首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choline oxidase catalyzes the oxidation of choline to glycine betaine, a compatible solute that accumulates in pathogenic bacteria and plants so they can withstand osmotic and temperature stresses. The crystal structure of choline oxidase was determined and refined to a resolution of 1.86 A with data collected at 100 K using synchrotron X-ray radiation. The structure reveals a covalent linkage between His99 Nepsilon2 and FAD C8M atoms, and a 123 A3 solvent-excluded cavity adjacent to the re face of the flavin. A hypothetical model for choline docked into the cavity suggests that several aromatic residues and Glu312 may orient the cationic substrate for efficient catalysis. The role of the negative charge on Glu312 was investigated by engineering variant enzymes in which Glu312 was replaced with alanine, glutamine, or aspartate. The Glu312Ala enzyme was inactive. The Glu312Gln enzyme exhibited a Kd value for choline at least 500 times larger than that of the wild-type enzyme. The Glu312Asp enzyme had a kcat/KO2 value similar to that of the wild-type enzyme but kcat and kcat/Km values that were 230 and 35 times lower, respectively, than in the wild-type enzyme. These data are consistent with the spatial location of the negative charge on residue 312 being important for the oxidation of the alcohol substrate. Solvent viscosity and substrate kinetic isotope effects suggest the presence of an internal equilibrium in the Glu312Asp enzyme prior to the hydride transfer reaction. Altogether, the crystallographic and mechanistic data suggest that Glu312 is important for binding and positioning of the substrate in the active site of choline oxidase.  相似文献   

2.
Fukasawa KM  Hirose J  Hata T  Ono Y 《Biochemistry》2006,45(38):11425-11431
Aminopeptidase B (EC 3.4.11.6, ApB) specifically cleaves in vitro the N-terminal Arg or Lys residue from peptides and synthetic derivatives. Ap B was shown to have a consensus sequence found in the metallopeptidase family. We determined the putative zinc binding residues (His324, His328, and Glu347) and the essential Glu325 residue for the enzyme using site-directed mutagenesis (Fukasawa, K. M., et al. (1999) Biochem. J. 339, 497-502). To identify the residues binding to the amino-terminal basic amino acid of the substrate, rat cDNA encoding ApB was cloned into pGEX-4T-3 so that recombinant protein was expressed as a GST fusion protein. Twelve acidic amino acid residues (Glu or Asp) in ApB were replaced with a Gln or Asn using site-directed mutagenesis. These mutants were isolated to characterize the kinetic parameters of enzyme activity toward Arg-NA and compare them to those of the wild-type ApB. The catalytic efficiency (kcat/Km) of the mutant D405N was 1.7 x 10(4) M(-1) s(-1), markedly decreased compared with that of the wild-type ApB (6.2 x 10(5) M(-1) s(-1)). The replacement of Asp405 with an Asn residue resulted in the change of substrate specificity such that the specific activity of the mutant D405N toward Lys-NA was twice that toward Arg-NA (in the case of wild-type ApB; 0.4). Moreover, when Asp405 was replaced with an Ala residue, the kcat/Km ratio was 1000-fold lower than that of the wild-type ApB for hydrolysis of Arg-NA; in contrast, in the hydrolysis of Tyr-NA, the kcat/Km ratios of the wild-type (1.1 x 10(4) M(-1) s(-1)) and the mutated (8.2 x 10(3) M(-1) s(-1)) enzymes were similar. Furthermore, the replacement of Asp-405 with a Glu residue led to the reduction of the kcat/Km ratio for the hydrolysis of Arg-NA by a factor of 6 and an increase of that for the hydrolysis of Lys-NA. Then the kcat/Km ratio of the D405E mutant for the hydrolysis of Lys-NA was higher than that for the hydrolysis of Arg-NA as opposed to that of wild-type ApB. These data strongly suggest that the Asp 405 residue is involved in substrate binding via an interaction with the P1 amino group of the substrate's side chain.  相似文献   

