首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibberellic acid (GA3) induces invertase activity within 6 hours in Avena stem segments that are incubated in the dark at 23°. The maximum amount of promotion is about 5 times that of invertase activity in untreated segments. GA3 causes significant promotion of invertase activity at concentrations as low as 3 × 10−5 μm GA3. The increase in invertase activity elicited by GA3 between 3 × 10−5 μm and 300 μm closely parallels the growth promotion that is caused by GA3 over this concentration range. In control segments, invertase activity rises steeply during the first 6 hours of incubation, then decays slowly between 12 and 48 hours. In GA3-treated segments, the invertase activity also rises during the first 6 hours, parallel to that in control segments and continues to rise during the next 42 hours. These changes in invertase activity during 48-hour incubation periods do not parallel the changes in growth that occur in control and GA3-treated segments. Cycloheximide at 10 μg/ml abolishes all GA3-promoted growth and invertase activity in these segments. Actinomycin D at 40 and 80 μg/ml decreases GA3-promoted growth by 20% and invertase activity by 38 and 44%, respectively. The data clearly support the idea that protein synthesis is necessary for GA3-promoted growth and invertase activity in Avena stem segments.  相似文献   

2.
Gibberellic acid (GA3) promotes and continuous gold light inhibits germination of seeds of a dwarf strain (WB-2) of watermelon [Citrullus lanatus (Thunb.) Matsu. and Nakai]. Osmotic inhibition of germination with mannitol in light-grown seeds of WB-2 was only slightly reversed by GA3 at the concentrations used, whereas, GA3 substantially relieved osmotic inhibition in dark-grown seeds.

The effects of GA3 and gold light on development of catalase and invertase activities and on levels of free amino acids in germinating seeds of WB-2 were examined. Light depressed development of catalase and invertase activity. Levels of free amino acids increased more slowly in embryonic axes of light- than dark-incubated seeds, but in cotyledons higher levels of amino acids were maintained in light-grown seeds. GA3 accelerated the development of catalase activity in whole embryos and invertase activity in embryonic axes, but did not significantly affect invertase activity in cotyledons during germination. GA3 had little effect on amino acid pools in cotyledons and embryonic axes.

  相似文献   

3.
Cell elongation and cell division in elongating lettuce hypocotyl sections   总被引:1,自引:1,他引:0  
The roles of cell division and cell elongation in the growth of sections excised from hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Elongation of sections incubated in the light is inhibited compared to dark-grown sections and this inhibition is reversed by gibberellic acid (GA3). The elongation of both dark-grown and GA3-treated, light-grown sections can be enhanced by 10mM KCl. Under all conditions of incubation, elongation growth is greatest in the uppermost quarter of the hypocotyl section while the basal quarter does not elongate. In darkness the two apical segments of sections marked into four equal parts grow at the same rate, while in light, growth of the apical segment exceeds that of the second segment. Cell division in cortical or epidermal cells, as measured by mitotic index or cell number, is not affected by illumination conditions nor by GA3 or KCl treatments. Although -irradiation and FUDR pretreatment eliminate or cause a marked reduction in cell division in the excised hypocotyl, sections from seeds irradiated with -rays or incubated in 5-fluorodeoxyuridine elongate in response to GA3 and KCl treatment as do sections from non-pretreated controls. Therefore, since neither GA3 nor darkness affect celldivision activity and since treatments which eliminate or significantly reduce cell division do not affect growth, we conclude that the effect of GA3 and darkness in this material is to increase cell elongation.Abbreviations FUDR 5-fluorodeoxyuridine - GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

4.
A lysophospholipase (LPL) activity appears in the aleurone of barley (Hordeum vulgare L. cv Himalaya) half seeds during imbibition on moist agar. Secretion of LPL by half seeds is promoted by GA3; the increase in secretory rate is almost linear from 10−10 to 10−6 molar GA3. LPL activity is likewise promoted in isolated aleurone layers by GA3. Its secretion into the incubation medium requires the continued presence of GA3 and commences after a 10 to 14 hour lag period when 10 millimolar Ca2+ is present. In the absence of Ca2+, the lag period remains unchanged but attainment of the maximum secretory rate is delayed. Ca2+ alone has very little effect either on LPL activity accumulated in the aleurone layer or in the surrounding medium. However, 50 millimolar Ca2+ together with GA3 dramatically increase the level of secreted activity and of total (accumulated and secreted) activity.

