首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
The steady rise of observations of harmful or toxic algal blooms throughout the world in the past decades constitute a menace for coastal ecosystems and human interests. As a consequence, a number of programs have been launched to monitor the occurrence of harmful and toxic algae. However, the identification is currently done by microscopic examination, which requires a broad taxonomic knowledge, expensive equipment and is very time consuming. In order to facilitate the identification of toxic algae, an inexpensive and easy-to-handle DNA-biosensor has been adapted for the electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii. The detection of the toxic algae is based on a sandwich hybridisation, which is carried out on a disposable sensor chip. A set of two probes for the species-specific identification of A. ostenfeldii was developed. The specificity of the probes could be shown in dot-blot hybridisations and with the DNA-biosensor. The sensitivity of the DNA-biosensor was optimised with respect to hybridisation temperature and NaCl-concentration and a significant increase of the sensitivity of the DNA-biosensor could be obtained by a fragmentation of the rRNA prior to the hybridisation and by adding a helper oligonucleotide, which binds in close proximity to the probes to the hybridisation.  相似文献   

2.
Rapid and reliable detection of harmful algae in coastal areas and shellfish farms is an important requirement for monitoring programs. Molecular technologies are rapidly improving the detection of phytoplankton and their toxins. Assays are based on the discrimination of genetic differences in the species. A commercially available PCR ELISA Dig Detection Kit in a microtiter plate was adapted for the rapid assessment of specificity of the two probes used in a sandwich hybridization assay. The toxic dinoflagellate Alexandrium minutum was used as the target organism and a capture and signal probe were designed for a species-specific identification of this species. This assay also provided the necessary specificity tests prior to the probes being adapted to an automated biosensor using a sandwich hybridization format. All probes regardless of the detection method must be extensively tested prior to use in the field. Total rRNA was isolated from three different strains of A. minutum and the mean concentration of RNA per cell of was determined to be 0.028 ng ± 0.003. Thus, a standard calibration curve for different RNA concentrations was determined so that cell numbers could be inferred from the assay. The assay and the standard curve were evaluated by using spiked field samples. The results demonstrated that the molecular assay was able to detect A. minutum cells at different cell counts in the presence of a complex background.  相似文献   

3.
A novel toxicity detection methodology based on sulfur-oxidizing bacteria (SOB) has been developed for the rapid and reliable detection of toxic chemicals in water. The methodology exploits the ability of SOB to oxidize sulfur particles in the presence of oxygen to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The assay is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. We found that SOB biosensor can detect toxic chemicals, such as heavy metals and CN−, in the 5-2000 ppb range. One bacterium was isolated from an SOB biosensor and the 16S rRNA gene of the bacterial strain has 99% and 96% sequence similarity to Acidithiobacillus sp. ORCS6 and Acidithiobacillus caldus DSM 8584, respectively. The isolate was identified as A. caldus SMK. The SOB biosensor is ideally suited for monitoring toxic chemicals in water having the advantages of high sensitivity and quick detection.  相似文献   

4.
A novel biosensor based on immobilised whole cell Chlorella vulgaris microalgae as a bioreceptor and interdigitated conductometric electrodes as a transducer has been developed and tested for alkaline phosphatase activity (APA) analysis. These sensors were also used for the detection of toxic compounds, namely cadmium ions, in aquatic habitats. Algae were immobilised inside bovine serum albumin (BSA) membranes cross-linked with glutaraldehyde vapours. The detection of the local conductivity variations caused by algae enzymatic reactions could be achieved. The inhibition of C. vulgaris microalgae Alkaline phosphatase activities in presence of cadmium ions was measured. These results were compared with measurements in bioassays. It finally appeared that conductometric biosensors using algae seemed more sensitive than bioassays to detect low levels of cadmium ions (the detection limit for the first experiments was 1 ppb of Cd2+). The main advantages of these alkaline phosphatase biosensors consist of their high specificity in regard to the toxic compounds they enable to detect, but also on their high stability since contrary to enzymatic biosensors, they use whole algae cells with APs on their walls.  相似文献   

