首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Habitat selection is complex due to density dependence and functional responses, defined as variation in relative habitat use depending on availability. In this study we unite these concepts by empirically testing for density‐dependent functional responses in habitat selection using a large herbivore, elk Cervus canadensis manitobensis, as a model species. Theory on density‐dependent habitat selection predicts specialised behaviour when densities are low with a gradual switch to generalist behaviour (more even selection of habitat) as competition intensifies. This suggests that functional responses in habitat selection should be positive when competition is low, but that density may have a negative effect on the functional response due to constraining effects of competition on habitat use and availability. We tested this prediction using data from Global Positioning System (GPS) collared elk (n = 33) and empirical data on spatiotemporal variation in local density during winter in Riding Mountain National Park, Manitoba, Canada (2002–2011). As local density increased, winter home range size decreased and the proportion of mixed forest (providing shelter and forage to elk) used and available within the home range also decreased. Our resource selection function (RSF) revealed clear density‐dependent effects in selection, being strongest (or weakest) for high quality (or low quality) habitat types at lowest observed density leading to more even selection as densities increased. The functional response in mixed forest selection was negatively affected by local density. Increasing availability of mixed forest in the home range was associated with higher selection at low density (positive functional response); no effect of availability on selection at moderate density (no functional response); and lower selection as availability increased at high density (negative functional response). Our study demonstrates that this process is largely driven by the negative effect of density on home range size as it constrains use and availability of habitat.  相似文献   

2.
Failure to recognize factors contributing to variation in habitat models like resource selection functions (RSFs) can affect their application for projecting probabilities of occurrence, and thereby limit their relevance for conservation and management. We compared seasonal RSFs (2006–2008) for 16 adult female moose (Alces alces) with home ranges located in western Algonquin Provincial Park (APP), Ontario, Canada, to those of 14 adult females located in provincial Wildlife Management Unit (WMU) 49, 40 km west of the protected area. Wildlife and habitat management practices differed between regions: hunting was higher in WMU 49 compared to APP, and APP preserved large tracts of old growth forest rarely found in WMU 49. Seasonal RSFs projected expected similarities in moose resource use between regions (e.g., responses to wetlands and stands of eastern hemlock, Tsuga canadensis [in winter]); however, we also observed differences consistent with the hypothesis that animals, through effects of hunting, would shift habitat use seasonally and in response to roads. We further observed evidence of functional responses in habitat selection due to underlying differences in forestry practices (e.g., responses to stands of old-growth hemlock forest). Given the close proximity and shared biogeographic region between study areas, we believe that observed spatial dynamics in RSFs were ultimately reflective of divergent management strategies between areas and ensuing differences in predation and hunting mortality risk, and functional habitat.  相似文献   

3.
Habitat selection is a density‐dependent process, but little is known regarding how this relationship may vary across different temporal scales. Over long time scales, grazing shapes the structure, diversity and functioning of terrestrial ecosystems, and grazing‐induced changes in forage production over time are likely to affect the level of density dependence in habitat selection. In this fully‐replicated, landscape‐scale experiment, we investigated how density‐dependent habitat selection by a large grazing herbivore, sheep Ovis aries, develops over the time scale of a decade. We also address an often‐neglected challenge in habitat selection studies; namely, whether there is variation in use within a particular habitat or vegetation type and why. We found clear evidence of density dependence in habitat selection, with a wider use of habitats at high density. Despite a change in the standing biomass of high‐productivity vegetation at high herbivore density over the years, with herb biomass declining and graminoid biomass increasing, there was no clear evidence that these grazing‐induced changes in habitat over the years were strong enough to affect the level of density‐dependent habitat selection. The difference in selection for high versus low‐productivity habitats remained similar, despite annual fluctuations in the strength of selection. We found strong variation in selection within each vegetation type, even when vegetation types were mapped at a fine‐resolution scale. Our study shows that despite the interactive effects of herbivores and habitats, they are not always sufficiently strong enough to affect the level of density‐dependent habitat selection.  相似文献   

