首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kang J  Lee MS  Watowich SJ  Gorenstein DG 《FEBS letters》2007,581(13):2497-2502
A phosphorothioate RNA aptamer (thioaptamer) targeting the capsid protein of Venezuelan equine encephalitis virus (VEEV) was isolated by in vitro combinatorial selection. The selected thioaptamer had a strong binding affinity (approximately 7nM) and high specificity for the target protein. For the binding to the protein, the overall tertiary structure of the thioaptamer is required. We introduce two theoretical methods to examine the effect of phosphorothioate modification on the enhancement of binding affinity and one experimental method to examine the nature of the multiple bands of thioaptamer in a native gel.  相似文献   

2.
3.
4.
To identify DNA aptamers demonstrating binding specificity for Shigella dysenteriae, a whole-bacterium Systemic Evolution of Ligands by Exponential enrichment (SELEX) method was applied to a combinatorial library of single-stranded DNA (ssDNA) molecules. After several rounds of selection using S. dysenteriae as the target, the highly enriched oligonucleotide pool was sequenced and then grouped into different families based on primary sequence homologies and similarities in the secondary structures. Aptamer S 1, which showed particularly high binding affinity in preliminary studies, was chosen for further characterisation. This aptamer displayed a dissociation constant (Kd value) of 23.47 ± 2.48 nM. Binding assays to assess the specificity of aptamer S 1 showed high binding affinity for S. dysenteriae and low apparent binding affinity for other bacteria. The ssDNA aptamers generated may serve as a new type of molecular probe for microbial pathogens, as it has the potential to overcome the tedious isolation and purification requirements for complex targets.  相似文献   

5.
Binding of nucleic acids to the prion protein (PrP) created a conundrum that required distinguishing between non-specific interactions and biologically important polynucleotides. In the process of developing selective ligands for PrP, we found using a single-stranded DNA thioaptamer library that the binding of thioaptamers to PrP occurs on at least two different sites on the protein. Selection against recombinant (rec) PrP of Syrian hamster (SHa) sequence 90-231 folded into an alpha-helical-rich conformation identified a 12-base consensus sequence within a series of 20 thioaptamers, all of which consist of 40 bases. Each thioaptamer was comprised of both normal and thio-dA modified bases. One thioaptamer designated 97 bound to recSHaPrP with affinity of 0.58(+/-0.1) nM; lower affinities for bovine (Bo), and human (Hu) were found, establishing that binding is dependent on the primary structure of PrP. High affinity binding of thioaptamer 97 to PrP was found to be mediated through the dodecyl sequence GACACAAGCCGA within the consensus region with five critical backbone modifications 5' to each dA residue. A control oligonucleotide with an equivalent number of phosphorothioates to thioaptamer 97 and a scrambled consensus sequence could not distinguish among the three PrP sequences. Control oligonucleotides bearing non-selected sequences bound to PrP at a sequence-independent DNA-binding site. In contrast, the high-affinity binding of thioaptamer 97 to PrP depends on (1) backbone modifications, (2) oligonucleotide sequence, and (3) PrP sequence.  相似文献   

6.
Active targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In this study, we identified a thiophosphate modified aptamer (thioaptamer, TA) against E-selectin (ESTA-1) by employing a two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound to E-selectin with nanomolar binding affinity (KD = 47 nM) while exhibiting minimal cross reactivity to P- and L-selectin. Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition) of sLex positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a thioaptamer (ESTA-1) that binds to E-selectin with high affinity and specificity, thereby highlighting the potential application of ESTA-1 for E-selectin targeted delivery.  相似文献   

