首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An oligonucleotide probe specific for the amino acid sequence at the biotin site in pyruvate carboxylase was used to screen a human liver cDNA library. Nine cDNA clones were isolated and three proved to be pyruvate carboxylase clones based on nucleotide sequencing and Northern blotting. The biotin site amino acid sequence of human pyruvate carboxylase agreed perfectly with that of the sheep enzyme in 14 consecutive positions. The highly conserved amino acid sequence, Ala-Met-Lys-Met, found at the biotin site in most biotin-containing carboxylases was also present in human pyruvate carboxylase. The termination codon was located 35 residues 3' to the lysine residue at which the biotin is attached. Therefore, the biotin cofactor is covalently linked near the carboxyl-terminal end of the carboxylase protein. These data are consistent with that observed for other biotin-containing carboxylases and strongly suggests that the genes encoding the biotin-containing carboxylases may have evolved from a common ancestral gene. Northern blotting of mRNA isolated from human, baboon, and rat liver demonstrated that the pyruvate carboxylase mRNA was 4.2 kilobase pairs in length in all species examined. Southern blot analysis of genomic DNA isolated from human-Chinese hamster somatic cell hybrids localized the pyruvate carboxylase gene on the long arm of human chromosome 11. The human cDNA was also used to quantitate pyruvate carboxylase mRNA levels in a differentiating mouse preadipocyte cell line. These data demonstrated that pyruvate carboxylase mRNA content increased 23-fold in 7 days after the onset of differentiation.  相似文献   

2.
Incubation of cultured cells with [3H]biotin leads to the labelling of acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase and methylcrotonyl-CoA carboxylase. The biotin-containing subunits of the last two enzymes from rat cell lines are not separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, but adequate separation is achieved with the enzymes from human cells. Since incorporated biotin is only released upon complete protein breakdown, the loss of radioactivity from gel slices coinciding with fluorograph bands was used to quantify degradation rates for each protein. In HE(39)L diploid human fibroblasts, the degradation rate constants are 0.55, 0.40, 0.31 and 0.19 day-1 for acetyl-CoA carboxylase, pyruvate carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase respectively. A similar series of rate constants is found for AG2804 transformed fibroblasts. The degradation rate constants are decreased by 31-67% in the presence of 50 micrograms of leupeptin/ml plus 5 mM-NH4Cl. Although the largest percentage effect was noted with the most stable enzyme, propionyl-CoA carboxylase, the absolute change in rate constant produced by the lysosomotropic inhibitors was similar for the three mitochondrial carboxylases, but greater for the cytosolic enzyme acetyl-CoA carboxylase. The heterogeneity in degradation rate constants for the mitochondrial carboxylases indicates that only part of their catabolism can occur via the autophagy-mediated unit destruction of mitochondria. Calculations showed that the autophagy-linked process had degradation rate constants of 0.084 and 0.102 day-1 respectively in HE(39)L and AG2804 cells. It accounted for two-thirds of the catabolic rate of propionyl-CoA carboxylase and a lesser proportion for the other enzymes.  相似文献   

3.
In this review we examine the effects of the allosteric activator, acetyl CoA on both the structure and catalytic activities of pyruvate carboxylase. We describe how the binding of acetyl CoA produces gross changes to the quaternary and tertiary structures of the enzyme that are visible in the electron microscope. These changes serve to stabilize the tetrameric structure of the enzyme. The main locus of activation of the enzyme by acetyl CoA is the biotin carboxylation domain of the enzyme where ATP-cleavage and carboxylation of the biotin prosthetic group occur. As well as enhancing reaction rates, acetyl CoA also enhances the binding of some substrates, especially HCO3-, and there is also a complex interaction with the binding of the cofactor Mg2. The activation of pyruvate carboxylase by acetyl CoA is generally a cooperative processes, although there is a large degree of variability in the degree of cooperativity exhibited by the enzyme from different organisms. The X-ray crystallographic holoenzyme structures of pyruvate carboxylases from Rhizobium etli and Staphylococcus aureus have shown the allosteric acetyl CoA binding domain to be located at the interfaces of the biotin carboxylation and carboxyl transfer and the carboxyl transfer and biotin carboxyl carrier protein domains.  相似文献   

