首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants antiviral proteins are being used as anticancer agents and inhibit other viral diseases in humans. We modified the purification protocol of the two N-terminally blocked antiviral glycoproteins, CCP-25 and CCP-27, purified from the leaves of Celosia cristata. This not only gave rise to single pure samples with few steps of purification but also resulted in N-terminally free proteins. The extra purity of the samples was analyzed by reverse phase HPLC. Deglycosylation studies of CCP-25 with PNGase F enzyme revealed that its asparagine or asparagine-linked glycon contents are negligible. Partial N-terminal sequence of the CCP-25 showed the sequence (ANDIS), which seems to be conserved among plant antiviral proteins.  相似文献   

2.
Acylpeptide hydrolase, an enzyme that removes the modified residue from N-terminally acetylated peptides, has been purified from ovine liver and developed as a tool in sequencing blocked peptides and proteins. Its instability imposes a major limitation on the use of the mammalian enzyme in protein chemistry. Coupling to Sepharose followed by intramolecular cross-linking with dimethyl-suberimidate increased its thermostability and rendered it more resistant to inactivation by either SDS or N,N-dimethylformamide. The resulting enzyme preparation is reusable and more effective at cleaving longer acetylated peptides. It is therefore useful for unblocking acetylated proteins prior to protein sequence analysis. Intact proteins and many isolated peptides are still too large to be cleaved directly, but in this paper we describe a procedure for overcoming this difficulty. The protein is fragmented and non-acetylated peptides are then absorbed out with isothiocyanato-glass. The N-terminal peptide remains in solution and is unblocked with stabilised acylpeptide hydrolase. No chromatographic separation are required. The N-terminal sequence can then be obtained by automated Edman degradation. This procedure has been successfully demonstrated on a large synthetic peptide.  相似文献   

3.
A method has been developed for the simultaneous detection of cysteine and cystine in proteins by amino acid analysis. In this method, the sulfhydryl groups of the cysteine residues are first blocked with 2-aminoethyl methanethiosulfonate (AEMTS). This reagent converts all free sulfhydryl groups to mixed disulfides with 2-aminoethanethiol (AET). The isolated blocked protein is subjected to oxidation with performic acid prior to hydrolysis and amino acid analysis. This procedure quantitatively converts the 2-aminoethanethiol blocking groups into taurine, and all cysteine residues (including those involved in disulfide bonds) into cysteic acid. Both of these derivatives are stable and can be recovered quantitatively by amino acid analysis. The speed and specificity with which AEMTS reacts with thiols make this method particularly effective for the characterization of disulfide-coupled folding intermediates.  相似文献   

4.
Glycation is a nonenzymatic process in which proteins react with reducing sugar molecules and thereby impair the function and change the characteristics of the proteins. Glycation is involved in diabetes and aging where the accumulation of glycation products causes side effects. In this study, we statistically investigate the glycation of epsilon amino groups of lysines and also train a sequence-based predictor. The statistical analysis suggests that acidic amino acids, mainly glutamate, and lysine residues catalyze the glycation of nearby lysines. The catalytic acidic amino acids are found mainly C-terminally from the glycation site, whereas the basic lysine residues are found mainly N-terminally. The predictor was made by combining 60 artificial neural networks in a balloting procedure. The cross-validated Matthews correlation coefficient for the predictor is 0.58, which is quite impressive given the relatively small amount of experimental data available. The method is made available at www.cbs.dtu.dk/services/NetGlycate-1.0.  相似文献   

