首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage (phage) Lambda (λ) has played a key historic role in driving our understanding of molecular genetics. The lytic nature of λ and the conformation of its major capsid protein gpD in capsid assembly offer several advantages as a phage display candidate. The unique formation of the λ capsid and the potential to exploit gpD in the design of controlled phage decoration will benefit future applications of λ display where steric hindrance and avidity are of great concern. Here, we review the recent developments in phage display technologies with phage λ and explore some key applications of this technology including vaccine delivery, gene transfer, bio-detection, and bio-control.  相似文献   

2.
X Qiu 《PloS one》2012,7(7):e39793
Successive structural changes of bacteriophage λ upon heating were characterized with quantitative experimental methods. In the commonly used Tris-Mg buffer, differential scanning calorimetry measurements first established that the protein capsid of λ phage melts at 87 °C and its genomic DNA melts at 91 °C. Interestingly, prior to the capsid melting, λDNA was found to escape out of the capsid and subject to DNase digestion above ~68 °C, as concluded from light scattering, UV absorption, and electron microscopy studies. Further investigations indicated distinct temperature-dependent behaviors of the three phage proteins. Around 68 °C, disruption of the tail first occurs and leads to the escape of λ DNA; above the capsid melting temperature of 87 °C, the auxiliary protein gpD of the phage head remains soluble in solution and resists centrifugal sedimentation, whereas the major capsid protein gpE is easily precipitated and likely exists as aggregates.  相似文献   

3.
The developmental pathways for a variety of eukaryotic and prokaryotic double-stranded DNA viruses include packaging of viral DNA into a preformed procapsid structure, catalyzed by terminase enzymes and fueled by ATP hydrolysis. In most instances, a capsid expansion process accompanies DNA packaging, which significantly increases the volume of the capsid to accommodate the full-length viral genome. “Decoration” proteins add to the surface of the expanded capsid lattice, and the terminase motors tightly package DNA, generating up to ∼ 20 atm of internal capsid pressure. Herein we describe biochemical studies on genome packaging using bacteriophage λ as a model system. Kinetic analysis suggests that the packaging motor possesses at least four ATPase catalytic sites that act cooperatively to effect DNA translocation, and that the motor is highly processive. While not required for DNA translocation into the capsid, the phage λ capsid decoration protein gpD is essential for the packaging of the penultimate 8-10 kb (15-20%) of the viral genome; virtually no DNA is packaged in the absence of gpD when large DNA substrates are used, most likely due to a loss of capsid structural integrity. Finally, we show that ATP hydrolysis is required to retain the genome in a packaged state subsequent to condensation within the capsid. Presumably, the packaging motor continues to “idle” at the genome end and to maintain a positive pressure towards the packaged state. Surprisingly, ADP, guanosine triphosphate, and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) similarly stabilize the packaged viral genome despite the fact that they fail to support genome packaging. In contrast, the poorly hydrolyzed ATP analog ATP-γS only partially stabilizes the nucleocapsid, and a DNA is released in “quantized” steps. We interpret the ensemble of data to indicate that (i) the viral procapsid possesses a degree of plasticity that is required to accommodate the packaging of large DNA substrates; (ii) the gpD decoration protein is required to stabilize the fully expanded capsid; and (iii) nucleotides regulate high-affinity DNA binding interactions that are required to maintain DNA in the packaged state.  相似文献   

4.
Bacteriophage λgt11 has been used quite extensively for producing cDNA libraries. The cDNA inserts are usually subcloned into a plasmid vector for large scale production and analysis. However, isolating the recombinant DNA of interest from the phage clones can be a tedious task. Since the E. coli strain Y1088 used for λgt11 phage infection carries a pBR322-derived plasmid endogenously, we reasoned that this endogenous plasmid could be used directly for cloning the cDNA phage insert. In this report, we describe a method in which cDNA inserts from λgt11 phage were cloned directly into the pBR322 plasmid vector, by-passing the time-consuming procedures of preparing plasmid DNA as a subcloning vector. This method is likely to be extended to the cloning of DNA inserts derived from other phage λ vectors when bacteria containing endogenous pBR322 are used as host cells.  相似文献   

