首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of static magnetic fields on diffusion in solutions   总被引:2,自引:0,他引:2  
Static magnetic fields affect the diffusion of biological particles in solutions through the Lorentz force and Maxwell stress. These effects were analyzed theoretically to estimate the threshold field strength for these effects. Our results show that the Lorentz force suppresses the diffusion of charged particles such as Na+, K+, Ca2+, Cl-, and plasma proteins. However, the threshold is so high, i.e., more than 10(4) T, that the Lorentz force does not affect the ion diffusion at typical field strengths (a few Tesla at most). Since the threshold of gradient fields for producing a change in ion diffusion through the Maxwell stress is more than 10(5) T2/m for paramagnetic molecules (FeCl3, O2) and plasma proteins, their diffusion would be unaffected by typical gradient fields (100 T2/m at most) and even by high gradient fields (less than 10(5) T2/m) used in magnetic separation techniques. In contrast, movement of deoxygenated erythrocytes and FeCl3 colloids (more than 10(3) molecules) is influenced by the usual gradient fields due to a volume effect.  相似文献   

2.
There are two kinds of neurotransmissions that occur in brain. One is neuron to neuron at synapses, and the other is neuron to glia via extracellular fluid (ECF), both of which are important for maintenance of proper neuronal functioning. For neuron to neuron communications, several potent amino acid neurotransmitters are used within the confines of synaptic space. However, their presence at elevated concentrations in extra-synaptic space could be detrimental to well organized neuronal functioning. The significance of the synthesis and release of N-acetylaspartylglutamate (NAAG) by neurons has long been a puzzle since glutamate (Glu) itself is the “key” that can interact with all Glu receptors on membranes of all cells. Nonetheless, neurons synthesize this acetylated dipeptide, which cannot be catabolized by neurons, and release it to ECF where its specific physiological target is the Glu metabotropic receptor 3 on the surface of astrocytes. Since Glu is excitotoxic at elevated concentrations, it is proposed that formation and release of NAAG by neurons allows large quantities of Glu to be transported in ECF without the risk of injurious excitotoxic effects. The metabolic mechanism used by neurons is a key–lock system to detoxify Glu during its intercellular transit. This is accomplished by first synthesizing N-acetylaspartate (NAA), and then joining this molecule via a peptide bond to Glu. In this paper, a hypothesis is presented that neurons synthesize a variety of relatively nontoxic peptides and peptide derivatives, including NAA, NAAG, homocarnosine (γ-aminobutyrylhistidine) and carnosine (β-alanylhistidine) from potent excitatory and inhibitory amino acids for the purpose of releasing them to ECF to function as cell-specific neuron-to-glia neurotransmitters.  相似文献   

3.
Morris H. Baslow 《Amino acids》2010,39(5):1139-1145
N-acetylaspartate (NAA), an acetylated derivative of l-aspartate (Asp), and N-acetylaspartylglutamate (NAAG), a derivative of NAA and l-glutamate (Glu), are synthesized by neurons in brain. However, neurons cannot catabolize either of these substances, and so their metabolism requires the participation of two other cell types. Neurons release both NAA and NAAG to extra-cellular fluid (ECF) upon stimulation, where astrocytes, the target cells for NAAG, hydrolyze it releasing NAA back into ECF, and oligodendrocytes, the target cells for NAA, hydrolyze it releasing Asp to ECF for recycling to neurons. This sequence is unique as it is the only known amino acid metabolic cycle in brain that requires three cell types for its completion. The results of this cycling are two-fold. First, neuronal metabolic water is transported to ECF for its removal from brain. Second, the rate of neuronal activity is coupled with focal hyperemia, providing stimulated neurons with the energy required for transmission of meaningful frequency-encoded messages. In this paper, it is proposed that the tri-cellular metabolism of NAA functions as the “operating system” of the brain, and is essential for normal cognitive and motor activities. Evidence in support of this hypothesis is provided by the outcomes of two human inborn errors in NAA metabolism.  相似文献   