5.
Use of a C-terminal sequencer with modified solvents, reagent concentrations, chromatographic parameters, temperatures, and reaction cartridge geometry yields four sets of improvements in chemical degradations. They are increased sensitivity, longer runs, passage of Pro residues, and practical combination with N-terminal degradation. Over 200 proteins and protein fragments with sizes between 20 and 600 residues were analyzed. C-terminal sequences could be interpreted for more than 10 residues at high picomole sample levels, while the 10-pmol level gave 4-5 residues. The average initial yield was 15% but up to 30% could be achieved. The improved performance allowed combination of C- and N-terminal degradations from the same sample application. After initial Edman degradation, the sample is moved to the C-terminal instrument for continued sequencing. Proteins available in limited amount are thereby efficiently analyzed. Lys, modified from the N-terminal degradation, may be detected as the alkylated thiohydantoin-phenylthiocarbamyl-Lys derivative in the C-terminal degradation. Notably, C-terminal sequence analysis could be proceeded through Pro residues which unexpectedly were no absolute hindrance. The improved technique provides characterization of truncation patterns and microheterogeneities in proteins down to the 10-pmol level and is a useful approach for analysis of N-terminally blocked polypeptides.  相似文献   

6.
This paper describes a heavy isotope coding strategy for the analysis of all types of tryptic peptides, including those that are N-terminally blocked and from the C-terminus of proteins. The method exploits differential derivatization of amine and carboxyl groups generated during proteolysis as a means of coding. Carboxyl groups produced during proteolysis incorporate 18O from H218O. Peptides from the C-terminus of proteins were not labeled with 18O unless they contained a basic C-terminal amino acid. Primary amines from control and experimental samples were differentially acylated after proteolysis with either 1H3- or 2H3-N-acetoxysuccinamide. When these two types of labeling were combined, unique coding patterns were achieved for peptides arising from the C-termini and blocked N-termini of proteins. This method was used to (1) distinguish C-terminal peptides in model proteins, (2) recognize N-terminal peptides from proteins in which the amino terminus is acylated, and (3) identify primary structure variations between proteins from different sources.  相似文献   

7.
Formylglycine-generating enzyme (FGE) catalyzes the oxidation of a specific cysteine residue in nascent sulfatase polypeptides to formylglycine (FGly). This FGly is part of the active site of all sulfatases and is required for their catalytic activity. Here we demonstrate that residues 34-68 constitute an N-terminal extension of the FGE catalytic core that is dispensable for in vitro enzymatic activity of FGE but is required for its in vivo activity in the endoplasmic reticulum (ER), i.e. for generation of FGly residues in nascent sulfatases. In addition, this extension is needed for the retention of FGE in the ER. Fusing a KDEL retention signal to the C terminus of FGE is sufficient to mediate retention of an N-terminally truncated FGE but not sufficient to restore its biological activity. Fusion of FGE residues 1-88 to secretory proteins resulted in ER retention of the fusion protein. Moreover, when fused to the paralog of FGE (pFGE), which itself lacks FGly-generating activity, the FGE extension (residues 34-88) of this hybrid construct led to partial restoration of the biological activity of co-expressed N-terminally truncated FGE. Within the FGE N-terminal extension cysteine 52 is critical for the biological activity. We postulate that this N-terminal region of FGE mediates the interaction with an ER component to be identified and that this interaction is required for both the generation of FGly residues in nascent sulfatase polypeptides and for retention of FGE in the ER.  相似文献   

8.
Alternative translation initiation is a mechanism whereby functionally altered proteins are produced from a single mRNA. Internal initiation of translation generates N-terminally truncated protein isoforms, but such isoforms observed in immunoblot analysis are often overlooked or dismissed as degradation products. We identified an N-terminally truncated isoform of human Dok-1 with N-terminal acetylation as seen in the wild-type. This Dok-1 isoform exhibited distinct perinuclear localization whereas the wild-type protein was distributed throughout the cytoplasm. Targeted analysis of blocked N-terminal peptides provides rapid identification of protein isoforms and could be widely applied for the general evaluation of perplexing immunoblot bands.  相似文献   

9.
Proteome analysis of wheat lemma   总被引:2,自引:0,他引:2  
We report here for the first time on the construction of proteomes from wheat lemma at the anthesis stage. After transfer of lemma proteins to polyvinylidene difluoride membranes, seventy larger spots were subjected to peptide sequence analysis; the amino acid sequences could be described for forty-eight of these proteins. The result suggested that wheat proteins were less N-terminally blocked compared to rice proteins, which are known to have a much higher ratio of N-terminal blocks. We further analyzed the internal sequences of eight blocked proteins by the Cleveland peptide mapping method. Out of these total 56 amino acid sequences, forty-one could be assigned to the corresponding expressed sequence tags (ESTs). The expression profile of lemma proteins was generally similar to that of leaf, and the majority of identified proteins were related to cellular metabolisms. We analyzed the internal sequences of one protein spot present in lemma, which was not present in leaf.  相似文献   

