures, respectively. However, the recorded dissolved oxygen (DO) was occasionally over-saturated (> 500% of air saturation), indicating mass transfer problem. k L a in these PBRs with different culture depth was measured then, and the results showed great variation, from 0.13 to 4.87 h?1. At the scale of 1.0 m2, this floating PBR was made with low-cost membrane and inflatable design. It was placed on the ocean surface and mixed with natural waves. Biomass concentration of 1.63 g L?1 and productivity of 8.27 g m?2 day?1 were obtained in this culture. With these results, the feasibility of a low-cost microalgae culture system was proven, which could systematically reduce the cost of photobioreactor manufacturing, operating, and maintenance.  相似文献   

18.
The first step of starch hydrolysis, i.e. liquefaction has been studied in this work. Two commercial α-amylases from Bacilllus licheniformis, known as Termamyl and Liquozyme have been used for this purpose. Using starch as the substrate, kinetics of both enzymes has been determined at optimal pH and temperature (pH 7, T = 80 °C) and at 65 °C and pH 5.5. Michaelis–Menten model with uncompetitive product inhibition was used to describe enzyme kinetics. Mathematical models were developed and validated in the repetitive batch and fed-batch reactor. Enzyme inactivation was described by the two-step inactivation model. All experiments were performed with and without calcium ions. The activities of both tested amylases are approximately one hundred times higher at 80 °C than at 65 °C. Lower inactivation rates of enzymes were noticed in the experiments performed at 65 °C without the addition of calcium than in the experiments at 80 °C. Calcium ions in the reaction medium significantly enhance amylase stability at 80 °C and pH 7. At other process conditions (65 °C and pH 5.5) a weaker calcium stabilizing effect was detected.  相似文献   

19.
Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L?1 days?1, or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L?1.  相似文献   

20.
The feasibility of attached culture Chlorella vulgaris in a porous substratum biofilm reactor (PSBR) for simultaneous wastewater treatment and biofuel production was investigated. The characteristics, including algal biofilm growth, lipid yield, nutrient removal, and energy efficiency of the outdoor cultures, were investigated under the influence of both inoculum densities and the percent submerged area. A maximum biofilm productivity of 57.87 g m?2 d?1 with 81.9 % adhesion was achieved under optimal conditions (inoculum density of 18 g m?2 and the percent submerged area of 5.7 %). The lipid content and lipid yield were 38.56 % and 27.25 g m?2 d?1, respectively. Meanwhile, the algae removed 99.95 % ammonia, 96.05 % total nitrogen (TN), and 99.83 % total phosphorus (TP). Further, the energy life cycle for the PSBR was analyzed. The biomass productivity per unit irradiance was up to 4.6 g MJ?1 (photosynthetic efficiency of 10.65 %). The PSBR was considered to be economically feasible due to the net energy ratio of 1.3 (>1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号