4.
5.
Both density dependent and density independent processes such as climate affect population dynamics in large herbivores. Understanding herbivore foraging patterns is essential to identify the underlying mechanisms behind variation in vital rates. However, very little is known about how animals vary their selection of habitat temporally, alone or in interaction with density during summer. At the foraging scale, we tested using a fully replicated experiment whether domestic sheep Ovis aries stocked at high (80  per  km2) and low (25  per  km2) densities (spatial contrasts) varied their habitat selection temporally over a four year period. We predicted reduced selection of high productivity vegetation types with increasing density, and that seasonal and annual variation in climate would affect this density dependent selection pattern by increasing competition for high quality habitats in late grazing season and in years with poor vegetation development and over time related to vegetation responses to grazing. As predicted from the Ideal free distribution model, selection of high productivity habitat decreased at high density. There was also a marked temporal variation in habitat selection. Selection of the most productive vegetation types declined towards the end of each grazing season, but increased over years both at low and high sheep density. There was only weak evidence for interactions, as selection ratio of highly productive habitats tended to increase more over years at low density as compared to high density. Limited interactive effects of density and annual variation on habitat selection during summer may explain why similar interactions in vital rates have rarely been reported for summer seasons. Our results are consistent with the view that variation in habitat selection is a central mechanism for climate and density related variation in vital rates.  相似文献   

6.
Resource selection function (RSF) models are commonly used to quantify species/habitat associations and predict species occurrence on the landscape. However, these models are sensitive to changes in resource availability and can result in a functional response to resource abundance, where preferences change as a function of availability. For generalist species, which utilize a wide range of habitats and resources, quantifying habitat selection is particularly challenging. Spatial and temporal changes in resource abundance can result in changes in selection preference affecting the robustness of habitat selection models. We examined selection preference across a wide range of ecological conditions for a generalist mega‐herbivore, the African savanna elephant Loxodonta africana, to quantify general patterns in selection and to illustrate the importance of functional responses in elephant habitat selection. We found a functional response in habitat selection across both space and time for tree cover, with tree cover being unimportant to habitat selection in the mesic, eastern populations during the wet season. A temporal functional response for water was also evident, with greater variability in selection during the wet season. Selection for low slopes, high tree cover, and far distance from people was consistent across populations; however, variability in selection coefficients changed as a function of the abundance of a given resource within the home range. This variability of selection coefficients could be used to improve confidence estimations for inferences drawn from habitat selection models. Quantifying functional responses in habitat selection is one way to better predict how wildlife will respond to an ever‐changing environment, and they provide promising insights into the habitat selection of generalist species.  相似文献   

7.
8.
Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.  相似文献   

9.
Balancing trade-offs between foraging and risk factors is a fundamental behavior that structures the spatial distribution of species. For African elephants Loxodonta africana, human pressures from poaching and conflict are primary drivers of species decline, but little is known about how elephants structure their spatial behavior in the face of human occupancy and predation. We seek to understand how elephants balance trade-offs between resource access, human presence and human predatory risk factors (poaching and conflict killing) in an unfenced, dynamic ecosystem where elephants persist primarily outside protected areas in community rangelands. We used tracking data from 101 elephants collected between 2001 and 2016. We investigated elephant behavior in response to landcover, topography, productivity, water, human features and human predation risk using third-order resource selection functions. We extended this analysis by employing a mixed-effects multinomial regression to identify temporal shifts in habitat use, and evaluated temporal shifts in movement patterns by estimating mean squared displacement across different productivity periods. Across periods, elephants displayed strong selection for productive areas and areas near water. Temporal shifts in habitat use showed that, during the dry period, elephants were clustered around permanent water sources where humans also congregated. At the onset of the wet period, a shift occurred where elephants moved away from permanent water and from permanent settlements towards seasonal water sources and seasonal settlements. Our findings indicate that foraging and water access are important limiting factors affecting elephants that potentially restrain their spatial responses to humans at the scale of our analysis. Given that pastoralists and elephants rely on the same resources, increasing human and livestock populations enhance pressure on shared resources and space in Africa's drylands. The long-term conservation of elephants will require approaches that reduce poaching as well as landscape level planning to prevent negative impacts from increasing competition for preferred resources.  相似文献   