3.
R Schinzel  D Palm 《Biochemistry》1990,29(42):9956-9962
The role of Escherichia coli maltodextrin phosphorylase (EC 2.4.1.1) active site residues Glu637 and Tyr538 which line the sugar-phosphate contact region of the enzyme was investigated by site-directed mutagenesis. Substitution of Glu637 by an Asp or Gln residue reduced kcat to approximately 0.2% of wild-type activity, while the Km values were affected to a minor extent. This indicated participation of Glu637 in transition-state binding rather than in ground-state binding. 31P NMR analysis of the ionization state of enzyme-bound pyridoxal phosphate suggested that Glu637 is also involved in modulation of the protonation state of the coenzyme phosphate observed during catalysis. Despite loss of proposed hydrogen-bonded substrate contacts, the Tyr538Phe mutant enzyme retained more than 10% activity; the apparent affinity of all substrates was slightly decreased. Mutations at either site affected the error rate of the enzyme (ratio of hydrolysis/phosphorolysis). Besides a role in substrate binding, the hydrogen-bond network of Tyr538 supports the exclusion of water from the active site.  相似文献   

4.
Wu J  Xu D  Lu X  Wang C  Guo H  Dunaway-Mariano D 《Biochemistry》2006,45(1):102-112
It is well established that electrostatic interactions play a vital role in enzyme catalysis. In this work, we report theory-guided mutation experiments that identified strong electrostatic contributions of a remote residue, namely, Glu232 located on the adjacent subunit, to 4-chlorobenzoyl-CoA dehalogenase catalysis. The Glu232Asp mutant was found to bind the substrate analogue 4-methylbenzoyl-CoA more tightly than does the wild-type dehalogenase. In contrast, the kcat for 4-chlorobenzoyl-CoA conversion to product was reduced 10000-fold in the mutant. UV difference spectra measured for the respective enzyme-ligand complexes revealed an approximately 3-fold shift in the equilibrium of the two active site conformers away from that inducing strong pi-electron polarization in the ligand benzoyl ring. Increased substrate binding, decreased ring polarization, and decreased catalytic efficiency indicated that the repositioning of the point charge in the Glu232Asp mutant might affect the orientation of the Asp145 carboxylate with respect to the substrate aromatic ring. The time course for formation and reaction of the arylated enzyme intermediate during a single turnover was measured for wild-type and Glu232Asp mutant dehalogenases. The accumulation of arylated enzyme in the wild-type dehalogenase was not observed in the mutant. This indicates that the reduced turnover rate in the mutant is the result of a slow arylation of Asp145, owing to decreased efficiency in substrate nucleophilic attack by Asp145. To rationalize the experimental observations, a theoretical model is proposed, which computes the potential of mean force for the nucleophilic aromatic substitution step using a hybrid quantum mechanical/molecular mechanical method. To this end, the removal or reorientation of the side chain charge of residue 232, modeled respectively by the Glu232Gln and Glu232Asp mutants, is shown to increase the rate-limiting energy barrier. The calculated 23.1 kcal/mol free energy barrier for formation of the Meisenheimer intermediate in the Glu232Asp mutant represents an increase of 6 kcal/mol relative to that of the wild-type enzyme, consistent with the 5.6 kcal/mol increase calculated from the difference in experimentally determined rate constants. On the basis of the combination of the experimental and theoretical evidence, we hypothesize that the Glu232(B) residue contributes to catalysis by providing an electrostatic force that acts on the Asp145 nucleophile.  相似文献   