5.
Although biosensors detecting a great variety of toxicants have been developed during the last decades, the simultaneous detection and identification of several targets by one biosensor is not possible in the majority of the biosensor systems. In our study we proved the concept of the detection and identification of two different volatile toxic compounds with a non-selective biochip-based algal biosensor. For that purpose we produced array plate biochips to utilise three membrane-immobilised algal strains of genus Klebsormidium and Chlorella in one biosensor system. A novel IMAGING-PAM chlorophyll fluorometer was applied to measure the impact of volatile organic compounds (VOC) on photosynthesis of chip-immobilized algae in terms of quantum efficiency of electron transport (DeltaF/F'm). Formaldehyde (FA) vapour was detectable with statistical significance in concentrations relevant to human health from 10 ppb to 10 ppm. The biosensor response recorded within minutes was concentration-dependent and reversible. Moreover, vapours of formaldehyde (0.05-1 ppm) and methanol (MeOH) (200-1000 ppm) were significantly identified by the compound-specific response rate as a quotient of the biosensor responses of the respective algal strains. Using the IMAGING-PAM chlorophyll fluorometer, data sampling proved to be highly efficient. Based on our results we conclude that the principle of the algal sensor chip (ASC) suggests further research on the detection and identification of VOCs and other toxic substances in gaseous environment with that biochip system.  相似文献   

6.
Biosensors and microarrays are powerful tools for species detection and monitoring of microorganisms. A reliable identification of microorganisms with probe-based methods requires highly specific and sensitive probes. The introduction of locked nucleic acid (LNA) promises an enhancement of specificity and sensitivity of molecular probes. In this study, we compared specificity and sensitivity of conventional probes and LNA modified probes in two different solid phase hybridisation methods: sandwich hybridisation on biosensors and on DNA microarrays. In combination with DNA-microarrays, the LNA probes displayed an enhancement of sensitivity, but also gave more false-positive signals. With the biosensor, the LNA probes showed neither signal enhancement nor discrimination of a single mismatch. In all cases, conventional DNA probes showed equal or better results than LNA probes. In conclusion, LNA technology may have great potential in methods that use probes in suspension and in gene expressions studies, but under certain solid surface-hybridisation applications, they do not improve signal intensity.  相似文献   

7.
The marine dinoflagellate genus Alexandrium includes a number of species which produce neurotoxins responsible for paralytic shellfish poisoning (PSP), which in humans may cause muscular paralysis, neurological symptoms, and, in extreme cases, death. A. minutum is the most widespread toxic PSP species in the western Mediterranean basin. The monitoring of coastal waters for the presence of harmful algae also normally involves microscopic examinations of phytoplankton populations. These procedures are time consuming and require a great deal of taxonomic experience, thus limiting the number of specimens that can be analyzed. Because of the genetic diversity of different genera and species, molecular tools may also help to detect the presence of target microorganisms in marine field samples. In this study, we developed a real-time PCR-based assay for rapid detection of all toxic species of the Alexandrium genus in both fixative-preserved environmental samples and cultures. Moreover, we developed a real-time quantitative PCR assay for the quantification of A. minutum cells in seawater samples. Alexandrium genus-specific primers were designed on the 5.8S rDNA region. Primer specificity was confirmed by using BLAST and by amplification of a representative sample of the DNA of other dinoflagellates and diatoms. Using a standard curve constructed with a plasmid containing the ITS1-5.8S-ITS2 A. minutum sequence and cultured A. minutum cells, we determined the absolute number of 5.8S rDNA copies per cell. Consequently, after quantification of 5.8S rDNA copies in samples containing A. minutum cells, we were also able to estimate the number of cells. Several fixed A. minutum bloom sea samples from Arenys Harbor (Catalan Coast, Spain) were analyzed using this method, and quantification results were compared with standard microscopy counting methods. The two methods gave comparable results, confirming that real-time PCR could be a valid, fast alternative procedure for the detection and quantification of target phytoplankton species during coastal water monitoring.  相似文献   

8.
We developed a software program for the rapid selection of detection probes to be used in nucleic acid-based assays. In comparison to commercially available software packages, our program allows the addition of oligotags as required by nucleic acid sequence-based amplification (NASBA) as well as automatic BLAST searches for all probe/primer pairs. We then demonstrated the usefulness of the program by designing a novel lateral flow biosensor for Streptococcus pyogenes that does not rely on amplification methods such as the polymerase chain reaction (PCR) or NASBA to obtain low limits of detection, but instead uses multiple reporter and capture probes per target sequence and an instantaneous amplification via dye-encapsulating liposomes. These assays will decrease the detection time to just a 20 min hybridization reaction and avoid costly enzymatic gene amplification reactions. The lateral flow assay was developed quantifying the 16S rRNA from S. pyogenes by designing reporter and capture probes that specifically hybridize with the RNA and form a sandwich. DNA reporter probes were tagged with dye-encapsulating liposomes, biotinylated DNA oligonucleotides were used as capture probes. From the initial number of capture and reporter probes chosen, a combination of two capture and three reporter probes were found to provide optimal signal generation and significant enhancement over single capture/reporter probe combinations. The selectivity of the biosensor was proven by analyzing organisms closely related to S. pyogenes, such as other Streptococcus and Enterococcus species. All probes had been selected by the software program within minutes and no iterative optimization and re-design of the oligonucleotides was required which enabled a very rapid biosensor prototyping. While the sensitivity obtained with the biosensor was only 135 ng, future experiments will decrease this significantly by the addition of more reporter and capture probes for either the same rRNA or a different nucleic acid target molecule. This will lead to the possibility of detecting S. pyogenes with a rugged assay that does not require a cell culturing or gene amplification step and will therefore enable rapid, specific and sensitive onsite testing.  相似文献   