10.
The total protein mixture from the 50S subunit (TP-50) of the eubacterium Thermus thermophilus was characterized after blotting onto PVDF membranes from two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and sequencing. The proteins were numbered according to their primary structure similarity with their counterparts from other species. One of them has been marked with an asterisk, namely L*23, because unlike the other known ribosomal proteins it shows a very low degree of homology. A highly acidic 5S rRNA binding protein, TL5, was characterized and compared with the available primary structure information. Proteins L1 and L4 migrate similarly on 2D-PAGE. Protein L4, essential for protein biosynthesis, is N-terminally blocked and shows a strikingly low homology to other L4 proteins. In addition to L4, two other proteins, namely L10 and L11, were found to be N-terminally blocked. In conclusion, 33 proteins from the large subunit were identified, including TL5. Homologs to rpL25 and rpL26 were not found.  相似文献   

11.
A fractionation procedure is described which allows the isolation of three major human erythrocyte membrane proteins. Their isolation involves three sequential extraction procedures followed by gel filtration in 1% sodium dodecyl sulphate and preparative gel electrophoresis. All three proteins can be isolated from a single preparation. One of the proteins is the erythrocyte sialoglycoprotein, for which no C- or N-terminal residues were found. The other two proteins, which have not previously been isolated, have subunit molecular weights of 74000 and 93000 and contain 9 and 7% carbohydrate respectively. These glycoproteins have blocked N-terminal residues and show similarities in their chemical properties. Preparations derived from blood-group O erythrocytes contain no N-acetylgalactosamine, but similar preparations from blood-group A erythrocytes do contain this sugar. These three proteins cannot easily be solubilized by gentle aqueous procedures and represent about half of the erythrocyte ;ghost' protein. They carry a large proportion of the cell-surface carbohydrate.  相似文献   

12.
Structures of N-terminally acetylated proteins   总被引:15,自引:0,他引:15  
Primary structures of 250 characterized proteins with N-terminally acetylated residues were correlated with residue distributions and other data. Excluding multiple forms derived from characterized species variants, the structures represent 105 different types of acetylated proteins. Results of comparisons extend previous suggestions based on fewer structures and define relationships further. The N-terminal residue that is acetylated is of a limited type and is frequently a small residue, with a heavy over-representation of serine and alanine. However, the occurrence of methionine at the acetylated position is also high, whereas that of glycine is less frequent than previously estimated. Lysine is over-represented in the N-terminal region, as is aspartic and glutamic acids at a few positions close to the acetylated N-terminus (especially the adjacent position). Finally, distributions of branched-chain residues in the N-terminal region of acetylated proteins are altered in relation to those of proteins in general, isoleucine is over-represented, and leucine and valine are under-represented. The results suggest that alpha-amino-acetylated proteins have special residues in N-terminally non-hydrophobic structures. Data are compatible with a protective function for acetylation but do not exclude further role(s) in processing or other special functions.  相似文献   

13.
Attachment of ubiquitin to substrate is typically thought to occur via formation of an isopeptide bond between the C-terminal glycine residue of ubiquitin and a lysine residue in the substrate. In vitro, Ube2w is nonreactive with free lysine yet readily ubiquitinates substrate. Ube2w also contains novel residues within its active site that are important for its ability to ubiquitinate substrate. To identify the site of modification, we analyzed ubiquitinated substrates by mass spectrometry and found the N-terminal -NH2 group as the site of conjugation. To confirm N-terminal ubiquitination, we generated lysine-less and N-terminally blocked versions of one substrate, the polyglutamine disease protein ataxin-3, and showed that Ube2w can ubiquitinate a lysine-less, but not N-terminally blocked, ataxin-3. This was confirmed with a second substrate, the neurodegenerative disease protein Tau. Finally, we directly sequenced the N terminus of unmodified and ubiquitinated ataxin-3, demonstrating that Ube2w attaches ubiquitin to the N terminus of its substrates. Together these data demonstrate that Ube2w has novel enzymatic properties that direct ubiquitination of the N terminus of substrates.  相似文献   