5.
Kinetic analysis of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase has implicated a glutamate or aspartate residue in (i) formation of mevaldate thiohemiacetal by proton transfer to the carbonyl oxygen of mevaldate and (ii) enhanced ionization of CoASH by the resulting enzyme carboxylate anion, facilitating attack by CoAS- on the carbonyl carbon of mevaldate (Veloso, D., Cleland, W. W., and Porter, J. W. (1981) Biochemistry 81, 887-894). Although neither the identity of this acidic residue nor its location is known, the catalytic domains of 11 sequenced HMG-CoA reductases contain only 3 conserved acidic residues. For HMG-CoA reductase of Pseudomonas mevalonii, these residues are Glu52, Glu83, and Asp183. To identify the acidic residue that functions in catalysis, we generated mutants having alterations in these residues. The mutant proteins were expressed, purified, and characterized. Mutational alteration of residues Glu52 or Asp183 of P. mevalonii HMG-CoA reductase yielded enzymes with significant, but in some cases reduced, activity (Vmax = 100% Asp183----Ala, 65% Asp183----Asn, and 15% Glu52----Gln of wild-type activity, respectively). Although the activity of mutant enzymes Glu52----Gln and Asp183----Ala was undetectable under standard assay conditions, their Km values for substrates were 4-300-fold higher than those for wild-type enzyme. Km values for wild-type enzyme and for mutant enzymes Glu52----Gln and Asp183----Ala were, respectively: 0.41, 73, and 120 mM [R,S)-mevalonate); 0.080, 4.4, and 2.0 mM (coenzyme A); and 0.26, 4.4, and 1.0 mM (NAD+). By these criteria, neither Glu52 nor Asp183 is the acidic catalytic residue although each may function in substrate recognition. During chromatography on coenzyme A agarose or HMG-CoA agarose, mutant enzymes Asp183----Asn and Glu83----Gln behaved like wild-type enzyme. By contrast, and in support of a role for these residues in substrate recognition, mutant enzymes Glu52----Gln and Asp183----Ala exhibited impaired ability to bind to either support. Despite displaying Km values for substrates and chromatographic behavior on substrate affinity supports comparable to wild-type enzyme, only mutant enzyme Glu83----Gln was essentially inactive under all conditions studied (Vmax = 0.2% that of wild-type enzyme). Glutamate residue 83 of P. mevalonii HMG-CoA reductase, and consequently the glutamate of the consensus Pro-Met-Ala-Thr-Thr-Glu-Gly-Cys-Leu-Val-Ala motif of the catalytic domains of eukaryotic HMG-CoA reductases, is judged to be the acidic residue functional in catalysis.  相似文献   

6.
Asp176, Glu179 and Glu180 of Aspergillus awamori glucoamylase appeared by differential labeling to be in the active site. To test their functions, they were replaced by mutagenesis with Asn, Gln and Gln respectively, and kinetic parameters and pH dependencies of all enzyme forms were determined. Glu179----Gln glucoamylase was not active on maltose or isomaltose, while the kcat for maltoheptaose hydrolysis decreased almost 2000-fold and the KM was essentially unchanged from wild-type glucoamylase. The The Glu180----Gln mutation drastically increased the KM and moderately decreased the kcat with maltose and maltoheptaose, but affected isomaltose hydrolysis less. Difference in substrate activation energies between Glu180----Gln and wild-type glucoamylases indicate that Glu180 binds D-glucosyl residues in subsite 2. The Asp176----Asn substitution gave moderate increases and decreases in KM and kcat respectively, and therefore similar increases in activation energies for the three substrates. This and the differences in subsite binding energies between Asp176----Asn and wild-type glucoamylases suggest that Asp176 is near subsite 1, where it stabilizes the transition state and interacts with Trp120 at subsite 4. Glu179 and Asp176 are thus proposed as the general catalytic acid and base of pKa 5.9 and 2.7 respectively. The charged Glu180 contributes to the high pKa value of Glu179.  相似文献   

7.
Three active site residues (Asp199, Glu255, Asp329) and two substrate-binding site residues (His103, His328) of oligo-1,6-glucosidase (EC 3.2.1.10) from Bacillus cereus ATCC7064 were identified by site-directed mutagenesis. These residues were deduced from the X-ray crystallographic analysis and the comparison of the primary structure of the oligo-1,6-glucosidase with those of Saccharomyces carlsbergensis alpha-glucosidase, Aspergillus oryzae alpha-amylase and pig pancreatic alpha-amylase which act on alpha-1,4-glucosidic linkages. The distances between these putative residues of B. cereus oligo-1,6-glucosidase calculated from the X-ray analysis data closely resemble those of A. oryzae alpha-amylase and pig pancreatic alpha-amylase. A single mutation of Asp199-->Asn, Glu255-->Gln, or Asp329-->Asn resulted in drastic reduction in activity, confirming that three residues are crucial for the reaction process of alpha-1,6-glucosidic bond cleavage. Thus, it is identified that the basic mechanism of oligo-1,6-glucosidase for the hydrolysis of alpha-1,6-glucosidic linkage is essentially the same as those of other amylolytic enzymes belonging to Family 13 (alpha-amylase family). On the other hand, mutations of histidine residues His103 and His328 resulted in pronounced dissimilarity in catalytic function. The mutation His328-->Asn caused the essential loss in activity, while the mutation His103-->Asn yielded a mutant enzyme that retained 59% of the k0/Km of that for the wild-type enzyme. Since mutants of other alpha-amylases acting on alpha-1,4-glucosidic bond linkage lost most of their activity by the site-directed mutagenesis at their equivalent residues to His103 and His328, the retaining of activity by His103-->Asn mutation in B. cereus oligo-1,6-glucosidase revealed the distinguished role of His103 for the hydrolysis of alpha-1,6-glucosidic bond linkage.  相似文献   