7.
One of the most important molecules for multiple sclerosis pathogenesis is α4 integrin, which is responsible for autoreactive leukocytes migration into the brain. The monoclonal antibody, natalizumab, was introduced to market for blocking the extravasation of autoreactive leukocytes via inhibition of α4 integrin. However, the disadvantages of antibodies provided a suitable background for other agents to be replaced with antibodies. Considering the profound advantages of aptamers over antibodies, aptamer isolation against α4 integrin was intended in the current study. The α4 integrin-specific aptamers were selected using cell-systematic evolution of ligands by exponential enrichment (SELEX) method with human embryonic kidney (HEK)-293T overexpressing α4 integrin and HEK-293T as target and control cells, respectively. Evaluation of selected aptamer was performed through flow cytometric analysis. The selected clones were then sequenced and analyzed for any possible secondary structure and affinity. The results of this study led to isolation of 13 different single-stranded DNA clones in 11 rounds of selection which were categorized to three clusters based on common structural motifs and the equilibrium dissociation constant (K d) of the most stable structure was calculated. The evaluation of SELEX progress showed growth in aptamer affinity with increasing of the number of cycles. Taken together, the findings of this study demonstrated the isolation of α4-specific single-stranded DNA aptamers with suitable affinity for ligand, which can further be replaced with natalizumab.  相似文献   

8.
Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on their high affinity to a target molecule. Dye-binding aptamers are promising tools for real-time detection of not only DNA or RNA sequences but also proteins of interest both in vitro and in vivo. In this study, we aimed to isolate an RNA aptamer to Cy3, a widely used, membrane-permeant, and nontoxic fluorescent cyanine dye. Extensive selection of affinity RNA molecules to Cy3 yielded a unique sequence aptamer named Cy3_apt. The selected Cy3_apt was 83 nucleotides long and successfully shortened to 49 nucleotides long with increased affinity to Cy3 by multiple base changes. The shortest Cy3_apt is composed of two separate hairpin modules that are required for the affinity to Cy3 as monitored by the surface plasmon resonance (SPR) assay. Also, the fluorescence of Cy3 increased on binding to Cy3_apt. The two modules of Cy3_apt, when detached from each other, functioned as a binary aptamer probe. We demonstrate that the binary Cy3_apt probe is applicable to the detection of target oligonucleotides or RNA-RNA interaction by tagging with target sequences. This binary probe consists of two folded modules, referred to as a folded binary probe.  相似文献   

9.
Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on their high affinity to a target molecule. Here we demonstrate that an RNA aptamer selected against eukaryotic initiation factor 4A (eIF4A) serves as an efficient biosensor. The aptamer, when immobilized to resin, purifies eIF4A from crude cell extracts by affinity pull-down, and 32P-labeled aptamer can detect some 300 ng of eIF4A by dot-blot analysis. Moreover, by use of an aptamer-immobilized sensor chip, we developed a surface plasmon resonance assay to detect eIF4A at the nanogram level within whole cell lysates after optimizing sample preparation, thereby showing a real-time sensor for eIF4A in cell extract solution.  相似文献   

10.
The need for pre-analytical sample processing prior to the application of rapid molecular-based detection of pathogens in food and environmental samples is well established. Although immunocapture has been applied in this regard, alternative ligands such as nucleic acid aptamers have advantages over antibodies such as low cost, ease of production and modification, and comparable stability. To identify DNA aptamers demonstrating binding specificity to Campylobacter jejuni cells, a whole-cell Systemic Evolution of Ligands by EXponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules. FAM-labeled aptamer sequences with high binding affinity to C. jejuni A9a as determined by flow cytometric analysis were identified. Aptamer ONS-23, which showed particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K d value) of 292.8 ± 53.1 nM with 47.27 ± 5.58% cells fluorescent (bound) in a 1.48-μM aptamer solution. Binding assays to assess the specificity of aptamer ONS-23 showed high binding affinity (25–36%) for all other C. jejuni strains screened (inclusivity) and low apparent binding affinity (1–5%) with non-C. jejuni strains (exclusivity). Whole-cell SELEX is a promising technique to design aptamer-based molecular probes for microbial pathogens without tedious isolation and purification of complex markers or targets.  相似文献   

11.
12.
13.
目的获得能够特异性高亲和力结合肝脏特异性去唾液酸糖蛋白受体(asialoglycoprotein receptor,ASGPR)的RNA适配子,为开发诊断和治疗肝脏疾病的靶向性试剂和药物奠定基础。方法合成一个长度为115nt含有25个随机序列的单链DNA随机文库,通过体外转录构建出单链RNA适配子随机文库,以肝脏ASGPR大亚基为靶蛋白,采用SELEX(systematic evolution of ligands by exponential enrichment)技术筛选具有高亲和力的AsGPR特异性RNA适配子;通过膜结合测定实验、凝胶阻滞实验鉴定筛选适配子对靶蛋白的特异性和亲和力。结果经过12轮筛选获得了具有高亲和力的肝脏ASGPR特异性RNA适配子。结论成功地筛选出了具有离亲和力的肝脏ASGPR特异性RNA适配子库。  相似文献   