5.
6.
J C Piffaretti  Y Froment 《Plasmid》1981,6(3):255-269
From an E. coli cell harboring plasmid pPJ3b (= pPJ3a::Tn2301) and infected with phage λ, we have isolated two defective phages having inserted pPJ3a DNA and Tn2301 in their genomes. One of them has been extensively characterized: it behaves like a cosmid, i.e., upon injection into the cell, its DNA circularizes and replicates as a plasmid (pPJ10); it can be packaged again in λ heads, provided the presence of a phage helper. Furthermore, heteroduplex analysis has shown that in pPJ10, the transposon Tn2301 is inverted compared to its direction in pPJ3b. We give evidence suggesting that this type of inversion is in part mediated by Tn2301.  相似文献   

7.
Escherichia coli recA protein directs the inactivation of the repressor of Salmonella typhimurium phage P22 in vitro. As is true for repressor of the E. coli phage λ, inactivation of P22 repressor is accompanied by proteolytic cleavage of the repressor into two detectable fragments.We have investigated the kinetics of inactivation of the λ and P22 repressors in vitro. The fraction of λ repressor inactivated per unit time decreases as its concentration in the reaction is increased. However, high concentrations of λ repressor do not inhibit the inactivation of P22 repressor. Thus, it does not appear that the inactivation system is saturated by λ repressor, but rather that λ repressor is a less efficient substrate at higher concentrations.  相似文献   

8.
The life cycle of phage λ has been studied extensively. Of particular interest has been the process leading to the decision of the phage to switch from lysogenic to lytic cycle. The principal participant in this process is the λcI repressor, which is cleaved under conditions of DNA damage. Cleaved λcI no longer acts as a repressor, allowing phage λ to switch from its lysogenic to lytic cycle. The well‐known mechanism responsible for λcI cleavage is the SOS response. We have recently reported that the Escherichia coli toxin‐antitoxin mazEF pathway inhibits the SOS response; in fact, the SOS response is permitted only in E. coli strains deficient in the expression of the mazEF pathway. Moreover, in strains lysogenic for prophage λ, the SOS response is enabled by the presence of λrexB. λRexB had previously been found to inhibit the degradation of the antitoxin MazE, thereby preventing the toxic action of MazF. Thus, phage λ rexB gene not only safeguards the prophage state by preventing death of its E. coli host but is also indirectly involved in the lysogenic–lytic switch.  相似文献   

9.
10.
《Process Biochemistry》2007,42(3):486-490
Three λ mutants were constructed based on the Q mutant in order to enhance their productivity and stability in an Escherichia coli/bacteriophage λ system. The newly constructed bacteriophage mutants named λSNU1, λSNU2, and λSNU3 were QS, QWE, and QSWE mutants, respectively. Compared to all of the mutants, λSNU1 turned out to be the best with regards to higher protein expression and better genetic stability. Mechanisms by which these attributes are achieved have been discussed. The high productivity of P90c/λSNU1 for the recombinant protein was due to the high copy number of λ DNA and high translational efficiency. This mutant phage λSNU1 can be used to provide a high level of stability and productivity of the cloned gene particularly for long-term continuous operation.  相似文献   

11.
An Escherichia coli strain deleted for the primary λ attachment site was lysogenized with λ at secondary sites. Some lysogens became mutants because of prophage insertion in the affected gene. Mutagenesis by phage λ is not random with respect to the gene affected: most mutants were pro, although certain other genes could be mutated at lower frequencies. In the case of several independent ilv and gal mutants, the sites of prophage insertion were in the same segment of the ilv region and galT gene respectively. The galT location may also be a preferred site for the insertion of DNAs other than prophage λ. Insertion of prophage λ within an operon can reduce the expression of operator-distal genes. A trpC λ insertion mutant expresses the operator-distal trpB function constitutively at a low level. This expression probably derives from a promoter located in the left arm of the prophage.  相似文献   