The metabolic inhibitors cycloheximide and actinomycin D inhibit the accumulation of LPL activity in the aleurone and also the secreted activity. Actinomycin D added after the lag period results in a much lower inhibition. The increase in LPL activity in response to GA3 occurs as a result of de novo synthesis; LPL activity from barley half seeds incubated in 80% D2O in the presence of GA3 undergoes a shift to higher density compared with the activity from similar controls incubated in H2O. The characteristics of the GA3 enhancement of LPL activity are compared specifically with α-amylase and generally with other GA3-controlled hydrolases.

  相似文献   

5.
Evidence presented here indicates that there is a complex interaction between kinetin, gibberellin, and sucrose in the regulation of turnover of invertase in vivo. The synthesis of invertase is maintained in the presence of GA3 and sucrose over relatively long periods of time. Kinetin, on the other hand, inhibits the full development of invertase activity seen in the sucrose and gibberellin control treatments. Moreover, the peak in invertase activity occurs earlier with kinetin treatment. During invertase turnover, once the peak is reached, kinetin enhances the rate of decay of enzyme activity relative to synthesis. The regulatory significance of invertase in intercalary growth and possible modes of kinetin action in this process are discussed.  相似文献   

6.
The tannins chebulinic acid or tara tannin were added to an incubation system in which GA3 induces enzyme synthesis in endosperm half seeds of barley (Hordeum vulgare L.). The activity of amylase and acid phosphatase in the incubation medium was reduced compared to the activity in the medium after incubation with GA3 alone. When embryo half seeds of barley were incubated with chebulinic acid or tara tannin in the absence of added GA3, the enzyme activity of the incubation medium was also reduced. The activity of preformed enzymes obtained from endosperm half seeds previously induced with GA3 was not reduced by the addition of tannin. Comparisons were made of the amount of enzyme activity from breis of aleurone layers incubated with GA3 in the presence and absence of tannins. The amounts of activity were relatively small and approximately equal in both cases, indicating that secretion from the aleurone was not blocked by the tannins. The reduction of enzyme activity caused by tannins in both endosperm and embryo half seeds could be completely reversed by the addition of GA3.  相似文献   

7.
Shant R. Taneja  R. C. Sachar 《Planta》1974,116(2):133-142
Summary Embryoless wheat (Triticum aestivum L.) half-seeds on incubation with gibberellic acid (GA3) showed a 2- to 2.5fold stimulation of monophenolase activity. The enzyme activity was not released into the incubation medium in GA3-treated half-seeds. The effect of GA3 was counteracted by the addition of abscisic acid (ABA) to the half-seeds. Adenosine-3,5-cyclic monophosphate and its structural analogues were ineffective in increasing the monophenolase activity. Actinomycin D and cycloheximide showed no inhibitory effecton the monophenolase activity in controls as well as in GA3-treated half-seeds, but on the contrary caused a 2- to 3fold stimulation of enzyme activity similar to that observed in endosperm treated with GA3 alone. However, there was no additive or synergistic enhancement of monophenolase activity when GA3 was tested in combination with cycloheximide or actinomycin D. GA3- or cyclic AMP-treated half-seeds showed no stimulation of o-diphenolase activity.  相似文献   

8.
Although fruit set and development are induced by applications of gibberellins, final fruit weight of gibberellin-induced parthenocarpic fruit is often less than that of pollinated fruit. We examined changes in the activities of sucrose-metabolizing enzymes and sugar accumulation in developing fruits of cultivated blueberry (Vaccinium ashei Reade) and their correlation with fruit growth upon pollination or exogenous applications of gibberellic acid (GA3). The objective was to determine if differences in fruit growth could be attributed to differences in enzyme activities and subsequent sugar accumulation in fruits. The fruit development period of GA3-treated fruits was 15 days longer than that of pollinated fruits. At maturity, GA3-treated fruit accumulated an average of 180 mg dry weight while pollinated fruit accumulated 390 mg dry weight. Dry weight accumulation in nonpollinated fruits was negligible and these fruits abscised by 45 days after bloom (DAB). The total carbon (C) cost (dry weight C + respiratory C) for fruit development was 109 and 244 mg C fruit-1 for GA3-treated and pollinated fruits, respectively. Hexose concentration increased to 100 mg (g fresh weight)-1 at ripening in both GA3-treated and pollinated fruits. Nonpollinated fruits reached a maximum hexose concentration at 45 DAB. Sucrose phosphate synthase (EC 2.4.1.14) and sucrose synthase (EC 2.4.1.13) activities reached a maximum of ≤5.0 μmol (g fresh weight)-1 h-1 in both GA3-treated and pollinated fruits. Soluble acid invertase (EC 3.2.1.26) activity increased to about 60 μmol (g fresh weight)-1 h-1 in both GA3-treated and pollinated fruits at ripening, while in nonpollinated fruits, a maximum soluble acid invertase activity of 0.12 μmol (g fresh weight)-1 h-1 was measured at 24 DAB. Insoluble acid invertase activity declined during the early stages of fruit growth and remained relatively low throughout fruit development. Neutral invertase activity was low throughout development, increasing to 5 μmol (g fresh weight)-1 h-1 at ripening in GA3-treated and pollinated fruits. Our studies demonstrate that blueberry fruit development does not appear to be limited by sucrose metabolizing enzyme activity and/or the ability to accumulate sugars in either GA3-treated or pollinated fruits.  相似文献   