10.
Summer diets are crucial for large herbivores in the subarctic and are affected by weather, harassment from insects and a variety of environmental changes linked to climate. Yet, understanding foraging behavior and diet of large herbivores is challenging in the subarctic because of their remote ranges. We used GPS video‐camera collars to observe behaviors and summer diets of the migratory Fortymile Caribou Herd (Rangifer tarandus granti) across Alaska, USA and the Yukon, Canada. First, we characterized caribou behavior. Second, we tested if videos could be used to quantify changes in the probability of eating events. Third, we estimated summer diets at the finest taxonomic resolution possible through videos. Finally, we compared summer diet estimates from video collars to microhistological analysis of fecal pellets. We classified 18,134 videos from 30 female caribou over two summers (2018 and 2019). Caribou behaviors included eating (mean = 43.5%), ruminating (25.6%), travelling (14.0%), stationary awake (11.3%) and napping (5.1%). Eating was restricted by insect harassment. We classified forage(s) consumed in 5,549 videos where diet composition (monthly) highlighted a strong tradeoff between lichens and shrubs; shrubs dominated diets in June and July when lichen use declined. We identified 63 species, 70 genus and 33 family groups of summer forages from videos. After adjusting for digestibility, monthly estimates of diet composition were strongly correlated at the scale of the forage functional type (i.e., forage groups composed of forbs, graminoids, mosses, shrubs and lichens; = 0.79, p < .01). Using video collars, we identified (1) a pronounced tradeoff in summer foraging between lichens and shrubs and (2) the costs of insect harassment on eating. Understanding caribou foraging ecology is needed to plan for their long‐term conservation across the circumpolar north, and video collars can provide a powerful approach across remote regions.  相似文献   

11.
Heterogeneity in the quality of oviposition and feeding sites within plants can significantly influence the distribution and abundance of herbivorous insects, but remains poorly understood. Field surveys and a manipulative study were conducted to evaluate the influence of variation within the crown of black spruce, Picea mariana (Mill.) B.S.P. (Pinaceae), on adult oviposition and larval feeding behavior of yellowheaded spruce sawfly, Pikonema alaskensis Rohwer (Hymenoptera: Tenthredinidae). Most eggs were laid in the mid to lower crown of 1.5–2 m tall trees. However, most of the few eggs that were laid in the upper crown (i.e., whorl 2) were female. Fourth and fifth instars dispersed acropetally, from the mid and lower to the upper crown, causing high defoliation in the upper crown. Late-instar females were generally more abundant than males on the leader, the most apical shoot on a tree where eggs and early instars rarely occurred, strongly suggesting that more females than males disperse acropetally. This hypothesis was supported in a manipulative experiment, where only 15–20% of larvae in all-male broods, but almost three-quarters of larvae in mixed broods, dispersed to the upper crown. To our knowledge, this is only the second study to explicitly demonstrate preferential allocation of progeny sex through oviposition site selection by a herbivorous insect, and the first study to unambiguously demonstrate sex-biased dispersal by the juveniles of an insect whose adult females can fly. This study emphasizes the important role of intra-plant variation in shaping both oviposition site selection and the dispersal behavior of juvenile phytophagous insects within their hosts, and suggests that sex-biased foraging behaviors may be necessary for some insects to accommodate the respective needs of immature females and males within heterogeneous host plants.  相似文献   

12.
In the short term, grazing will mainly affect plant biomass and forage quality. However, grazing can affect plant species composition by accelerating or retarding succession at longer time-scales. Few studies concerning interactions among herbivores have taken the change in plant species composition into account. In a salt-marsh system, the long-term effects of exclusion of a large herbivore (cattle) on the abundance of a small herbivore (hare) were studied. Excluding cattle grazing for 30 years resulted in large changes in vegetation composition. In general, the cover of tall-growing species increased in the absence of cattle grazing. These long-term changes negatively affected hare grazing intensity. Hares preferentially fed on Festuca rubra and negatively selected tall growing plants, such as Elymus athericus, both in cattle-grazed and long-term ungrazed areas. However, the intensity of hare grazing was not related to the cover of F. rubra. The cover of tall-growing plants (E. athericus, Atriplex prostrata and Juncus maritimus) appeared to be the best predictor and hare grazing intensity decreased sharply with an increase of the cover of tall plants. When cover of tall plants did not increase, hare grazing intensity was not affected. The study shows that the time-scale of the experiment is of prime importance in studying interactions between herbivores. Species that do not seem to influence the abundance of one another or are competing for the same resources on a short time-scale might well be facilitating each other when looking at larger time-scales while taking plant species replacement into account.  相似文献   