12.
Petit λ is an empty spherical shell of protein which appears wherever λ grows. If phage DNA and petit λ are added to a cell-free extract of induced lysogenic bacteria, then phage particles are formed that contain the DNA and protein from the petit λ. Petit λ is transformed, without dissociation, into a phage head by addition of DNA and more phage proteins.The products of ten genes, nine phage and one host, are required for λ head assembly. Among these, the products of four phage genes, E, B, C, and Nu3 and of the host gene groE are involved in the synthesis of petit λ, consequently these proteins are dispensable for head assembly in extracts to which petit λ has been added. The products of genes A and D allow DNA to combine with petit λ to form a head that has normal morphology. In an extract, DNA can react with A product and petit λ to become partially DNAase-resistant, as if an unstable DNA-filled intermediate were formed. ATP and spermidine are needed at this stage. This intermediate is subsequently stabilized by addition of D product. The data suggest a pathway for head assembly.  相似文献   

13.
Hotspots for generalized recombination in the Escherichia coli chromosome.   总被引:8,自引:0,他引:8  
A naturally occurring hotspot for Rec recombination of Escherichia coli was located in the biotin operon. The phenotypes of the bio hotspot as observed in λbio transducing phage were identical to those of Chi mutations in phage λ. In addition to recA+ function, the site-specific stimulation of recombination required recB+ function. The stimulation took place when the hotspot was present in only one parent of the cross and even when present opposite a region of heterology.The demonstration of a Chi element in E. coli provoked us to measure the density of Chi elements on the chromosome. E. coli DNA sampled in λ transducing phage (either obtained by induction of secondary site lysogens or made in vitro from EcoRI cleavage fragments) showed one hotspot per 5 to 15 × 103 bases. The high density and the fact that Chi stimulation of recombination can span the inter-Chi distance suggest that Chi might be important in Rec recombination in the absence of λ.  相似文献   

14.
In the accompanying paper (Sternberg, 1973) the properties of three independently isolated strains of Escherichia coli with groE mutations (NS-1, NS-2 and NS-3) have been characterized. In this report the ability of these strains to propagate phage λ is examined in greater detail. In the temperature -sensitive groE strain NS-1, all early phage functions tested (curing, infective center formation, DNA synthesis and early messenger RNA synthesis) are expressed normally. In addition, two late phage functions (late mRNA synthesis and tail formation) are also expressed normally, and a third, phage-induced cell lysis, is expressed with only a slight delay. Based upon head-tail in vitro complementation assays, however, λ fails to make any functional heads at elevated temperatures (41 °C) in this host. Electron microscopic studies of strain NS-1 defective lysates indicate that aberrant head-like forms, including tubular forms and “monsters,” are made.Mutants of λ, designated λEP, which are able to grow in the three groE strains, have been isolated. An analysis of these mutants indicates that at least some carry a mutation in λ head gene E and these make reduced levels of active gene E protein in groE hosts.A further study of all known λ head genes indicates that it is the interaction between the gene E protein and the proteins specified by head genes B and C that is adversely affected by the groE mutation. Presumably, the relative level of gene E protein is too high in groE strains for proper head formation. The λEP mutation compensates for this effect by reducing the level of this protein, and so restoring a balance.  相似文献   

15.
Chromosome-less minicells of Escherichia coli harboring the plasmid λdv, mini [λdv] synthesize several proteins specified by this fragment of the “early” λ DNA region, as shown by 14C-labeling, gel electrophoresis and autoradiography. Mini[λdv] infected with phage λ reveal a much more composite protein profile. This profile originating from the system composed entirely of λ genes is very similar to that produced by λ-infected mini[ColE1] indicating that the latter may be used for the identification of λ gene products.  相似文献   