14.
Breast cancer is the most common female cancer. However, the known effective specific biomarkers for breast cancer are still scarce. Abnormal membrane proteins serve as ideal biomarkers for disease diagnoses, therapeutics and prognosis. Thus aptamers (single-stranded oligonucleotide molecules) with molecular recognition properties can be used as efficient tools to sort cells based on differences in cell surface architecture between normal and tumor cells. In this study, we aimed to screen specific aptamer against MCF-7 human breast cancer cells. Cell-SELEX process was performed to isolate aptamers from a combinatorial single-stranded nucleic acid library that selectively targeting surface proteins of MCF-7 cells in contrast with MCF-10A human mammary epithelial cells. The process was repeated until the pool was enriched for sequences that specifically recognizing MCF-7 cells in monitoring by flow cytometry. Subsequently, the enriched pool was cloned into bacteria, and positive clones were sequenced to obtain individual sequences. Representative sequences were chemically synthesized and evaluated their binding affinities to MCF-7 cells. As a result, an aptamer S1 was finally identified to have high binding affinity with equilibrium dissociation constant (Kd) value of 29.9 ± 6.0 nM. FAM-labeled aptamer S1 induced fluorescence shift in MCF-7 cells but not in MCF-10A human mammary epithelial cells, or MDA-MB-453 and MDA-MB-231 human breast cancer cells. Furthermore, result of cell imaging observed from laser confocal fluorescence microscope showed that MCF-7 cells exhibited stronger fluorescence signal resulted from Cy5-labeled aptamer S1 than MCF-10A cells. The above findings suggested that S1 may be a specificity and selectivity aptamer for MCF-7 cells and useful for the breast cancer detection and diagnosis.  相似文献   

15.
The purpose of this study was to identify biotinylated single-stranded (ss) DNA aptamers with binding specificity to Listeria and use these for capture and subsequent qPCR detection of the organism. For aptamer selection, SELEX (systematic evolution of ligands by exponential enrichment) was applied to a biotin-labeled ssDNA combinatorial library. After multiple rounds of selection and counter-selection, aptamers separated, sequenced, and characterized by flow cytometry showed binding affinities to L. monocytogenes of 18–23%. Although selected for using L. monocytogenes, these aptamers showed similar binding affinity for other members of the Listeria genus and low binding affinity for non-Listeria species. One aptamer, Lbi-17, was chosen for development of a prototype capture and detection assay. When Lbi-17 was conjugated to magnetic beads and used in a combined aptamer magnetic capture (AMC)-qPCR assay, the pathogen could be detected at concentrations <60 CFU/500 μl buffer in the presence of a heterogeneous cocktail of non-Listeria bacterial cells, with a capture efficiency of 26–77%. Parallel experiments using immunomagnetic separation (IMS)-qPCR produced the same detection limit but lower capture efficiency (16–21%). Increasing assay volume to 10 and 50 ml resulted in reduced capture efficiency and higher limits of detection, at 2.7 and 4.8 log10 CFU L. monocytogenes per sample, respectively, for the AMC-qPCR assay. Biotinylated ssDNA aptamers are promising ligands for food-borne pathogen concentration prior to detection using molecular methods.  相似文献   

16.
A selective kanamycin-binding single-strand DNA (ssDNA) aptamer (TGGGGGTTGAGGCTAAGCCGA) was discovered through in vitro selection using affinity chromatography with kanamycin-immobilized sepharose beads. The selected aptamer has a high affinity for kanamycin and also for kanamycin derivatives such as kanamycin B and tobramycin. The dissociation constants (Kd [kanamycin] = 78.8 nM, Kd [kanamycin B] = 84.5 nM, and Kd [tobramycin] = 103 nM) of the new aptamer were determined by fluorescence intensity analysis using 5′-fluorescein amidite (FAM) modification. Using this aptamer, kanamycin was detected down to 25 nM by the gold nanoparticle-based colorimetric method. Because the designed colorimetric method is simple, easy, and visible to the naked eye, it has advantages that make it useful for the detection of kanamycin. Furthermore, the selected new aptamer has many potential applications as a bioprobe for the detection of kanamycin, kanamycin B, and tobramycin in pharmaceutical preparations and food products.  相似文献   