4.
Human holocarboxylase synthetase (HCS) catalyzes linkage of the vitamin biotin to the biotin carboxyl carrier protein (BCCP) domain of five biotin-dependent carboxylases. In the two-step reaction, the activated intermediate, bio-5'-AMP, is first synthesized from biotin and ATP, followed by covalent linkage of the biotin moiety to a specific lysine residue of each carboxylase BCCP domain. Selectivity in HCS-catalyzed biotinylation to the carboxylases was investigated in single turnover stopped flow and quench flow measurements of biotin transfer to the minimal biotin acceptor BCCP fragments of the carboxylases. The results demonstrate that biotinylation of the BCCP fragments of the mitochondrial carboxylases propionyl-CoA carboxylase, pyruvate carboxylase, and methylcrotonoyl-CoA carboxylase is fast and limited by the bimolecular association rate of the enzyme with substrate. By contrast, biotinylation of the acetyl-CoA carboxylase 1 and 2 (ACC1 and ACC2) fragments, both of which are accessible to HCS in the cytoplasm, is slow and displays a hyperbolic dependence on substrate concentration. The correlation between HCS accessibility to biotin acceptor substrates and the kinetics of biotinylation suggests that mitochondrial carboxylase sequences evolved to produce fast association rates with HCS in order to ensure biotinylation prior to mitochondrial import. In addition, the results are consistent with a role for HCS specificity in dictating biotin distribution among carboxylases.  相似文献   

5.
6.
Three biotin-dependent enzymes, pyruvate carboxylase (PC), propionyl CoA carboxylase (PCC), and beta-methylcrotonyl CoA carboxylase (beta MCC), were biochemically characterized in fibroblasts from two patients with neonatal multiple carboxylase deficiency. Genetic complementation analyses indicated that both cell lines, designated lines 1 and 2, were deficient in the various carboxylase activities and belonged to the bio complementation group. The activities of the three carboxylases became normal when line 2 cells were incubated in medium supplemented with biotin (1 mg/l) for 24 hrs, whereas 4-6 days were required to achieve maximum activities of PC, PCC, and beta MCC (57%, 46%, and 29% of mean normal enzyme activity, respectively) in line 1 cells incubated in medium containing up to 10 mg/1 biotin. Furthermore, PC activity in line 2 continued to increase under apparent gluconeogenic conditions in culture, but not in line 1. Thermostability studies suggested that biotin stabilizes PC and beta MCC in both cell lines. PC in line 1 cells incubated with or without biotin was less stable than that in normal or line 2 cells, and the less than normal increase of enzyme activities in line 1, especially that of PC, may represent incomplete biotination. These results indicate that there is biochemical heterogeneity within the bio complementation group. Immunotitration with antibodies prepared against purified pig heart PCC demonstrated normal quantities of cross-reacting material in both lines and no differences in the amount of this material after incubation with supplemental biotin, despite the seven- to 20-fold increase in PCC activity. Thus, the increase in carboxylase activity in both bio lines appears to represent activation of rpe-existing apocarboxylase rather than de novo enzyme synthesis. The primary defect in this form of multiple carboxylase deficiency may be in a common holocarboxylase synthetase or in biotin transport. If the defect is in the synthetase, the differences noted between the two bio lines could be explained by a difference in the enzyme's Km for biotin.  相似文献   

7.
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/- 0.03 mM, with a V(max) of 43.3 +/- 2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/- 0.008 mM, with a V(max) of 40.8 +/- 1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit.  相似文献   

8.
Propionicacidemia is a metabolic disorder resulting from a deficiency of propionyl-CoA carboxylase activity. The enzyme is composed of two polypeptides: a 72,000-dalton alpha chain which contains the biotin ligand and a 56,000-dalton beta chain. It has been suggested that the two major complementation groups in this disorder, pccA and pccBC (with subgroups pccB and pccC), correspond to the genes encoding these two chains. To correlate gene product with complementation groups, 15 mutant and four normal human fibroblast strains were analyzed by [35S]methionine and [3H]biotin labeling. Immunoprecipitation and gel electrophoresis of the polypeptides revealed that alpha chains are synthesized by mutants of pccBC and both subgroups but not in four out of five pccA mutants. On the other hand, beta chains were detected only in pccB mutants. We suggest that pccA encodes the alpha chain of PCC while pccBC encodes the beta chain, and furthermore predict that the beta chain is unstable in the absence of the alpha chain.  相似文献   