13.
Abstract. The main objectives of this study were to investigate sheep foraging behaviour in mixed Atlantic woodland and to assess its impact on the forest understorey. We established 89 plots along four forest types: Fagus woodland, Quercus woodland, riparian gallery forest and conifer plantations. The presence of plant species in the forest understorey and their foraging damage was surveyed bimonthly from July 1996 to June 1997. In addition, we estimated the selection of woodland types by sheep through the pellet‐group count technique. The intensity of foraging by sheep was negligible for most of the plant species, however several species showed substantial damage in some woodland types. Among the species that were abundant and widespread in the entire study area, Rubus ulmifolius, graminoids and Ilex aquifolium were consumed most. Sheep selected only larch plantations, where grasses and Rubus were very abundant. This grazing behaviour reduced browsing damage of the understorey of woodland stands with higher conservation value, such as Quercus and Fagus woodlands.  相似文献   

14.
Vegetal matter undergoing digestion in herbivores' stomachs and intestines, digesta, can be an important source of dietary carbohydrates for human foragers. Digesta significantly increases large herbivores' total caloric yield and broadens their nutritional profile to include three key macronutrients (protein, fat, and carbohydrates) in amounts sufficient to sustain small foraging groups for multiple days without supplementation. Ethnographic reports of routine digesta consumption are limited to high latitudes, but the practice may have had a wider distribution prehistorically. Including this underappreciated resource in our foraging hypotheses and models can substantively change their predictions. Assessing the explanatory power of kilocalorie-centered models relative to ones that attend to humans' other nutritional requirements can help us better address major questions in evolutionary anthropology. This paper explores the foraging implications of digesta in two contexts—sex-divided subsistence labor and archaeologically observed increases in plant use and sedentism—using estimates of available protein and carbohydrates in the native tissues and digesta, respectively, of a large ruminant herbivore (Bison bison).  相似文献   

15.
Functional responses in polar bear habitat selection   总被引:4,自引:0,他引:4  
Habitat selection may occur in situations in which animals experience a trade-off, e.g. between the use of habitats with abundant forage and the use of safer retreat habitats with little forage. Such trade-offs may yield relative habitat use conditional on the relative availability of the different habitat types, as proportional use of foraging habitat may exceed proportional availability when foraging habitat is scarce, but be less than availability when foraging habitat is abundant. Hence, trade-offs in habitat use may result in functional responses in habitat use (i.e. change in relative use with changing availability). We used logistic and log-linear models to model functional responses in female polar bear habitat use based on satellite telemetry data from two contiguous populations; one near shore inhabiting sea ice within fjords, and one inhabiting pelagic drift ice. Open ice, near the ice edge, is a highly dynamic habitat hypothesised to be important polar bear habitat due to high prey availability. In open ice-polar bears may experience a high energetic cost of movements and risk drifting away from the main ice field (i.e. trade off between feeding and energy saving or safety). If polar bears were constrained by ice dynamics we therefore predicted use of retreat habitats with greater ice coverage relative to habitats used for hunting. The polar bears demonstrated season and population specific functional responses in habitat use, likely reflecting seasonal and regional variation in use of retreat and foraging habitats. We suggest that in seasons with functional responses in habitat use, polar bear space use and population distribution may not be a mere reflection of prey availability but rather reflect the alternate allocation of time in hunting and retreat habitats.  相似文献   

16.
Optimal foraging theory addresses one of the core challenges of ecology: predicting the distribution and abundance of species. Tests of hypotheses of optimal foraging, however, often focus on a single conceptual model rather than drawing upon the collective body of theory, precluding generalization. Here we demonstrate links between two established theoretical frameworks predicting animal movements and resource use: central‐place foraging and density‐dependent habitat selection. Our goal is to better understand how the nature of critical, centrally placed resources like water (or minerals, breathing holes, breeding sites, etc.) might govern selection for food (energy) resources obtained elsewhere – a common situation for animals living in natural conditions. We empirically test our predictions using movement data from a large herbivore distributed along a gradient of water availability (feral horses, Sable Island, Canada, 2008–2013). Horses occupying western Sable Island obtain freshwater at ponds while in the east horses must drink at self‐excavated wells (holes). We studied the implications of differential access to water (time needed for a horse to obtain water) on selection for vegetation associations. Consistent with predictions of density‐dependent habitat selection, horses were reduced to using poorer‐quality habitat (heathland) more than expected close to water (where densities were relatively high), but were free to select for higher‐quality grasslands farther from water. Importantly, central‐place foraging was clearly influenced by the type of water‐source used (ponds vs. holes, the latter with greater time constraints on access). Horses with more freedom to travel (those using ponds) selected for grasslands at greater distances and continued to select grasslands at higher densities, whereas horses using water holes showed very strong density‐dependence in how habitat could be selected. Knowledge of more than one theoretical framework may be required to explain observed variation in foraging behavior of animals where multiple constraints simultaneously influence resource selection.  相似文献   