9.
Paralytic shellfish poisoning (PSP) is a syndrome caused by the consumption of shellfish contaminated with neurotoxins produced by organisms of the marine dinoflagellate genus Alexandrium. A. minutum is the most widespread species responsible for PSP in the Western Mediterranean basin. The standard monitoring of shellfish farms for the presence of harmful algae and related toxins usually requires the microscopic examination of phytoplankton populations, bioassays and toxin determination by HPLC. These procedures are time-consuming and require remarkable experience, thus limiting the number of specimens that can be analyzed by a single laboratory unit. Molecular biology techniques may be helpful in the detection of target microorganisms in field samples. In this study, we developed a qualitative PCR assay for the rapid detection of all potentially toxic species belonging to the Alexandrium genus and specifically A. minutum, in contaminated mussels. Alexandrium genus-specific primers were designed to target the 5.8S rDNA region, while an A. minutum species-specific primer was designed to bind in the ITS1 region. The assay was validated using several fixed seawater samples from the Mediterranean basin, which were analyzed using PCR along with standard microscopy procedures. The assay provided a rapid method for monitoring the presence of Alexandrium spp. in mussel tissues, as well as in seawater samples. The results showed that PCR is a valid, rapid alternative procedure for the detection of target phytoplankton species either in seawater or directly in mussels, where microalgae can accumulate.  相似文献   

10.
Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009–2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 × 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.  相似文献   

11.
This paper describes a sensor for label-free, fully electrical detection of DNA hybridization based on capacitive changes in the electrode-electrolyte interface. The sensor measures capacitive changes in real time according to a charging-discharging principle that is limited by the hysteresis window. In addition, a novel autonomous searching technique, which exclusively monitors desorption-free hybridized electrodes among electrode arrays, enhances the performance of the sensor compared with conventional capacitive measurement. The sensor system achieves a detection range of 80 dB. The integrated circuit sensor is fabricated with a 0.35 μm CMOS process. The proposed sensor offers rapid, robust and inexpensive measurement of capacitance with highly integrated detection circuitry. It also facilitates quantitative evaluations of molecular densities on a chip with distinctive impedance variations by monitoring desorption-free hybridized electrodes. Our electrical biosensor has great potential for use with bio analytical tools and point-of-care diagnosis.  相似文献   

12.
A simple and novel electrochemical biosensor based approach is described for differentiating between differing species of fish on the basis of DNA hybridisation events. Screen-printed carbon electrodes modified with a variety of polymers were used to immobilise commercially available DNA in a single-stranded form. AC impedimetric measurements were firstly carried out on these systems and then upon exposure to single-stranded DNA solutions. When the electrode and solution DNA were complementary, a large drop in impedance was measured; this did not occur for non-matching DNA exposures. DNA hybridisation sensors for closely related species of fish were in the first instance developed as a demonstration for this approach. Species of fish such as herrings and salmon could be differentiated by this method. This sensor format offers great promise for many DNA hybridisation applications and lends itself to mass fabrication due to the simplicity and inexpensiveness of the materials and methods used. The hybridisation results were confirmed by use of ellipsometry to measure the characteristics of similar films deposited on silicon substrates.  相似文献   