8.
M P Ready  Y Kim  J D Robertus 《Proteins》1991,10(3):270-278
Ricin A-chain is an N-glycosidase that attacks ribosomal RNA at a highly conserved adenine residue. The enzyme is representative of a large family of medically significant proteins used in the design of anticancer agents and in the treatment of HIV infection. The x-ray structure has been used as a guide to create several active site mutations by directed mutagenesis of the cloned gene. Glu177 is a key catalytic residue, and conversion to Gln reduces activity 180-fold. Asn209 is shown to participate in substrate binding by kinetic analysis. Conversion to Ser increases Km sixfold but has no effect on kcat. Conversion of Tyr80 and Tyr123 to Phe decreases activity by 15- and 7-fold respectively. A mechanism of action is proposed that involves binding of the substrate adenine in a syn configuration that resembles the transition state; the putative oxycarbonium ion is probably stabilized by interaction with Glu177.  相似文献   

9.
The apurinic/apyrimidinic endonucleases (APE) contain several highly conserved sequence motifs. The glutamic acid residue in a consensus motif, LQE96TK98 in human APE (hAPE-1), is crucial because of its role in coordinating Mg2+, an essential cofactor. Random mutagenesis of the inactive E96A mutant cDNA, followed by phenotypic screening in Escherichia coli, led to isolation of an intragenic suppressor with a second site mutation, K98R. Although the Km of the suppressor mutant was about sixfold higher than that of the wild-type enzyme, their kcat values were similar for AP endonuclease activity. These results suggest that the E96A mutation affects only the DNA-binding step, but not the catalytic step of the enzyme. The 3' DNA phosphoesterase activities of the wild-type and the suppressor mutant were also comparable. No global change of the protein conformation is induced by the single or double mutations, but a local perturbation in the structural environment of tryptophan residues may be induced by the K98R mutation. The wild-type and suppressor mutant proteins have similar Mg2+ requirement for activity. These results suggest a minor perturbation in conformation of the suppressor mutant enabling an unidentified Asp or Glu residue to substitute for Glu96 in positioning Mg2+ during catalysis. The possibility that Asp70 is such a residue, based on its observed proximity to the metal-binding site in the wild-type protein, was excluded by site-specific mutation studies. It thus appears that another acidic residue coordinates with Mg2+ in the mutant protein. These results suggest a rather flexible conformation of the region surrounding the metal binding site in hAPE-1 which is not obvious from the X-ray crystallographic structure.  相似文献   

10.
Recently, we amplified the Lactobacillus bulgaricus NAD(+)-dependent D-lactate dehydrogenase gene by the polymerase chain reaction, cloned and overexpressed it in Escherichia coli (Kochhar, S., Chuard, N., and Hottinger, H. (1992) Biochem. Biophys. Res. Commun. 185, 705-712). Polymerase chain reaction-amplified DNA fragments may contain base changes resulting in mutant gene products. A comparison of specific activities of D-lactate dehydrogenase in the crude extracts of 50 recombinant clones indicated that one of the clones had drastically reduced enzyme activity. Nucleotide sequence analysis of the insert DNA showed an exchange of A to G at position 795 resulting in substitution of Glu264 to Gly in the D-lactate dehydrogenase. The purified mutant D-lactate dehydrogenase showed a shift of 2 units in its optimum pH toward the acidic range. The dependence of kcat/Km on the pH of the mutant enzyme showed that the pKa of the free enzyme was around 4, at least 2 pH units lower than that of the wild-type enzyme. Both the wild-type and the mutant enzyme at their respective optimum pH values showed similar kcat and Km values. The data suggest that the highly conserved Glu264 is not critical for enzyme catalysis, but it must be situated within hydrogen bonding distance to amino acid residue(s) involved in substrate binding as well as in catalysis.  相似文献   