14.
A novel method for isolation and de novo sequencing of N-terminal peptides from proteins is described. The method presented here combines selective chemical tagging using succinimidyloxycarbonylmethyl tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP-Ac-OSu) at the Nα-amino group of peptides after digestion by metalloendopeptidase (from Grifola frondosa) and selective capture procedures using p-phenylenediisothiocyanate resin, by which the N-terminal peptide can be isolated, whether or not it is N-terminally blocked. The isolated N-terminal peptide modified N-terminally with TMPP-Ac-OSu reagent produces a simple fragmentation pattern under tandem mass spectrometric analysis to significantly facilitate sequencing.  相似文献   

15.
Employing classical two-dimensional electrophoresis (2-DE), amino acid sequencing and immunoblot analysis, we examine for the first time the effect of ozone, a highly notorious environmental pollutant, on rice seedling proteins. Drastic visible necrotic damage to leaf by ozone and consequent increase in ascorbate peroxidase protein(s) was accompanied by rapid changes in the 2-DE protein profiles, over controls. Out of a total of 56 proteins investigated, which were reproducible in repeated experiments, 52 protein spots were visually identified as differentially expressed over controls. Six proteins were N-terminally blocked, and the sequence of 14 proteins could not be determined, whereas 36 proteins were N-terminally and one was internally sequenced. Ozone caused drastic reductions in the major leaf photosynthetic proteins, including the abundantly present ribulose-1, 5-bisphosphate carboxylase/oxygenase, and induction of various defense/stress related proteins. Most prominent change in leaves, within 24 h post-treatment with ozone, was the induced accumulation of a pathogenesis related (PR) class 5 protein, three PR 10 class proteins, ascorbate peroxidase(s), superoxide dismutase, calcium-binding protein, calreticulin, a novel ATP-dependent CLP protease, and an unknown protein. Present results demonstrate the highly damaging effect of ozone on rice seedlings at the level of the proteome.  相似文献   

16.
C Fr?mmel  R Preissner 《FEBS letters》1990,277(1-2):159-163
In proteins most peptide bonds are in trans-conformation: the torsion angle omega = 180 degrees. Only few show cis-conformation in known protein structures (omega = 0 degrees). Most of them are prolyl residues. About 6% of about 4000 prolyl residues are in cis-conformation. Between trans- and cis-prolyl residues significant differences are observed in the surrounding sequences. E.g. there are large amounts of aromatic residues N-terminally in case of cis-prolyl residues, but in the case of trans-prolyl residues more aromatic amino acids occur C-terminally. But in all cases there are only complex patterns which are indicative of cis- and trans-conformation, respectively. Considering the neighbours (+/- 6 residues) of prolyl residues and their physicochemical properties we find 6 different patterns which allow one to assign correctly about 75% of known cis-structured prolyl residues, whereby no false positive one is predicted.  相似文献   

17.
Hollemeyer K  Heinzle E  Tholey A 《Proteomics》2002,2(11):1524-1531
Oxidation of methionine residues in peptides and proteins occurs in vivo or may be an artifact resulting from purification steps. We present a three step method for the localization of methionine sulfoxides in peptides with two methionine residues. In the first step, the N-terminus as well as other reactive side chain functions are blocked by acetylation. The resulting protected peptides are cleaved by cyanogen bromide. The cleavage does not occur at methionine sulfoxide but only at reduced methionine residues forming new amino termini. The newly formed amino group is then derivatized with a bromine containing compound in the last step of the procedure. The resulting peptide can easily be identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry using both the characteristic isotope pattern of the halogen and the metastable loss of methanesulfenic acid from oxidized residues. This procedure allows the unequivocal localization of oxidized methionines even in complex peptide mixtures.  相似文献   