16.
17.
18.
Covalent circular λ DNA molecules produced in Escherichia coli (λ) host cells by infection with labeled λ bacteriophages are cut following superinfection with λ phages damaged by exposure to psoralen and 360 nm light. This cutting of undamaged covalent circular molecules is referred to as “cutting in trans”, and could be a step in damage-induced recombination (Ross &; Howard-Flanders, 1977). Similar experiments performed with the temperate phage 186, which is not homologous with phage λ, showed cutting in trans and damage-induced recombination to occur in homoimmune crosses with phage 186 also. Double lysogens carrying both λ and 186 prophages were used in a test for specificity in cutting in trans and in damage-induced recombination. The double lysogens were infected with 3H-labeled 186 and 32P-labeled λ phages. When these doubly infected lysogens containing covalent circular phage DNA molecules of both types were superinfected with psoralen-damaged 186 phages and incubated, the covalent circular 186 DNA was cut, while λ DNA remained intact. Similarly, superinfection with damaged λ phages caused λ, but not 186, DNA to be cut. Evidently, cutting in trans was specific to the covalent circular DNA homologous to the DNA of the damaged phages. Homoimmune phage-prophage genetic crosses were performed in the double lysogenic host infected with genetically marked λ and 186 phages. Damage-induced recombination was observed in this system only between the damaged phage DNA and the homologous prophage, none being detected between other homolog pairs present in the same cell. This result makes it unlikely that the damaged phage DNA induces a general state of enhanced strand cutting and genetic recombination affecting all homolog pairs present in the host cell. The simplest interpretation of the specificity in cutting and in recombination is as follows. When they have been incised, the damaged phage DNA molecules are able to pair directly with their undamaged covalent circular homologs. The latter molecules are cut in a recA + -dependent reaction by a recombination endonuclease that cuts the intact member of the paired homologs.  相似文献   

19.
Efficient lysogenization of Escherichia coli K12 by bacteriophage λ requires the high level of synthesis of the phage repressor shortly after infection. This high level of synthesis of repressor requires the action of the λ eII and cIII proteins. Certain mutants of λ (λcIIIs) appear to have excess cIIcIII activity and can lysogenize more efficiently than λ+. The basis for the enhanced lysogenization is that, while two or more infecting phage are necessary for λ+ to lysogenize, a single infecting λcIIIs particle is sufficient for lysogenization. Also, repressor levels in cells infected with λcIIIs are higher than in those infected with λ+. I report here that repressor overproduction by λcIIIs (1) is due to a much higher rate of repressor synthesis than that of λ+; (2) is most marked at low multiplicities of infection, possibly because λcIIIs produces repressor much more efficiently than λ+ as a singly infecting phage.  相似文献   

20.
Non-defective arabinose transducing phage, λpara, were isolated in two steps: first, Escherichia coli strains containing rare insertions of λ DNA into the arabinose C or B genes were selected; and second, these lysogens were induced and transducing phage were selected from the resulting lysates. The approximate location of the bacterial substitution on the phage and the ara gene content of the substitution were determined genetically. The precise location of the substitution was determined by electron microscopy of DNA heteroduplexes.Transducing phage, derived from the strain possessing λ inserted into the araC gene, carried part of the araC gene, the ara regulatory region, and all of the araB gene. Transducing phage, derived from eight independent strains possessing λ inserted in the same orientation and in the same position in the araB gene, carried a portion of the araB gene, the ara regulatory region and all of the araC gene. In these nine cases the ara DNA on the phage was immediately adjacent to the normal phage attachment site, indicating that the transducing phage were formed by the same type of abnormal excision which produces gal or bio transducing λ phage. The relative orientations of ara and phage genes were deduced from the topology of such excisions. One anomalous transducing phage was also characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号