9.
Biotin-dependent carboxylases require covalently bound biotin for enzymatic activity. The biotin is attached through a lysine residue, which in a number of bacterial, avian, and mammalian carboxylases, is found within the conserved sequence Ala-Met-Lys-Met. We have determined the partial nucleotide sequence of cDNA clones for human propionyl-CoA carboxylase and pyruvate carboxylase. The predicted amino acid sequence of both these proteins contains the conserved tetrapeptide 35 residues from the carboxy terminus. In addition, both proteins contain the tripeptide, Pro-Met-Pro, 26 residues toward the amino terminus from the biotin attachment site. The overall amino acid homology through this region is 43%. Similar findings have been made for the biotin-containing polypeptides of transcarboxylase of Propionibacterium shermanii and acetyl-CoA carboxylase of Escherichia coli (W. L. Maloy, B. U. Bowien, G. K. Zwolinski, K. G. Kumar, and H. G. Wood (1979) J. Biol. Chem. 254, 11615-11622). The implications of this sequence conservation with regard to the function and evolution of biotin-dependent carboxylases is discussed. We propose that the 60 amino acids surrounding the biotin site are bounded by a proline "hinge" and the carboxy terminus has remained conserved as a result of constraints imposed by biotinylation of the enzyme.  相似文献   

10.
Propionicacidemia is an autosomal recessive metabolic disease resulting from a deficiency of propionyl-CoA carboxylase (PCC) activity. The enzyme has the structure alpha 4 beta 4, with the alpha chain containing a covalently bound biotin prosthetic group. Patients have been placed into two major complementation groups, pccA and pccBC, that may correspond to the genes encoding the alpha and beta chains of PCC. The pccBC group is further divided into two subgroups, pccB and pccC, apparently owing to intragenic complementation. We previously reported combined alpha- and beta-chain deficiency in pccA mutants and absence of beta chain in pccC and pccBC mutants after isotope-tracer labeling and immunoprecipitation of cultured-fibroblast extracts. Using cDNA clones coding for the alpha and beta chains as probes, we found absence of alpha mRNA in four of six pccA strains and presence of beta mRNA in all pccA mutants studied. We also found presence of both alpha and beta mRNAs in three pccBC, two pccB, and three pccC mutants. From these data, we confirm the gene assignments of the complementation groups (PCCA gene = pccA complementation group; PCCB gene = pccBC and subgroups) and support the view that pccA patients synthesize a normal beta chain that is rapidly degraded in the absence of complexing with alpha chains.  相似文献   

11.
Acetyl-CoA carboxylase regulates the rate of fatty acid synthesis. This enzyme in plants is localized in plastids and is believed to be composed of biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase made up of alpha and beta polypeptides, although the enzyme has not been purified yet. Accumulated evidence shows that pea plastidic acetyl-CoA carboxylase is activated by light and the activation is caused by light-dependent reduction of carboxyltransferase, but not of biotin carboxylase, via a redox cascade. To understand the reductive activation of carboxyltransferase at the molecular level here, we obtained the active enzyme composed of decahistidine-tagged (His tag) alpha and beta polypeptides through the expression of the pea plastidic carboxyltransferase gene in Escherichia coli. Gel filtration showed that the molecular size of the recombinant carboxyltransferase is in agreement with that of partially purified carboxyltransferase from pea chloroplasts. The catalytic activity of the recombinant enzyme was similar to that of native carboxyltransferase. These results indicate that the molecular structure and conformation of recombinant carboxyltransferase resemble those of its native counterpart and that native carboxyltransferase is indeed composed of alpha and beta polypeptides. This recombinant enzyme was activated by dithiothreitol, a known reductant of S-S bonds, with a profile similar to that of its native counterpart. The recombinant enzyme was activated by reduced thioredoxin-f, a signal transducer of redox potential in chloroplasts under irradiation. Thus, this enzyme was redox-regulated, like that of the native carboxyltransferase.  相似文献   

12.
Genes for two subunits of acetyl-coenzyme A carboxylase, biotin carboxylase and biotin carboxyl carrier protein, have been cloned from Anabaena sp. strain PCC 7120. The two proteins are 181 and 447 amino acids long and show 40 and 57% identity to the corresponding Escherichia coli proteins, respectively. The sequence of the biotinylation site in Anabaena sp. strain PCC 7120 is MetLysLeu, not the MetLysMet found in other sequences of biotin-dependent carboxylases. The amino acid sequence of biotin carboxylase is also very similar (32 to 47% identity) to the sequence of the biotin carboxylase domain of other biotin-dependent carboxylases. Genes for these two subunits of acetyl-coenzyme A carboxylase are not linked in Anabaena sp. strain PCC 7120, contrary to the situation in E. coli, in which they are in one operon.  相似文献   