13.
The marine dinoflagellate genus Alexandrium includes a number of species which produce neurotoxins responsible for paralytic shellfish poisoning (PSP), which in humans may cause muscular paralysis, neurological symptoms, and, in extreme cases, death. A. minutum is the most widespread toxic PSP species in the western Mediterranean basin. The monitoring of coastal waters for the presence of harmful algae also normally involves microscopic examinations of phytoplankton populations. These procedures are time consuming and require a great deal of taxonomic experience, thus limiting the number of specimens that can be analyzed. Because of the genetic diversity of different genera and species, molecular tools may also help to detect the presence of target microorganisms in marine field samples. In this study, we developed a real-time PCR-based assay for rapid detection of all toxic species of the Alexandrium genus in both fixative-preserved environmental samples and cultures. Moreover, we developed a real-time quantitative PCR assay for the quantification of A. minutum cells in seawater samples. Alexandrium genus-specific primers were designed on the 5.8S rDNA region. Primer specificity was confirmed by using BLAST and by amplification of a representative sample of the DNA of other dinoflagellates and diatoms. Using a standard curve constructed with a plasmid containing the ITS1-5.8S-ITS2 A. minutum sequence and cultured A. minutum cells, we determined the absolute number of 5.8S rDNA copies per cell. Consequently, after quantification of 5.8S rDNA copies in samples containing A. minutum cells, we were also able to estimate the number of cells. Several fixed A. minutum bloom sea samples from Arenys Harbor (Catalan Coast, Spain) were analyzed using this method, and quantification results were compared with standard microscopy counting methods. The two methods gave comparable results, confirming that real-time PCR could be a valid, fast alternative procedure for the detection and quantification of target phytoplankton species during coastal water monitoring.  相似文献   

14.
The sensitivity and specificity of a polyethylene glycol terminated alkanethiol mixed self-assembled monolayers (SAM) on surface plasmon resonance (SPR) immunosensor to detect Escherichia coli O157:H7 is demonstrated. Purified monoclonal (Mabs) or polyclonal antibodies (PAbs) against E. coli O157:H7 were immobilized on an activated sensor chip and direct and sandwich assays were carried to detect E. coli O157:H7. Effect of Protein G based detection and effect of concentrations of primary and secondary antibodies in sandwich assay were investigated. The sensor surface was observed under an optical microscope at various stages of the detection process. The sensor could detect as low as 10(3)CFU/ml of E. coli O157:H7 in a sandwich assay, with high specificity against Salmonella Enteritidis. The detection limit using direct assay and Protein G were 10(6)CFU/ml and 10(4)CFU/ml, respectively. Results indicate that an alkanethiol SAM based SPR biosensor has the potential for rapid and specific detection of E. coli O157:H7, using a sandwich assay.  相似文献   

15.

Background

Urinary tract infection (UTI) is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management.

Methodology/Principal Findings

The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both).

Conclusion/Significance

We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for multiplexed detection of nucleic acid and protein as the next generation of urinary tract infection diagnostics.  相似文献   

16.
Cyanobacteria are the main dominant species in inland eutrophic lakes during algae blooms, and measures of cyanobacteria abundance can be used for monitoring and early detection of algal blooms by remote sensing. During May 2013 and August 2016, a total 137 water samples were collected from Lake Taihu and Lake Chaohu. Remote-sensing reflectance was measured, surface water was collected in the field, and chlorophyll-a concentration, phycocyanin concentration, suspended-matter concentration and phytoplankton pigment absorption parameters were measured in the laboratory. The composition and density of planktonic algae were also detected by microscope examination. The remote-sensing reflectance at 15 MERIS bands was simulated based on our measured spectral data, and a two-step method for detecting cyanobacteria abundance using the partial least squares model based on 5 MERIS bands was developed. The results showed that the estimation algorithm can predict cyanobacteria abundance in inland eutrophic lakes with satisfactory accuracy, with RMSE of 7.56 and MAPE of 13.44 %. This algorithm was successfully applied to the MERIS image acquired on August 12, 2010, and showed a reasonable spatial distribution of cyanobacteria abundance in Lake Taihu. It demonstrated that the developed estimation method was an effective way to monitor cyanobacteria abundance in water with a potential to be successfully applied to Sentinel-3 images.  相似文献   

17.
The identification of core genes involved in the biosynthesis of saxitoxin (STX) offers a great opportunity to detect toxic algae associated with paralytic shellfish toxins (PST). In the Yellow Sea (YS) in China, both toxic and nontoxic Alexandrium species are present, which makes it a difficult issue to specifically monitor PST-producing toxic algae. In this study, a quantitative PCR (qPCR) assay targeting sxtA4, a domain in the sxt gene cluster that encodes a unique enzyme involved in STX biosynthesis, was applied to analyze samples collected from the YS in spring of 2012. The abundance of two toxic species within the Alexandrium tamarense species complex, i.e., A. fundyense and A. pacificum, was also determined with TaqMan-based qPCR assays, and PSTs in net-concentrated phytoplankton samples were analyzed with high-performance liquid chromatography coupled with a fluorescence detector. It was found that the distribution of the sxtA4 gene in the YS was consistent with the toxic algae and PSTs, and the quantitation results of sxtA4 correlated well with the abundance of the two toxic species (r = 0.857). These results suggested that the two toxic species were major PST producers during the sampling season and that sxtA-based qPCR is a promising method to detect toxic algae associated with PSTs in the YS. The correlation between PST levels and sxtA-based qPCR results, however, was less significant (r = 0.552), implying that sxtA-based qPCR is not accurate enough to reflect the toxicity of PST-producing toxic algae. The combination of an sxtA-based qPCR assay and chemical means might be a promising method for monitoring toxic algal blooms.  相似文献   