17.
A molecular biosensor based on DNA aptamers (aptasensor) for the diagnosis of lung cancer in blood plasma samples was designed. To create the aptasensor, the aptamer 17_80, obtained in the study of postoperative material, was used. The affinity and binding selectivity of the aptamer 17_80 to the lung tumor tissue was confirmed on histological sections of postmortem samples of lung tissue. Using affinity enrichment and mass spectrometry, a possible target molecule of the aptamer 17_80, vimentin, was found.  相似文献   

18.
DNA aptamers, which bind specific molecule, such as 8-OHdG, with high affinity were investigated using an in vitro selection strategy called systematic evolution of ligands by exponential enrichment (SELEX). However, 8-OHdG was difficult to immobilize on a carrier for SELEX. Therefore, a DNA aptamer binding to 8-OHdG was selected using GMP-agarose as an analogue from a library of about 460 random ssDNA sources. As a result, three aptamer candidates were selected. Among the selected DNA aptamers, the No. 22 DNA aptamer exhibited a high affinity for 8-OHdG. The dissociation constant, KD, of No. 22 DNA aptamer was on the order of 0.1 μmol/L. This result suggests that using an analogue will be a useful new SELEX method for obtaining various aptamers that are difficult to immobilize on a matrix.  相似文献   

19.
Systematic evolution of ligands by exponential enrichment (SELEX) was used to develop DNA ligands (aptamers) to cholera whole toxin and staphylococcal enterotoxin B (SEB). Affinity selection of aptamers was accomplished by conjugating the biotoxins to tosyl-activated magnetic beads. The use of magnetic beads reduces the volumes needed to perform aptamer selection, thus obviating alcohol precipitation and allowing direct PCR amplification from the bead surface. Following five rounds of SELEX, 5'-biotinylated aptamers were bound to streptavidin-coated magnetic beads and used for the detection of ruthenium trisbypyridine [Ru(bpy)3(2+)]-labeled cholera toxin and SEB by an electrochemiluminescence methodology. A comparison of control (double-stranded) aptamer binding was made with aptamers that were heat denatured at 96 degrees C (single-stranded) and allowed to cool (conform) in the presence of biotoxin-conjugated magnetic beads. Results suggest that control aptamers performed equally well when compared to heat-denatured DNA aptamers in the cholera toxin electrochemiluminescence assay and a colorimetric microplate assay employing peroxidase-labeled cholera toxin and 5'-amino terminated aptamers conjugated to N-oxysuccinimide-activated microtiter wells. Interestingly, however, in the SEB electrochemiluminescence assay, double-stranded aptamers exceeded the performance of single-stranded aptamers. The detection limits of all aptamer assays were in the low nanogram to low picogram ranges.  相似文献   

20.

Background

Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen®, an inhibitor of vascular endothelial growth factor (VEGF) for the treatment of age related macular degeneration (AMD). Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified selection, possibly in one-step, technique is required for developing aptamers in limited time period.

Principal Findings

Herein, we present a simple one-step selection of DNA aptamers against α-bungarotoxin. A toxin immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed by PCR enrichment of the selected aptamers. One round of selection successfully identified a DNA aptamer sequence with a binding affinity of 7.58 µM.

Conclusion

We have demonstrated a one-step method for rapid production of nucleic acid aptamers. Although the reported binding affinity is in the low micromolar range, we believe that this could be further improved by using larger targets, increasing the stringency of selection and also by combining a capillary electrophoresis separation prior to the one-step selection. Furthermore, the method presented here is a user-friendly, cheap and an easy way of deriving an aptamer unlike the time consuming conventional SELEX-based approach. The most important application of this method is that chemically-modified nucleic acid libraries can also be used for aptamer selection as it requires only one enzymatic step. This method could equally be suitable for developing RNA aptamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号