17.
1. Functional response models (e.g. Holling's disc equation) that do not take the spatial distributions of prey and predators into account are likely to produce biased estimates of predation rates. 2. To investigate the consequences of ignoring prey distribution and predator aggregation, a general analytical model of a predator population occupying a patchy environment with a single species of prey is developed. 3. The model includes the density and the spatial distribution of the prey population, the aggregative response of the predators and their mutual interference. 4. The model provides explicit solutions to a number of scenarios that can be independently combined: the prey has an even, random or clumped distribution, and the predators show a convex, sigmoid, linear or no aggregative response. 5. The model is parameterized with data from an acarine predator-prey system consisting of Phytoseiulus persimis and Tetranychus urticae inhabiting greenhouse cucumbers. 6. The model fits empirical data quite well and much better than if prey and predators were assumed to be evenly distributed among patches, or if the predators were distributed independently of the prey. 7. The analyses show that if the predators do not show an aggregative response it will always be an advantage to the prey to adopt a patchy distribution. On the other hand, if the predators are capable of responding to the distribution of prey, then it will be an advantage to the prey to be evenly distributed when its density is low and switch to a more patchy distribution when its density increases. The effect of mutual interference is negligible unless predator density is very high. 8. The model shows that prey patchiness and predator aggregation in combination can change the functional response at the population level from type II to type III, indicating that these factors may contribute to stabilization of predator-prey dynamics.  相似文献   

18.
Species utilizing a wide range of resources are intuitively expected to be less efficient in exploiting each resource type compared to species which have developed an optimal phenotype for utilizing only one or a few resources. We report here the results of an empirical study whose aim was to test for a negative association between habitat niche breadth and foraging performance. As a model system to address this question, we used two highly abundant species of pit-building antlions varying in their habitat niche breadth: the habitat generalist Myrmeleon hyalinus, which inhabits a variety of soil types but occurs mainly in sandy soils, and the habitat specialist Cueta lineosa, which is restricted to light soils such as loess. Both species were able to discriminate between the two soils, with each showing a distinct and higher preference to the soil type providing higher prey capture success and characterizing its primary habitat-of-origin. As expected, only small differences in the foraging performances of the habitat generalist were evident between the two soils, while the performance of the habitat specialist was markedly reduced in the alternative sandy soil. Remarkably, in both soil types, the habitat generalist constructed pits and responded to prey faster than the habitat specialist, at least under the temperature range of this study. Furthermore, prey capture success of the habitat generalist was higher than that of the habitat specialist irrespective of the soil type or prey ant species encountered, implying a positive association between habitat niche-breadth and foraging performance. Alternatively, C. lineosa specialization to light soils does not necessarily confer upon its superiority in utilizing such habitats. We thus suggest that habitat specialization in C. lineosa is either an evolutionary dead-end, or, more likely, that this species' superiority in light soils can only be evident when considering additional niche axes.  相似文献   

19.
20.
I address the selection of plants with different characteristics by herbivores of different body sizes by incorporating allometric relationships for herbivore foraging into optimal foraging models developed for herbivores. Herbivores may use two criteria in maximizing their nutritional intake when confronted with a range of food resources: a minimum digestibility and a minimum cropping rate. Minimum digestibility should depend on plant chemical characteristics and minimum cropping rate should depend on the density of plant items and their size (mass). If herbivores do select for these plant characteristics, then herbivores of different body sizes should select different ranges of these characteristics due to allometric relationships in digestive physiology, cropping ability and nutritional demands. This selectivity follows a regular pattern such that a herbivore of each body size can exclusively utilize some plants, while it must share other plants with herbivores of other body sizes. I empirically test this hypothesis of herbivore diet selectivity and the pattern of resource use that it produces in the field and experimentally. The findings have important implications for competition among herbivores and their population and community ecology. Furthermore, the results may have general applicability to other types of foragers, with general implications for how biodiversity is influenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号