9.
It is well known that post-bloom applications ofgibberellic acid (GA3) increase seedless grapeberry size by enhancing cell division, or cellenlargement, or both. As a consequence, total waterand sugar per berry are increased. Soluble invertaseis considered to be one of the key enzymes in theaccumulation of sugar in grape berries. To study apossible role of invertase in the GA3berry-sizing effect, different rates of post-bloomGA3 were applied to seedless grape cv. Sultanaand hexose concentration and invertase activity weremeasured. GA3 stimulated both parameters as earlyas 24 and 32 h after applications, respectively.Moreover, the increment in sugar content and enzymeactivity remained throughout the growing of the berries period and, at ripening, increases in hexosescontent (102%) and invertase activity (60%) weredetected when GA3 was applied at a rate of 45 ppm.At the same GA3 rate the pericarp cellsdoubled in size. Furthermore, positive correlationswere found between berry-size, invertase activity andhexose content, suggesting that GA3 stimulationof invertase could be one of the factors involved in theberry sizing-effect of GA3.  相似文献   

10.
Stimulation of monophenolase activity was observed when de-embryonated prewashed half-seeds of wheat were imbibed in a solution of gibberellic acid (GA3, 10t?5 M). Crude extracts, prepared from GA3-treated half-seeds, showed ca a two-fold increase in monophenolase activity over the controls at pH 6.6, while a dramatic rise in enzyme activity (seven- to nine-fold) was observed at pH 9.0. The partially purified (NH4)2SO4 fraction precipitate (30–50% saturation) also showed enhancement of enzyme activity at pH 9.0 in GA3-treated half-seeds, while in controls, there was negligible activity at this pH. Administration of five amino acid analogues (1 mM each) to half-seeds showed no significant inhibition of GA3-stimulated monophenolase activity, but proved very effective in decreasing (86% inhibition) the GA3-induced amylase activity. This indicated that the hormone-regulated monophenolase activity was not dependent on de novo protein synthesis. Treatment of half-seeds with GA3 modified the monophenolase and altered the electrophoretic pattern. The enzyme was relatively thermostable at 55° and the pH optimum was shifted from pH 7.0 to 9.0. In addition, the GA3-treated half-seeds showed relatively high stability of enzyme activity in the presence of (NH4)2S04 ions. These alterations in the GA3-stimulated nomophenolase suggest there is activation of preformed enzyme molecules. The appearance of slow-migrating multiple forms on acrylamide gels, in response to GA3 treatment, is probably due to the association of fast-migrating forms. Such oligomerization could result in a conformational change leading to enzyme activation. This may be an adaptive mechanism so that the enzyme can function with varying temperature, pH and ionic strength during early stages of seed germination.  相似文献   

11.
Summary Using sugar-cane internodal tissue in which RNA synthesis was ratelimiting for invertase of peroxidase synthesis, measurements were made of enzymeforming-capacity after blocking further RNA synthesis with actinomycin D or 6-methylpurine. In this way it was possible to determine whether added auxin (naphthaleneacetic acid) or gibberellic acid (GA3) affected steps prior or subsequent to synthesis of the RNA fractions specifically required for synthesis of either enzyme. Both auxin and GA3 increased the enzyme-forming-capacity for invertase but not for peroxidase. The effects of the two hormones are interpreted as causing stabilization of mRNA for invertase.Abscisic acid (ABA) increased the rate of synthesis of invertase but not peroxidase. ABA did not change the rate of loss of invertase when peptide-bond formation was blocked with cycloheximide, but stimulated its synthesis when RNA synthesis was blocked with 6-methyl purine. Hence, the site of action of ABA is subsequent to invertase-mRNA formation and prior to invertase destruction.Kinetin had no short-term effects when RNA synthesis was limiting for invertase production, and does not appear to directly modulate mRNA synthesis or stabilization, or amino-acid-polymerization steps. In treatments longer than 5 hours, kinetin inhibited synthesis of all three enzymes studied, so that its effect on enzyme synthesis in this tissue appears to be unspecific.Abbreviations used throughout text ABA (±)-abscisic acid (abscisin II, dormin) - GA3 gibberellic acid - NAA -naphthaleneacetic acid  相似文献   