18.
A biosensor based on mammalian metallothionein (MT) for the detection of metal ions was developed and characterized. MT was immobilized onto a carboxymethylated dextran matrix as a biosensor for the detection of metal ions by surface plasmon resonance (SPR). The optimal pH for the immobilization step was determined to be 4. The temperature for the analysis was also defined, and the highest interaction was observed at 30 degrees C. The MT sensor chip binds cadmium (Cd), zinc (Zn) or nickel (Ni), but not magnesium (Mg), manganese (Mn) and calcium (Ca). Calibration curves for the quantification of metal ions showed excellent linearity. The sensitivity for metal detection is at the micromolar level. The interaction between the metal ions and the sensor chip is influenced significantly by the presence of NaCl, Tween 20 and the pH of the reaction buffer. By decreasing the NaCl in the reaction buffer to 1 mM, the MT chip effectively differentiates cadmium from zinc and nickel. Kinetic parameters of the metal-MT interactions were also determined by using this chip. The binding affinity between the metal ions and the immobilized MT follows the order of cadmium > zinc > nickel, which is the same as that determined for MT in solution. Thus, the MT chip can be an effective biosensor for the detection and measurement of several metal ions.  相似文献   

19.
A package-free transparent disposable biosensor chip was developed by a screen-printing technique. The biosensor chip was fabricated by stacking a substrate with two carbon electrodes on its surface, a spacer consisting of a resist layer and an adhesive layer, and a cover. The structure of the chip keeps the interior of the reaction-detecting section airtight until use. The chip is equipped with double electrochemical measuring elements for the simultaneous measurement of multiple items, and the reagent layer was developed in sample-feeding path. The sample-inlet port and air-discharge port are simultaneously opened by longitudinally folding in two biosensor units with a notch as a boundary. Then the shape of the chip is changed to a V-shape. The reaction-detecting section of the chip has a 1.0 microl sample volume for one biosensor unit. Excellent results were obtained with the chip in initial simultaneous chronoamperometric measurements of both glucose (r=1.00) and lactate (r=0.998) in the same samples. The stability of the enzyme sensor signals of the chip was estimated at ambient atmosphere on 8 testing days during a 6-month period. The results were compared with those obtained for an unpackaged chip used as a control. The package-free chip proved to be twice as good as the control chip in terms of the reproducibility of slopes from 16 calibration curves (one calibration curve: 0, 100, 300, 500 mg dl(-1) glucose; n=3) and 4.6 times better in terms of the reproducibility of correlation coefficients from the 16 calibration curves.  相似文献   

20.
Harmful algal blooms (HAB) occur worldwide and cause health problems and economic damage to fisheries and tourism. Monitoring for toxic algae is therefore essential but is based primarily on light microscopy, which is time consuming and can be limited by insufficient morphological characters such that more time is needed to examine critical features with electron microscopy. Monitoring with molecular tools is done in only a few places world-wide. EU FP7 MIDTAL (Microarray Detection of Toxic Algae) used SSU and LSU rRNA genes as targets on microarrays to identify toxic species. In order to comply with current monitoring requirements to report cell numbers as the relevant threshold measurement to trigger closure of fisheries, it was necessary to calibrate our microarray to convert the hybridisation signal obtained to cell numbers. Calibration curves for two species of Pseudo-nitzschia for use with the MIDTAL microarray are presented to obtain cell numbers following hybridisation. It complements work presented by Barra et al. (2012b. Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1330-1v) for two other Pseudo-nitzschia spp., Dittami and Edvardsen (2012a. J. Phycol. 48, 1050) for Pseudochatonella, Blanco et al. (2013. Harmful Algae 24, 80) for Heterosigma, McCoy et al. (2013. FEMS. doi: 10.1111/1574-6941.12277) for Prymnesium spp., Karlodinium veneficum, and cf. Chatonella spp. and Taylor et al. (2014. Harmful Algae, in press) for Alexandrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号