4.
Investigation into the Role of N-Acetylaspartate in Cerebral Osmoregulation   总被引:4,自引:3,他引:1  
Abstract: Marked abnormalities of the magnetic resonance intensity of N -acetylaspartate (NAA) have been reported in patients with various neurological disorders, but the neurochemical consequences of these alterations are difficult to assess because the function of NAA remains speculative. The purpose of this study was to examine whether NAA plays a role in protecting neurons against osmotic stress. Intracerebral microdialysis was used to expose a small region of the rat dorsolateral striatum to an increasingly hyposmotic environment and to measure resulting changes in NAA extracellular concentrations. NAA changes in the extracellular fluid (ECF) were compared with those of the amino acids, in particular, taurine, known to be involved in brain osmoregulation. Stepped increases in cellular hydration produced by hyposmotic perfusion media induced a marked increase in ECF NAA, reflecting a redistribution of NAA from intra-to extracellular space. Parallel experiments showed that, of all the extracellular amino acids measured, only taurine markedly increased with hyposmolar perfusion medium, indicating that the ECF NAA increase associated with hyposmotic stress was a specific response and not passive leakage out of the cells. As NAA is predominantly neuronal, it may contribute to the protection of neurons against swelling (i.e., regulatory volume decrease). In conditions with impaired blood-brain barrier and cytotoxic oedema, efflux of intracellular NAA subsequent to sustained cellular swelling might lead to a reduction in total brain NAA detectable by magnetic resonance spectroscopy. Alternatively, redistribution of NAA from intra-to extracellular space implies changes in its chemical environment that may alter its magnetic resonance visibility.  相似文献   

5.
6.
Summary Measurements of the water proton spin-lattice relaxation rate for aqueous solutions of the palindromic dodecamer, d(CGCGAATTCGCG)2, are reported as a function of the magnetic field strength. The magnitude of the relaxation rates at low magnetic field strengths and the shape of the relaxation dispersion curve permit assessment of the number of water molecules which may be considered bound to the DNA for a time equal to or longer than the rotational correlation time of the duplex. The data are examined using limiting models that arbitrarily use the measured rotational correlation time of the polynucleotide complex as a reference point for the water molecule lifetime. If it is assumed that water molecules are bound at DNA sites for times as long as or longer than the rotational correlation time of the duplex, then the magnitude of the relaxation rates at low field require that there may be only two or three such water sites. However, if the lifetime constraints is relaxed, and we assume that the number of water molecules bound to the DNA is more nearly the number identified in the X-ray structures, then the average water molecule lifetime is on the order of 1 ns. Measurements of 1H NOESY spectra demonstrate that some water molecules must have lifetimes sufficiently long that negative Overhauser effects are observed. Taken together, these results suggest a distribution of water molecule lifetimes in which most of the DNA-bound water molecule lifetimes are shorter than the rotational correlation time of the duplex, but where some have lifetimes of at least 1 ns under these concentrated conditions.Abbreviations DNA deoxyribonucleic acid - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy  相似文献   

7.
The system dioleoylphosphatidylcholine (DOPC)-n-dodecane-2H2O was investigated with different nuclear magnetic resonance (NMR) techniques: (a) a tentative phase diagram was determined by 2H- and 31P-NMR, (b) translational diffusion coefficients were determined for the three components with the pulsed magnetic field gradient NMR technique, and (c) order parameters for perdeuterated n-dodecane were obtained by 2H-NMR. n-Dodecane induces the formation of reversed hexagonal (HII) phases at low and high water concentrations, and cubic phases at low water contents. The translational diffusion coefficients of n-dodecane in a cubic phase with 6 mol water per mol DOPC, and in an HII phase with 48 mol water per mol DOPC, were just approximately 2.5 times lower than in pure dodecane. Perdeuterated dodecane gave large quadrupole splittings in a lamellar phase, much smaller in an HII phase at low water contents, and a narrow single peak in an HII phase at high water contents. This latter observation indicates that a large fraction of the dodecane molecules is located in separate regions between the water cylinders. Our results support the model given by Gruner concerning the aggregation of membrane lipids in the presence of hydrophobic molecules.  相似文献   