12.
Enhanced amylase activity was observed during a 7-day-growth period in the cotyledons of PEG imposed water stressed chickpea seedlings grown in the presence of GA3 and kinetin, when compared with stressed seedlings. During the first 5 days of seedling growth, the seedlings growing under water deficit conditions as well as those growing in the presence of PGRs had a higher amylase activity in shoots than that of control seedlings. Neither GA3 nor kinetin increased the amylase activity of roots whereas IAA reduced root amylase activity. Activity of acid and alkaline invertases was maximum in shoots and at a minimum in cotyledons. Compared with alkaline invertase, acid invertase activity was higher in all the tissues. The reduced acid and alkaline invertase activities in shoots of stressed seedlings were enhanced by GA3 and kinetin. Roots of stressed seedlings had higher alkaline invertase activity and GA3 and IAA helped in bringing the level near to those in the controls. GA3 and kinetin increased the sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities in cotyledons of stressed seedlings, whereas they brought the elevated level of SPS of stressed roots to near normal level. The higher level of reducing sugars in the shoots of GA3 and kinetin treated stressed seedlings could be due to the high acid invertase activity observed in the shoots, and the high level of bound fructose in the cotyledons of stressed seedlings could be due to the high activity of SPS in this tissue.  相似文献   

13.
The effect of gibberellin A1 (GA1) on production of ethylene by cowpea (Vigna sinensis cv Blackeye pea no. 5) epicotyl explants and its relationship to epicotyl elongation was investigated. The explants were placed upright in water and incubated in sealed culture tubes or in large jars. GA, and IAA in ethanol solution were injected into the subapical tissues of the decapitated epicotyls. Cowpea epicotyl explants elongated after GA but not after IAA treatment, and they were very sensitive to exogenous ethylene. As little as 0.14 1/1 ethylene reduced significantly GA1-induced epicotyl elongation.Treatment with GA1 induced the production of ethylene which began 10 h after GA application, showed a peak at about 22 h and then declined. The yield of ethylene was proportional to the amount of GA, injected. The inhibition of epicotyl elongation in closed tubes was avoided by absorbing ethylene released with Hg(Cl04)2 , or by adding AVG to the incubation solution to inhibit ethylene production. Treatment with IAA elicited a rapid production of ethylene which ceased about 10 h after application. The effects of IAA and GA1 on ethylene production were additive.Abbreviations AVG aminoethoxyvinylglycine 2-amino-4-(2-aminoethoxy)-trans-3butenoic acid - ACC 1-aminocyclopropane-1-carboxylic acid - GA gibberellin - IAA indole-3-acetic acid  相似文献   

14.
To determine the fate of gibberellic acid (GA3), solutions were incubated for 24 hours with or without barley endosperm and were subsequently applied to dwarf maize seedlings. Hormone activity appeared to increase as a result of incubation with endosperm. This apparent increase in GA3 concentration was probably due to a synergistic interaction between GA3 and endosperm constituents, particularly carbohydrate, released during the incubation period. It is concluded that relatively little hormone is inactivated during the initiation of endosperm mobilization.  相似文献   

15.
When gibberellic acid (GA3; 5-35 micrograms per milliliter) is sprayed on 9-day-old light-grown dwarf Progress pea (Pisum sativum) seedlings, it causes a marked increase in the activity of arginine decarboxylase (ADC; EC 4.1.1.9) in the fourth internodes. The titer of putrescine and spermidine, polyamines produced indirectly as a result of ADC action, also rises markedly, paralleling the effect of GA3 on internode growth. Ammonium (5-hydroxycarvacryl) trimethyl chloride piperidine carboxylate (AMO-1618; 100-200 micrograms per milliliter) causes changes in the reverse direction for enzyme activity, polyamine content, and growth. GA3 also reverses the red-light-induced inhibition of ADC activity in etiolated Alaska pea epicotyls; this is additional evidence for gibberellin-light interaction in the control of polyamine biosynthesis. The enzyme ornithine decarboxylase (ODC; EC 4.1.1.17), an alternate source of putrescine arising from arginine, is not increased by GA3 or by AMO-1618.  相似文献   