11.
Abstract Structures of mammalian carboxylesterases (CEs) reveal the presence of a 'side door' that is proposed to act as an alternative pore for the trafficking of substrates and products. p-Nitrobenzyl esterase (pnb CE) from Bacillus subtilis exhibits close structural homology and a similar side-door domain as mammalian CEs. We investigated the role of a specific 'gate' residue at the side door (i.e., Leu 362) during pnb CE-catalyzed hydrolysis of model esters, pesticides, and lipids. Recombinant pnb CE proteins containing mutations at position 362 demonstrated markedly lower kcat and kcat/Km values. The mutation with the most significant impact on catalysis was the L362R mutant (kcat/Km was 22-fold lower). Moreover, the ability of the L362R mutant to be inhibited by organophosphates (OP) was also lower. Investigation into the altered catalytic proficiency using pH-activity studies indicated that the catalytic triad of the mutant enzyme was preserved. Furthermore, viscosity variation and carbamate inhibition experiments indicated that rates of substrate association and acylation/deacylation were lower. Finally, recombinant CEs were found to possess lipolytic activity toward cholesteryl oleate and 2-arachidonylglycerol. In summary, the L362R mutant CE markedly slowed the rate of ester hydrolysis and was less sensitive to OP inhibition. The apparent causes of the diminished catalysis are discussed.  相似文献   

12.
Three amino acid residues (His119, Glu164, and Glu338) in the active site of Thermus caldophilus GK24 beta- glycosidase (Tca beta-glycosidase), a family 1 glycosyl hydrolase, were mutated by site-directed mutagenesis. To verify the key catalytic residues, Glu164 and Glu338 were changed to Gly and Gln, respectively. The E164G mutation resulted in drastic reductions of both beta-galactosidase and beta-glucosidase activities, and the E338Q mutation caused complete loss of activity, confirming that the two residues are essential for the reaction process of glycosidic linkage hydrolysis. To investigate the role of His119 in substrate binding and enzyme activity, the residue was substituted with Gly. The H119G mutant showed 53-fold reduced activity on 5 mM p-nitrophenyl beta-Dgalactopyranoside, when compared with the wild type; however, both the wild-type and mutant enzymes showed similar activity on 5 mM p-nitrophenyl beta-D-glucopyranoside at 75degreeC. Kinetic analysis with p-nitrophenyl beta-D-galactopyranoside revealed that the kcat value of the H119G mutant was 76.3-fold lower than that of the wild type, but the Km of the mutant was 15.3-fold higher than that of the wild type owing to the much lower affinity of the mutant. Thus, the catalytic efficiency (kcat/Km) of the mutant decreased to 0.08% to that of the wild type. The kcat value of the H119G mutant for p-nitrophenyl beta- D-glucopyranoside was 5.1-fold higher than that of the wild type, but the catalytic efficiency of the mutant was 2.5% of that of the wild type. The H119G mutation gave rise to changes in optima pH (from 5.5-6.5 to 5.5) and temperature (from 90 degrees C to 80-85 degrees C). This difference of temperature optima originated in the decrease of H119G's thermostability. These results indicate that His119 is a crucial residue in beta- galactosidase and beta-glucosidase activities and also influences the enzyme's substrate binding affinity and thermostability.  相似文献   

13.
A double mutant of human purine nucleoside phosphorylase (hDM) with the amino acid mutations Glu201Gln:Asn243Asp cleaves adenosine‐based prodrugs to their corresponding cytotoxic drugs. When fused to an anti‐tumor targeting component, hDM is targeted to tumor cells, where it effectively catalyzes phosphorolysis of the prodrug, 2‐fluoro‐2′‐deoxyadenosine (F‐dAdo) to the cytotoxic drug, 2‐fluoroadenine (F‐Ade). This cytotoxicity should be restricted only to the tumor microenvironment, because the endogenously expressed wild type enzyme cannot use adenosine‐based prodrugs as substrates. To gain insight into the interaction of hDM with F‐dAdo, we have determined the crystal structures of hDM with F‐dAdo and F‐Ade. The structures reveal that despite the two mutations, the overall fold of hDM is nearly identical to the wild type enzyme. Importantly, the residues Gln201 and Asp243 introduced by the mutation form hydrogen bond contacts with F‐dAdo that result in its binding and catalysis. Comparison of substrate and product complexes suggest that the side chains of Gln201 and Asp243 as well as the purine base rotate during catalysis possibly facilitating cleavage of the glycosidic bond. The two structures suggest why hDM, unlike the wild‐type enzyme, can utilize F‐dAdo as substrate. More importantly, they provide a critical foundation for further optimization of cleavage of adenosine‐based prodrugs, such as F‐dAdo by mutants of human purine nucleoside phosphorylase.  相似文献   