18.
To find out minimal sizes of the proteinase inhibitor proteins hirudin and eglin necessary for their biological activity the inhibitors were incubated with exopeptidases. From the incubation mixtures shortened derivatives were isolated and characterized. Eglin c can be N-terminally shortened by up to 6 amino-acid residues without any loss of affinity towards chymotrypsin. The complex of thrombin with hirudin lacking 3 C-terminal amino-acid residues showed a 15-20-fold increased Ki value as found previously for desulfato-hirudin and desulfato-hirudin shortened by 2 amino-acid residues. Obviously, the C-terminal part of the hirudin molecule has a positive influence on its affinity to thrombin.  相似文献   

19.
Human lactoferrin (hLF) is an iron-binding glycoprotein involved in the innate host defense. The positively charged N-terminal domain of hLF mediates several of its activities by interacting with ligands such as bacterial lipopolysaccharide (LPS), specific receptors, and other proteins. This cationic domain is highly susceptible to limited proteolysis, which impacts on the affinity of hLF for the ligand. An analytical method, employing cation-exchange chromatography on Mono S, was developed to assess the N-terminal integrity of hLF preparations. The method, which separates N-terminally intact hLF from hLF species lacking two (Gly(1)-Arg(2)) or three (Gly(1)-Arg(2)-Arg(3)) residues, showed that 5-58% of total hLF in commercially obtained preparations was N-terminally degraded. The elution profile of hLF on Mono S unequivocally differed from lactoferrins from other species as well as homologous and other whey proteins. Analysis of fresh human whey samples revealed two variants of N-terminally intact hLF, but not limitedly proteolyzed hLF. Mono S chromatography of 2 out of 26 individual human whey samples showed a rare polymorphic hLF variant with three N-terminal arginines (Gly(1)-Arg(2)-Arg(3)-Arg(4)-Ser(5)-) instead of the usual variant with four N-terminal arginines (Gly(1)-Arg(2)-Arg(3)-Arg(4)-Arg(5)-Ser(6)-). In conclusion, Mono S cation-exchange chromatography appeared a robust method to assess the identity, purity, N-terminal integrity, and the presence of polymorphic and intact hLF variants.  相似文献   

20.
Photosystem I in barley contains a polypeptide with an apparent molecular mass of 14 kDa. The polypeptide is N-terminally blocked to amino acid sequencing, but partial amino acid sequences have been determined from three fragments obtained by chemical and enzymatic cleavage. Using an oligonucleotide probe specifying this amino acid sequence, a full length cDNA clone was isolated. The deduced amino acid sequence does not correspond to any previously identified photosystem I subunit. We designate the novel photosystem I subunit PSI-L and the corresponding nuclear gene PsaL. The cDNA clone encodes a precursor polypeptide of 209 amino acid residues with a deduced molecular mass of 22,210 Da. The precursor has a transit peptide typical of proteins imported into chloroplasts. Based on a putative maturation site, the deduced molecular mass of the mature protein is 18 kDa. The PSI-L polypeptide is hydrophobic and predicted to have at least two membrane-spanning alpha-helices. Northern blot analysis shows that the expression of the PsaL gene is light-induced similar to other of the barley photosystem I genes. Southern blot analysis indicates that PsaL is a single copy gene. Partial amino acid sequences of an N-terminally blocked 9-kDa polypeptide show high sequence similarity to the PSI-G polypeptide of spinach and Chlamydomonas reinhardtii. The gene product of PsaG in spinach has previously been assigned as subunit V (Steppuhn, J., Hermans, J., Nechushtai, R., Ljungberg, U., Thümmler, F., Lottspeich, F., and Herrmann, R. G. (1988) FEBS Lett. 237, 218-224). The present study suggests that PSI-L is equivalent to subunit V and that PSI-G is a subunit migrating closely to PSI-H (subunit VI) and PSI-C (subunit VII).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号