16.
The effect of gibberellic acid, benzyladenine and a mixture of these compounds on the activity of some hydrolytic enzymes was studied in hyacinth bulbs non-exposed to low temperatures. Plant growth regulators were applied on the heel of dormant bulbs in the middle of July. An intensive elongation of the inflorescence was observed only in the plants treated previously with GA3 and grown in a warm greenhouse for 63 and 84 days. The activities of amylase, invertase and acid phosphatase were higher in the flower buds of unrooted bulbs treated with growth regulators than in the control plants, although growth regulators did not affect the level of extractable proteins. The elongation of the inflorescence in the plants treated with gibberellic acid was correlated with a sharp increase of invertase activity in this organ. The effect of GA3 and BA on the activity of other enzymes in buds and scales varied with the period of plant growth.  相似文献   

17.
18.
The activity of α-analyses in various plant organs was examined and the relation- ship between the enzyme activity and the leaf sheath elongation of dwarf mutants of maize was investigated. It has been shown that α-amylase exists in various plant organs. Especially high activity was detected in the bean hypocotyl. The regional activity of a-amylase in the epicotyl of the pea and the hypocotyl of the morning glory was examined. Higher activity was observed in the regions closer to the cotyledons. In the first leaf sheath of d5 mutants of maize, GA3-treatment resulted in the promotion of α-amylase activity, and there was a parallelism between GA3-induced elongation and α-amylase activity. Removal of the endosperm from seedlings did not influence the GA3-indnced elongation of the leaf sheath or the promotion of α-amylase activity. From these results it is concluded that at least some of the α-amylase is actually formed in the leaf sheath, and that there exists a distinct parallelism between the GA3-induced promotion of enzyme activity and leaf sheath elongation.  相似文献   

19.
Sugarcane accumulates high amount of sucrose, thus making it one of the important cash crops worldwide. The final destination of sucrose accumulation in sugarcane is sink tissue, i.e., stalk, supplied by the source, i.e., leaf, to fulfill the need of plant growth, respiration, storage, and other metabolic activities. Signals between sink and source tissues regulate sucrose accumulation in sink and possibly the negative feedback from the sink restrains further accumulation in the stalk. However, perturbation of this negative feedback may help to improve sugar yield. This can be achieved by the application of GA3 (Gibberellic acid), a plant growth regulator, known to excite physiological responses and modify the source–sink metabolism through their effect on photosynthesis, which in turn improves sink strength by redistribution of the photoassimilates. In the present study, GA3 applied canes showed prominent increase in invertase activity, at early stage of the application, to provide hexoses. This in turn helped increase the internodal length and cane capacity for additional accumulation of sucrose, thereby increasing sink strength. At maturity, sucrose% and brix% were found higher in middle and top portions of the GA3-applied canes. Expression analysis of various sucrose metabolising genes viz., sucrose phosphate synthase (SPS), sucrose synthase (SuSy), soluble acid invertase, neutral invertase, and cell wall invertase (CWI) was carried out at different growth stages, using quantitative RT-PCR. CWI, which plays key role in phloem unloading in sink tissues, exhibited higher expression in GA3 samples at the elongation stage which decreased with maturity, whereas both SuSy and SPS, involved in regulation of sucrose accumulation, showed a variable level of expression. Thus, GA3 application on cane may improve the sucrose content in stalk and thus assuage maneuvering source–sink dynamics in sugarcane.  相似文献   

20.
In gibberellic-acid(GA3)-treated epicotyls of dwarf peas (Pisum sativum L.) grown in the light, DNA (per cell and per epicotyl) is followed. Histofluorometric DNA determinations show that GA3-promoted cell elongation is not accompanied by increased endomitosis, but chemical estimations show an increased DNA content per epicotyl. This difference must therefore be the result of increased mitotic activity in the GA3-treated tissue. Epicotyls of seedlings grown with or without cotyledons under continuous light with GA3 are tetraploid, as are those of ecotylized embryos grown in darkness. These epicotyls reach no more than half the length of octaploid epicotyls of seedlings grown in darkness. This result provides evidence for a relationship between polyploidy and final possible cell length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号