14.
The function of the conserved Phe 100 residue of RNase T1 (EC 3.1.27.3) has been investigated by site-directed mutagenesis and X-ray crystallography. Replacement of Phe 100 by alanine results in a mutant enzyme with kcat reduced 75-fold and a small increase in Km for the dinucleoside phosphate substrate GpC. The Phe 100 Ala substitution has similar effects on the turnover rates of GpC and its minimal analogue GpOMe, in which the leaving cytidine is replaced by methanol. The contribution to catalysis is independent of the nature of the leaving group, indicating that Phe 100 belongs to the primary site. The contribution of Phe 100 to catalysis may result from a direct van der Waals contact between its aromatic ring and the phosphate moiety of the substrate. Phe 100 may also contribute to the positioning of the pentacovalent phosphorus of the transition state, relative to other catalytic residues. If compared to the corresponding wild-type data, the structural implications of the mutation in the present crystal structure of Phe 100 Ala RNase T1 complexed with the specific inhibitor 2'-GMP are restricted to the active site. Repositioning of 2'-GMP, caused by the Phe 100 Ala mutation, generates new or improved contacts of the phosphate moiety with Arg 77 and His 92. In contrast, interactions with the Glu 58 carboxylate appear to be weakened. The effects of the His 92 Gln and Phe 100 Ala mutations on GpC turnover are additive in the corresponding double mutant, indicating that the contribution of Phe 100 to catalysis is independent of the catalytic acid His 92. The present results lead to the conclusion that apolar residues may contribute considerably to catalyze conversions of charged molecules to charged products, involving even more polar transition states.  相似文献   

15.
Site-directed mutagenesis has been used to explore the role of two carboxylates in the active site of histidine decarboxylase from Lactobacillus 30a. The most striking observation is that conversion of Glu197 to either Gln or Asp causes a major decrease in catalytic rate while enhancing substrate binding. This is consistent with models based on X-ray diffraction results which suggest that the acid may protonate a reaction intermediate during catalysis. The Asp197 protein undergoes a suicide reaction with substrate, apparently triggered by inappropriate protonation of the intermediate. This leads to decarboxylation-dependent transamination which converts the pyruvoyl cofactor to an alanine, inactivating the enzyme. Conversion of Glu66 to Gln affects parameters of kinetic cooperativity. The mutation fixes the Hill number at approximately 1.5, midway between the pH-dependent values of the wild-type enzyme.  相似文献   

16.
Thirty-nine mutant tryptophan synthase alpha subunits have been purified and analyzed (in the presence of the beta 2-subunit) for their enzymatic (kcat, Km) behavior in the reactions catalyzed by the alpha 2.beta 2 complex, the fully constituted form of this enzyme. The mutant alpha subunits, obtained by in vitro random, saturation mutagenesis of the encoding trpA gene, contain single amino acid substitutions at sites within the first 121 residues of the alpha polypeptide. Four categories of altered residues have been tentatively assigned roles in the catalytic functions of this enzyme: 1) catalytic residues (Glu49 and Asp60); 2) residues involved in substrate binding or orientation (Phe22, Thr63, Gln65, Tyr102, and Leu105); 3) residues involved in alpha.beta subunit interactions (Gly51, Pro53, Asp56, Asp60, Pro62, Ala67, Phe72, Thr77, Pro78, Tyr102, Asn104, Leu105, and Asn108); and 4) residues with no apparent catalytic roles. Catalytic residue alterations result in no detectable activity in the alpha-subunit specific reactions. Substrate binding/orientation roles are detected enzymatically primarily as rate defects; alterations only at Tyr102 result in apparent Km effects. alpha.beta interaction roles are detected as rate defects in all tryptophan synthase reactions plus Km increases for the alpha-subunit substrate, indole-3-glycerol phosphate, only when L-serine is present at the beta 2-subunit active site. A substitution at only one site, Asn104, appears to be unique in its potential effect on intersubunit channeling of indole, the product of the alpha-subunit specific reaction, to the beta 2-subunit active site.  相似文献   