8.
Canavan disease (CD) is a genetic degenerative brain disorder associated with mutations of the gene encoding aspartoacylase (ASPA). In humans, the CD syndrome is marked by early onset, hydrocephalus, macroencephaly, psychomotor retardation, and spongiform myelin sheath vacuolization with progressive leukodystrophy. Metabolic hallmarks of the disease include elevated N-acetylaspartate (NAA) levels in brain, plasma and CSF, along with daily excretion of large amounts of NAA and its anabolic metabolite, N-acetylaspartylglutamate (NAAG). Of the observed neuropathies, the most important appears to be the extensive demyelination that interferes with normal neuronal signaling. However, finding the links between the lacks of ASPA activity in oligodendrocytes, the buildup of NAA in white matter (WM) and the mechanisms underlying the edematous spongiform leukodystrophy have remained elusive. In this analytical review we consider what those links might be and propose that in CD, the pathological buildup of NAA in limited WM extracellular fluid (ECF) is responsible for increased ECF osmotic–hydrostatic pressure and initiation of the demyelination process. We also hypothesize that NAA is not directly liberated by neurons in WM as it is in gray matter, and that its source in WM ECF is solely as a product of the catabolism of axon-released NAAG at nodes of Ranvier by astrocyte NAAG peptidase after it has docked with the astrocyte surface metabotropic glutamate receptor 3. This hypothesis ascribes for the first time a possible key role played by astrocytes in CD, linking the lack of ASPA activity in myelinating oligodendrocytes, the pathological buildup of NAA in WM ECF, and the spongiform demyelination process. It also offers new perspectives on the cause of the leukodystrophy in CD, and on possible treatment strategies for this inherited metabolic disease. CD, a rare genetic disorder that compromises a physiologically important tri-cellular brain metabolic system.  相似文献   

9.
Intense uniform magnetic fields, such as those used in magnetic resonance imaging (MRI), are thought to exert little influence at the cellular level. Here we report modifications of the signaling cascades in rat cortical neurons cultured for 1 h in magnetic fields of up to 5 Tesla. The activation of c-Jun N-terminal kinase (JNK) increases monotonically with field strength, with a maximal activation of approximately 10% at 5 T, whereas the activation of extra cellular-regulated kinase (ERK) shows a maximum at 0.75 T ( approximately 10%). Since ERK is involved in cellular differentiation, these results indicate a magnetic induction of the signaling events associated with differentiation. However, the cells respond to further increases in field strength by evoking a stress response, since JNK is a stress-activated protein kinase. Three possible mechanisms are discussed and of these, the most plausible is magnetic field induced change in the membrane rest potential, a microscale magnetohydrodynamic effect. This mechanism most likely involves the activation of voltage dependent Ca(2+) channel opening; since intracellular Ca(2+) concentration was also found to be modified by the static magnetic field.  相似文献   

10.
A method for the measurement of water that is strongly held by lysozyme is described. This water is slowly removed by vaccum drying of lyophilized and can be titrated with the Karl Fischer reagent. Drying curves were obtained by mechanical pumping (moderate vacuum) and diffusion pumping (high vacuum) at 20°, 10°, 0°, ?10° and ?20°C. About 23 water molecules per lysozyme molecule are at least moderately held by the protein. These water molecules fall into several classes. Three to four of them are quite strongly held and may correspond to the three buried water molecules observed in the x-ray analysis of lysozyme structure. The presence of tri-N-acetylglycosamine in the lysozyme active cleft has no effect on drying at 0°C. The method shows promise of being generally applicable to the measurement of small amounts of water which are strongly held by biological structures.  相似文献   

11.
N-Acetyl-l-aspartate (NAA) is an amino acid that is present in the vertebrate brain. Its concentration is one of the highest of all free amino acids and, although NAA is synthesized and stored primarily in neurons, it cannot be hydrolyzed in these cells. Furthermore, neuronal NAA is dynamic and turns over more than once each day by virtue of its continuous efflux, in a regulated intercompartmental cycling via extracellular fluids, between neurons and a second compartment in oligodendrocytes. The metabolism of NAA, between its anabolic compartment in neurons and its catabolic compartment in oligodendrocytes, and its possible physiological role in the brain has been the subject of much speculation. There are two human inborn errors in metabolism of NAA. One is Canavan disease (CD), in which there is a buildup of NAA (hyperacetylaspartia) and associated spongiform leukodystrophy, caused by a lack of aspartoacylase activity. The other is a singular human case of lack of NAA (hypoacetylaspartia), where the enzyme that synthesizes NAA is apparently absent. There are two animal models currently available for studies of CD. One is a rat with a natural deletion of the catabolic enzyme, and the other a gene knockout mouse. In addition to the presence of NAA in neurons, its prominence in 1H nuclear magnetic resonance spectroscopic studies has led to its wide use in diagnostic human medicine as both an indicator of brain pathology and of disease progression in a variety of CNS diseases. In this review, various hypotheses regarding the metabolism of NAA and its possible role in the CNS are evaluated. Based on this analysis, it is concluded that although NAA may have several functions in the CNS, an important role of the NAA intercompartmental system is osmoregulatory, and in this role it may be the primary mechanism for the removal of intracellular water, against a water gradient, from myelinated neurons.  相似文献   

