首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cyclin-dependent kinases (Cdks) are fully active only when phosphorylated by a Cdk-activating kinase (CAK) [1]. Metazoan CAK is itself a Cdk, Cdk7, whereas the CAK of Saccharomyces cerevisiae is a distinct enzyme unrelated to Cdks [1]. The Mcs6-Mcs2 complex of Schizosaccharomyces pombe is a putative CAK related to the metazoan enzyme [2] [3]. Although the loss of Mcs6 is lethal, it results in a phenotype that is inconsistent with a failure to activate Cdc2, the major Cdk in S. pombe [3]. We therefore tested the ability of Csk1, a putative regulator of Mcs6 [4], to activate Cdk-cyclin complexes in vitro. Csk1 activated both the monomeric and the Mcs2-bound forms of Mcs6. Surprisingly, Csk1 also activated Cdc2 in complexes with either Cdc13 or Cig2 cyclins. When a double mutant carrying a csk1 deletion and a temperature-sensitive mcs6 allele was incubated at the restrictive temperature, Cdc2 was not activated and the cells underwent a cell division arrest prior to mitosis. Cdc2-cyclin complexes isolated from the arrested cells could be activated in vitro by recombinant CAK, whereas complexes from wild-type cells or either of the single mutants were refractory to activation. Thus, fission yeast contains two partially redundant CAKs: the Mcs6-Mcs2 complex and Csk1. Inactivation of both CAKs is necessary and sufficient to prevent Cdc2 activation and cause a cell-cycle arrest. Mcs6, which is essential, may therefore have required functions other than Cdk activation.  相似文献   

4.
Fission yeast Csk1 is a CAK-activating kinase (CAKAK).   总被引:12,自引:3,他引:9  
Cell cycle progression is dependent on the sequential activity of cyclin-dependent kinases (CDKs). For full activity, CDKs require an activating phosphorylation of a conserved residue (corresponding to Thr160 in human CDK2) carried out by the CDK-activating kinase (CAK). Two distinct CAK kinases have been described: in budding yeast Saccharomyces cerevisiae, the Cak1/Civ1 kinase is responsible for CAK activity. In several other species including human, Xenopus, Drosophila and fission yeast Schizosaccharomyces pombe, CAK has been identified as a complex homologous to CDK7-cyclin H (Mcs6-Mcs2 in fission yeast). Here we identify the fission yeast Csk1 kinase as an in vivo activating kinase of the Mcs6-Mcs2 CAK defining Csk1 as a CAK-activating kinase (CAKAK).  相似文献   

5.
Analysis of CAK activities from human cells.   总被引:8,自引:0,他引:8  
  相似文献   

6.
Eukaryotic cell cycle progression is controlled by a family of protein kinases known as cyclin-dependent kinases (Cdks). Two steps are essential for Cdk activation: binding of a cyclin and phosphorylation on a conserved threonine residue by the Cdk-activating kinase (CAK). We have studied the interplay between these regulatory mechanisms during the activation of the major Saccharomyces cerevisiae Cdk, Cdc28p. We found that the majority of Cdc28p was phosphorylated on its activating threonine (Thr-169) throughout the cell cycle. The extent of Thr-169 phosphorylation was similar for monomeric Cdc28p and Cdc28p bound to cyclin. By varying the order of the addition of cyclin and Cak1p, we determined that Cdc28p was activated most efficiently when it was phosphorylated before cyclin binding. Furthermore, we found that a Cdc28p(T169A) mutant, which cannot be phosphorylated, bound cyclin less well than wild-type Cdc28p in vivo. These results suggest that unphosphorylated Cdc28p may be unable to bind tightly to cyclin. We propose that Cdc28p is normally phosphorylated by Cak1p before it binds cyclin. This activation pathway contrasts with that in higher eukaryotes, in which cyclin binding appears to precede activating phosphorylation.  相似文献   

7.
The cyclin-dependent kinases (CDKs) that drive the eukaryotic cell cycle must be phosphorylated within the activation segment (T-loop) by a CDK-activating kinase (CAK) to achieve full activity. Although a requirement for CDK-activating phosphorylation is conserved throughout eukaryotic evolution, CAK itself has diverged between metazoans and budding yeast, and fission yeast has two CAKs, raising the possibility that additional mammalian enzymes remain to be identified. We report here the characterization of PNQALRE (also known as CCRK or p42), a member of the mammalian CDK family most similar to the cell-cycle effectors Cdk1 and Cdk2 and to the CAK, Cdk7. Although PNQALRE/CCRK was recently proposed to activate Cdk2, we show that the monomeric protein has no intrinsic CAK activity. Depletion of PNQALRE by >80% due to RNA interference (RNAi) impairs cell proliferation, but fails to arrest the cell cycle at a discrete point. Instead, both the fraction of cells with a sub-G1 DNA content and cleavage of poly(ADP-ribose) polymerase (PARP) increase. PNQALRE knockdown did not diminish Cdk2 T-loop phosphorylation in vivo or decrease CAK activity of a cell extract. In contrast, depletion of Cdk7 by RNAi causes a proportional decrease in the ability of an extract to activate recombinant Cdk2. Our data do not support the proposed function of PNQALRE/CCRK in activating CDKs, butinstead reinforce the notion of Cdk7 as the major, and to date the only, CAK in mammalian cells.  相似文献   