17.
G Ghosh  H Y Kim  J P Demaret  S Brunie  L H Schulman 《Biochemistry》1991,30(51):11767-11774
We have previously shown that the anticodon of methionine tRNAs contains the major recognition site required for aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase (MetRS) and have located part of the anticodon binding domain on the enzyme at a site close to Trp461 [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768; Ghosh, G., Pelka, H., & Schulman, L.H. (1990) Biochemistry 29, 2220-2225]. In order to gain information about other possible sites of contact between MetRS and its tRNA substrates, we have examined the effects of mutations at a series of positively charged residues on the surface of the C-terminal domain of the enzyme. Conversion of Arg356, Arg366, Arg380, or Arg453 to Gln had little or no effect on enzyme activity. Similarly, conversion of Lys402 or Lys439 to Asn failed to significantly alter aminoacylation activity. Conversion of Arg380 to Ala or Arg442 to Gln produced a 5-fold reduction in kcat/Km for aminoacylation of tRNAfMet, with no effect on methionine activation, indicating a possible minor role for these residues in interaction of the enzyme with the tRNA substrate. In contrast, mutation of a phylogenetically conserved residue, Arg395, to Gln increased the Km for aminoacylation of tRNAfMet about 30-fold and reduced kcat/Km by 25,000-fold. The mutant enzyme was also shown to be highly defective by its inability to complement a strain of E. coli having an altered chromosomal MetRS gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Manganese peroxidase and lignin peroxidase are ligninolytic heme-containing enzymes secreted by the white-rot fungus Phanerochaete chrysosporium. Despite structural similarity, these peroxidases oxidize different substrates. Veratryl alcohol is a typical substrate for lignin peroxidase, while manganese peroxidase oxidizes chelated Mn2+. By a single mutation, S168W, we have added veratryl alcohol oxidase activity to recombinant manganese peroxidase expressed in Escherichia coli. The kcat for veratryl alcohol oxidation was 11 s-1, Km for veratryl alcohol approximately 0.49 mM, and Km for hydrogen peroxide approximately 25 microM at pH 2.3. The Km for veratryl alcohol was higher and Km for hydrogen peroxide was lower for this manganese peroxidase mutant compared to two recombinant lignin peroxidase isoenzymes. The mutant retained full manganese peroxidase activity and the kcat was approximately 2.6 x 10(2) s-1 at pH 4.3. Consistent with relative activities with respect to these substrates, Mn2+ strongly inhibited veratryl alcohol oxidation. The single productive mutation in manganese peroxidase suggested that this surface tryptophan residue (W171) in lignin peroxidase is involved in catalysis.  相似文献   

19.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

20.
Structural and enzymological studies have shown the importance of Glu144 and Glu164 for the catalysis by 2-enoyl-CoA hydratase-1 (crotonase). Here we report about the enzymological properties of the Glu144Ala and Glu164Ala variants of rat mitochondrial 2-enoyl-CoA hydratase-1. Size-exclusion chromatography and CD spectroscopy showed that the wild-type protein and mutants have similar oligomerization states and folding. The kcat values of the active site mutants Glu144Ala and Glu164Ala were decreased about 2000-fold, but the Km values were unchanged. For study of the potential intrinsic Delta3-Delta2-enoyl-CoA isomerase activity of mECH-1, a new assay using 2-enoyl-CoA hydratase-2 and (R)-3-hydroxyacyl-CoA dehydrogenase as auxiliary enzymes was introduced. It was demonstrated that rat wild-type mECH-1 is also capable of catalyzing isomerization with the activity ratio (isomerization/hydration) of 1/5000. The kcat values of isomerization in Glu144Ala and Glu164Ala were decreased 10-fold and 1000-fold, respectively. The data are in line with the proposal that Glu164 acts as a protic amino acid residue for both the hydration and the isomerization reaction. The structural factors favoring the hydratase over the isomerase reaction have been addressed by investigating the enzymological properties of the Gln162Ala, Gln162Met, and Gln162Leu variants. The Gln162 side chain is hydrogen bonded to the Glu164 side chain; nevertheless, these mutants have enzymatic properties similar to that of the wild type, indicating that catalytic function of the Glu164 side chain in the hydratase and isomerase reaction does not depend on the interactions with the Gln162 side chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号