12.
Bacteriorhodopsin is a membrane protein of the purple membrane (PM) of Halobacterium salinarum, which is isolated as sheets of highly organized two-dimensional hexagonal microcrystals and for which water molecules play a crucial role that affects its function as a proton pump. In this paper we used single- and double-quantum (2)H NMR as well as (1)H and (2)H diffusion NMR to characterize the interaction of water molecules with the PM in D(2)O suspensions. We found that, under the influence of a strong magnetic field on a concentrated PM sample (0.61 mM), the PM sheets affect the entire water population and a residual quadrupolar splitting (upsilon(q) approximately 5.5 Hz, 298 K, at 11.7 T) is observed for the D(2)O molecules. We found that the residual quadrupolar coupling, the creation time in which a maximal DQF signal was obtained (tau(max)), and the relative intensity of the (2)H DQF spectrum of the water molecules in the PM samples (referred to herein as NMR order parameters) are very sensitive to temperature, dilution, and chemical modifications of the PM. In concentrated PM samples in D(2)O, these NMR parameters seem to reflect the relative organization of the PM. Interestingly, we have observed that some of these parameters are sensitive to the efficiency of the trimer packing, as concluded from the apo-membrane behavior. The data for dionized blue membrane, partially delipidated sample, and detergent-treated PM show that these D(2)O NMR order parameters, which are magnetic field dependent, are sensitive to the structural integrity of the PM. In addition, we revealed that heating the PM sample inside or outside the NMR magnet has, after cooling, a different effect on the NMR characteristics of the water molecules in the concentrated PM suspensions. The difference in the D(2)O NMR order parameters for the PM samples, which were heated and cooled in the presence and in the absence of a strong magnetic field, corroborates the conclusions that the above D(2)O order parameters are indirect reflections of both microscopic and macroscopic order of the PM samples. In addition, (1)H NMR diffusion measurements showed that at least three distinct water populations could be identified, based on their diffusion coefficients. These water populations seem to correlate with different water populations previously reported for the PM system.  相似文献   

13.
Rodin VV  Knight DP 《Biofizika》2003,48(3):429-435
Self-diffusion of water was studied in fibers of natural silk (Bombyx mori) with a water content of 0.18 g H2O/g dried material. Self-diffusion measurements were conducted by pulsed gradient of magnetic field (stimulated echo) at diffusion times from 10 to 200 mc. The dependence of experimental diffusion coefficients Dexp = f(delta) (observed decrease when delta increased) was determined to be responsible for the restricted diffusion. A model of planar and regularly spaced permeable barriers to diffusion of water molecules was applied to estimate the barrier spacing a and the permeability constant p. The maximal value of Dexp (at short diffusion time) in B. mori silk fibres was about 0.06 of the value of Dexp in bulk free water. The results obtained are compared to literature data on self-diffusion of water in hydrated biopolymer fibers and are discussed in connection with molecular mobility in natural macromolecular systems with low water content.  相似文献   

14.
Water constitutes the intracellular matrix in which biological molecules interact. Understanding its dynamic state is a main scientific challenge, which continues to provoke controversy after more than 50 years of study. We measured water dynamics in vivo in the cytoplasm of Escherichia coli by using neutron scattering and isotope labelling. Experimental timescales covered motions from pure water to interfacial water, on an atomic length scale. In contrast to the widespread opinion that water is 'tamed' by macromolecular confinement, the measurements established that water diffusion within the bacteria is similar to that of pure water at physiological temperature.  相似文献   

15.
The processes of dehydration and rehydration of β-cyclodextrin were studied by analysis of the 1H NMR (nuclear magnetic resonance) line shape. Dehydration was carried in an open ampoule as a function of temperature and above 400 K total dehydration of β-cyclodextrin was observed. This result was confirmed by the thermogravimetry (TG) measurements. Rehydration was studied as a function of time at room temperature. After 40 days, β-cyclodextrin was found to absorb eight water molecules. The analysis of temperature changes in the shape of the 1H NMR line of β-cyclodextrin kept in a closed ampoule and its dielectric measurements provided information on the mobility of water molecules. The water molecules were found to perform complex molecular motions, that is, reorientational jumps below 200 K and additionally, translational motion (diffusion) above 200 K.  相似文献   