8.
9.
CAK1 encodes a protein kinase in Saccharomyces cerevisiae whose sole essential mitotic role is to activate the Cdc28p cyclin-dependent kinase by phosphorylation of threonine-169 in its activation loop. SMK1 encodes a sporulation-specific mitogen-activated protein (MAP) kinase homolog that is required to regulate the postmeiotic events of spore wall assembly. CAK1 was previously identified as a multicopy suppressor of a weakened smk1 mutant and shown to be required for spore wall assembly. Here we show that Smk1p, like other MAP kinases, is phosphorylated in its activation loop and that Smk1p is not activated in a cak1 missense mutant. Strains harboring a hyperactivated allele of CDC28 that is CAK1 independent and that lacks threonine-169 still require CAK1 to activate Smk1p. The data indicate that Cak1p functions upstream of Smk1p by activating a protein kinase other than Cdc28p. We also found that mutants lacking CAK1 are blocked early in meiotic development, as they show substantial delays in premeiotic DNA synthesis and defects in the expression of sporulation-specific genes, including IME1. The early meiotic role of Cak1p, like the postmeiotic role in the Smk1p pathway, is CDC28 independent. The data indicate that Cak1p activates multiple steps in meiotic development through multiple protein kinase targets.  相似文献   

10.
11.
12.
CAK1 encodes an essential protein kinase in Saccharomyces cerevisiae that is required for activation of the Cdc28p Cdk. CAK1 also has several CDC28-independent functions that are unique to meiosis. The earliest of these functions is to induce S phase, which is regulated differently in meiosis than in mitosis. In mitosis, Cdc28p controls its own S-phase-promoting activity by signaling the destruction of its inhibitor, Sic1p. In meiosis, Sic1p destruction is signaled by the meiosis-specific Ime2p protein kinase. Our data show that Cak1p is required to activate Ime2p through a mechanism that requires threonine 242 and tyrosine 244 in Ime2p's activation loop. This activation promotes autophosphorylation and accumulation of multiply phosphorylated forms of Ime2p during meiotic development. Consistent with Cak1p's role in activating Ime2p, cells lacking Cak1p are deficient in degrading Sic1p. Deletion of SIC1 or overexpression of IME2 can partially suppress the S-phase defect in cak1 mutant cells, suggesting that Ime2p is a key target of Cak1p regulation. These data show that Cak1p is required for the destruction of Sic1p in meiosis, as in mitosis, but in meiosis, it functions through a sporulation-specific kinase.  相似文献   

13.
14.
15.
Activating phosphorylation of cyclin-dependent kinases (Cdks) is mediated by at least two structurally distinct types of Cdk-activating kinases (Caks): the trimeric Cdk7-cyclin H-Mat1 complex in metazoans and the single-subunit Cak1 in budding yeast. Fission yeast has both Cak types: Mcs6 is a Cdk7 ortholog and Csk1 a single-subunit kinase. Both phosphorylate Cdks in vitro and rescue a thermosensitive budding yeast CAK1 strain. However, this apparent redundancy is not observed in fission yeast in vivo. We have identified mutants that exhibit phenotypes attributable to defects in either Mcs6-activating phosphorylation or in Cdc2-activating phosphorylation. Mcs6, human Cdk7 and budding yeast Cak1 were all active as Caks for Cdc2 when expressed in fission yeast. Although Csk1 could activate Mcs6, it was unable to activate Cdc2. Biochemical experiments supported these genetic results: budding yeast Cak1 could bind and phosphorylate Cdc2 from fission yeast lysates, whereas fission yeast Csk1 could not. These results indicate that Mcs6 is the direct activator of Cdc2, and Csk1 only activates Mcs6. This demonstrates in vivo specificity in Cdk activation by Caks.  相似文献   

16.
Activation of cyclin-dependent kinases (CDKs) requires phosphorylation of a threonine residue within the T-loop by a CDK-activating kinase (CAK). Here we isolated an Arabidopsis cDNA (CAK4At) whose predicted product shows a high similarity to vertebrate CDK7/p40(MO15). Northern blot analysis showed that expressions of the four Arabidopsis CAKs (CAK1At-CAK4At) were not dependent on cell division. CAK2At- and CAK4At-immunoprecipitates of Arabidopsis crude extract phosphorylated CDK and the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II with different preferences. These results suggest the existence of differential mechanisms in Arabidopsis that control CDK and CTD phosphorylation by multiple CAKs.  相似文献   

17.
18.
In most eukaryotes, Cdc37 is an essential chaperone, transiently associating with newly synthesised protein kinases in order to promote their stabilisation and activation. To determine whether the yeast Cdc37 participates in any stable protein interactions in vivo, genomic two-hybrid screens were conducted using baits that are functional as they preserve the integrity of the conserved N-terminal region of Cdc37, namely a Cdc37-Gal4 DNA binding domain (BD) fusion in both its wild type and its S14 nonphosphorylatable (Cdc37(S14A)) mutant forms. While this failed to identify the protein kinases previously identified as Cdc37 interactors in pull-down experiments, it did reveal Cdc37 engaging in a stable association with the most atypical member of the yeast kinome, cyclin-dependent kinase (Cdk1)-activating kinase (Cak1). Phosphorylation of the conserved S14 of Cdc37 is normally crucial for the interaction with, and stabilisation of, those protein kinase targets of Cdc37, Cak1 is unusual in that the lack of this Cdc37 S14 phosphorylation both reinforces Cak1:Cdc37 interaction and does not compromise Cak1 expression in vivo. Thus, this is the first Cdc37 client kinase found to be excluded from S14 phosphorylation-dependent interaction. The unusual stability of this Cak1:Cdc37 association may partly reflect unique structural features of the fungal Cak1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号