13.
We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar to biotin carboxylase subunits of acetyl-CoA and propionyl-CoA carboxylases and of pyruvate carboxylase. The putative motifs for ATP binding, CO(2) fixation, and biotin binding were found in AccA. The accB gene was located upstream of the accA gene, and they formed a two-gene operon. The protein (AccB) encoded by the accB gene showed high degrees of sequence similarity with carboxyltransferase subunits of acetyl-CoA and propionyl-CoA carboxylases and of methylmalonyl-CoA decarboxylase. Carboxybiotin-binding and acyl-CoA-binding domains, which are conserved in several carboxyltransferase subunits of acyl-CoA carboxylases, were found in AccB. An accA disruption mutant showed a reduced growth rate and reduced acetyl-CoA carboxylase activity compared with the wild-type strain. Western blot analysis indicated that the product of the accA gene was a biotinylated protein that was expressed during the exponential growth phase. Based on these results, we propose that this M. xanthus acetyl-CoA carboxylase consists of two subunits, which are encoded by the accB and accA genes, and occupies a position between prokaryotic and eukaryotic acetyl-CoA carboxylases in terms of evolution.  相似文献   

14.
Physical-chemical studies of pyruvate carboxylase from Pseudomonas citronellolis demonstrate that the enzyme has an alpha 4 beta 4 structure. The individual polypeptides, alpha (Mr = 65,000) and beta (Mr = 54,000), were separated and isolated by preparative gel electrophoresis. Analysis of the relationship between Coomassie blue staining and protein quantity for each polypeptide indicated that the alpha and beta subunits are present in a 1:1 stoichiometry in the native enzyme. Determinations of the molecular weight of the protein by sedimentation equilibrium (Mr = 454,000), gel filtration analysis (Mr = 510,000), disc gel electrophoresis (Mr = 530,000), and mass measurement from the Scanning Transmission Electron Microscope (Mr = 530,000) are consistent with the proposed alpha 4 beta 4 structure. Disc gel electrophoresis studies revealed that under certain circumstances the enzyme may dissociate to a smaller molecular weight species (Mr = 228,000). This dissociation phenomenon could explain the earlier reported observation of Taylor et al. ((1972) J. Biol. Chem 22, 7388-8390) that the enzyme had a molecular weight of 265,000. Evidence from electron microscopic studies shows that the three-dimensional structure of this enzyme is quite distinct from other species of pyruvate carboxylase. The enzyme does not show the typical rhombic appearance which has been noted for chicken liver, sheep liver, and yeast pyruvate carboxylase.  相似文献   

15.
Sequence and domain structure of yeast pyruvate carboxylase   总被引:16,自引:0,他引:16  
The nucleotide sequence of the yeast pyruvate carboxylase gene has been determined from a cloned fragment of yeast genomic DNA. The deduced translation product codes for a polypeptide of 1178 amino acids, having a calculated molecular weight of 130,100. The protein shows strong sequence homology to specific regions of other biotin carboxylases, lipoamide transferases, and carbamyl phosphate synthetases. The homologous regions suggest the presence of three subsites in the enzyme: a biotin attachment site, a keto acid-binding site, and an ATP-binding site. Partial proteolysis with a variety of proteases under nondenaturing conditions indicates the presence of structural domains corresponding to these subsites.  相似文献   

16.
3-Methylcrotonylglycinuria is an inborn error of leucine catabolism and has a recessive pattern of inheritance that results from the deficiency of 3-methylcrotonyl-CoA carboxylase (MCC). The introduction of tandem mass spectrometry in newborn screening has revealed an unexpectedly high incidence of this disorder, which, in certain areas, appears to be the most frequent organic aciduria. MCC, an heteromeric enzyme consisting of alpha (biotin-containing) and beta subunits, is the only one of the four biotin-dependent carboxylases known in humans that has genes that have not yet been characterized, precluding molecular studies of this disease. Here we report the characterization, at the genomic level and at the cDNA level, of both the MCCA gene and the MCCB gene, encoding the MCC alpha and MCC beta subunits, respectively. The 19-exon MCCA gene maps to 3q25-27 and encodes a 725-residue protein with a biotin attachment site; the 17-exon MCCB gene maps to 5q12-q13 and encodes a 563-residue polypeptide. We show that disease-causing mutations can be classified into two complementation groups, denoted "CGA" and "CGB." We detected two MCCA missense mutations in CGA patients, one of which leads to absence of biotinylated MCC alpha. Two MCCB missense mutations and one splicing defect mutation leading to early MCC beta truncation were found in CGB patients. A fourth MCCB mutation also leading to early MCC beta truncation was found in two nonclassified patients. A fungal model carrying an mccA null allele has been constructed and was used to demonstrate, in vivo, the involvement of MCC in leucine catabolism. These results establish that 3-methylcrotonylglycinuria results from loss-of-function mutations in the genes encoding the alpha and beta subunits of MCC and complete the genetic characterization of the four human biotin-dependent carboxylases.  相似文献   