16.
17.
When water-coated hydrophobic surfaces meet, direct contacts form between the surfaces, driving water out. However, long-range attractive forces first bring those surfaces close. This analysis reveals the source and strength of the long-range attraction between water-coated hydrophobic surfaces. The origin is in the polarization field produced by the strong correlation and coupling of the dipoles of the water molecules at the surfaces. We show that this polarization field gives rise to dipoles on the surface of the hydrophobic solutes that generate long-range hydrophobic attractions. Thus, hydrophobic aggregation begins with a step in which water-coated nonpolar solutes approach one another due to long-range electrostatic forces. This precursor regime occurs before the entropy increase of releasing the water layers and the short-range van der Waals attraction provide the driving force to "dry out" the contact surface. The effective force of attraction is derived from basic molecular principles, without assumptions of the structure of the hydrophobe-water interaction. The strength of this force can be measured directly from atomic force microscopy images of a hydrophobic molecule tethered to a surface but extending into water, and another hydrophobe attached to an atomic force probe. The phenomenon can be observed in the transverse relaxation rates in water proton magnetic resonance as well. The results shed light on the way water mediates chemical and biological self-assembly, a long outstanding problem.  相似文献   

18.
Formation of the associates of carbonic anhydrase B (pH 5.7, 4.2 M urea, and T = 297 K) as a function of protein concentration and time clapsed after preparation of solutions was studied by nuclear magnetic resonance spectroscopy (spin diffusion method). It was demonstrated that the association was a two-stage process. The initial (fast) stage, involving the formation of persistent blocks, was independent of the time elapsed after the solution preparation. A urea concentration of 4.2 M allows the protein molecules to interact with one another to form rather small persistent blocks in combination with solvent molecules, so that the mobility of each molecule remains nearly unchanged. The final (slow) stage is time-dependent and involves the formation of large structures from the persistent blocks. It is shown that parameters G* and S*, which characterize spin diffusion (in protein and solvent, respectively) when it is excited at frequencies remote from the NMR spectral signals, are related to the size probability distribution of the solvent-protein associates and are determined by their collective properties.  相似文献   

19.
Solubilizing water involved in protein extraction using reversed micelles   总被引:4,自引:0,他引:4  
The extraction of protein using reversed micelles was investigated in relation to the amount of solubilizing water in the reversed micellar organic phase. The minimal concentration of amphiphilic molecule di-2-ethylhexyl sodium sulfosuccinate (C(20)H(37)O(7)Na) (AOT) required for 100% cytochrome c extraction was recognized. This critical AOT concentration increased with protein concentration in the aqueous phase. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein was found to be a constant of 3500 under C(KCI) = 1.0 x 10(2) mol . m(-3) in this system. This ratio means the hydrophillic surroundings required for extracting one protein molecule into the micellar organic phase under the suitable pH and salt concentration for the forward extraction. In this regard, AOT molecules seemed to take the part of water solubilizing agent in the reversed micellar extraction. This role of AOT is important to extract protein under the suitable pH and salt concentration. The amount of solubilizing water in the protein-containing system was larger than in the protein-free system. This difference shows that the water molecules accompany the extracted protein into the reversed micellar organic phase at constant ratio 2200 under C(KCI) = 1.0 x 10(2) mol . m(-3), i.e., accompanying water molecules per one extracted protein. The minimal AOT concentration increased with ionic strength. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein also increased with ionic strength, so that in higher ionic strength, more solubilizing water was required. Then more AOT was required to provide the hydrophillic surroundings for protein. The pH affected the minimal AOT concentration required for 100% protein extraction.  相似文献   

20.
It recently has been demonstrated that magnetic resonance imaging can be used to map changes in brain hemodynamics produced by human mental operations. One method under development relies on blood oxygenation level-dependent (BOLD) contrast: a change in the signal strength of brain water protons produced by the paramagnetic effects of venous blood deoxyhemoglobin. Here we discuss the basic quantitative features of the observed BOLD-based signal changes, including the signal amplitude and its magnetic field dependence and dynamic effects such as a pronounced oscillatory pattern that is induced in the signal from primary visual cortex during photic stimulation experiments. The observed features are compared with the results of Monte Carlo simulations of water proton intravoxel phase dispersion produced by local field gradients generated by paramagnetic deoxyhemoglobin in nearby venous blood vessels. The simulations suggest that the effect of water molecule diffusion is strong for the case of blood capillaries, but, for larger venous blood vessels, water diffusion is not an important determinant of deoxyhemoglobin-induced signal dephasing. We provide an expression for the apparent in-plane relaxation rate constant (R2*) in terms of the main magnetic field strength, the degree of the oxygenation of the venous blood, the venous blood volume fraction in the tissue, and the size of the blood vessel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号