17.
Carboxylase genes of Sulfolobus metallicus   总被引:2,自引:0,他引:2  
Carbon dioxide limitation of Sulfolobus metallicus resulted in increased cellular concentrations of polypeptides that were predicted to be biotin carboxylase and biotin carboxyl-carrier-protein components of a protein complex. These polypeptides were coeluted from a native polyacrylamide gel and were estimated at 19 and 59 kDa after separation by denaturing gel electrophoresis. Their encoding genes were identified, sequenced and shown to code for polypeptides of 18,580 and 58,235 Da with similarities to biotin carboxyl carrier proteins and biotin carboxylases, respectively. The genes overlapped at the second of two stop codons that terminated the carboxylase gene. A third gene occurred on the opposite strand, 293 bp upstream of the biotin carboxylase gene. Its deduced amino acid sequence was similar to those of carboxyl transferase subunits of carboxylase enzymes, in particular to those of the propionyl-CoA carboxylases. It is proposed that the three described genes could encode the key enzyme complex responsible for carbon dioxide fixation during autotrophic growth of the thermoacidophilic archaea. Received: 24 February 1999 / Accepted: 30 July 1999  相似文献   

18.
Recent studies of biotin status during pregnancy provide evidence that a marginal degree of biotin deficiency develops in a substantial proportion of women during normal pregnancy. Several lines of evidence suggest that although the degree of biotin deficiency is not severe enough to produce the classic cutaneous and behavioral manifestations of biotin deficiency, the deficiency is severe enough to produce metabolic derangements in women and may be teratogenic. In studies of mice, a similar degree of biotin deficiency induces characteristic fetal malformations at a high rate. Fetal hepatic biotin content and PCC activity decrease indicating that the fetuses also become biotin deficient. Fetal hepatic acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase and beta-methylcrotonyl-CoA carboxylase abundances determined by Western blotting decreased more than the dam holocarboxylase abundances (10% of sufficient vs. 50% of sufficient); however, hepatic mRNA for the carboxylases and for HCS did not change significantly in either dams or fetuses. These observations suggest that maternal biotin deficiency results in a lack of adequate biotin to biotinylate apocarboxylases in the fetus despite the normal expression of genes coding for the apocarboxylases and holocarboxylase synthetase.  相似文献   

19.
Selenobiotin is an excellent growth factor, as efficient as biotin in supporting the growth of biotin requiring microorganisms. It is incorporated in carboxylases leading to active “selenocarboxylases”. With E. Coli, the activity of the selenoacetyl CoA carboxylase is very similar to that of the normal enzyme.  相似文献   

20.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis. In Escherichia coli, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. The biotin carboxylase component has served for many years as a paradigm for mechanistic studies devoted toward understanding more complicated biotin-dependent carboxylases. The three-dimensional x-ray structure of an unliganded form of E. coli biotin carboxylase was originally solved in 1994 to 2.4-A resolution. This study revealed the architecture of the enzyme and demonstrated that the protein belongs to the ATP-grasp superfamily. Here we describe the three-dimensional structure of the E. coli biotin carboxylase complexed with ATP and determined to 2.5-A resolution. The major conformational change that occurs upon nucleotide binding is a rotation of approximately 45(o) of one domain relative to the other domains thereby closing off the active site pocket. Key residues involved in binding the nucleotide to the protein include Lys-116, His-236, and Glu-201. The backbone amide groups of Gly-165 and Gly-166 participate in hydrogen bonding interactions with the phosphoryl oxygens of the nucleotide. A comparison of this closed form of biotin carboxylase with carbamoyl-phosphate synthetase is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号