首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, selective, and sensitive liquid chromatographic method with ultraviolet detection was developed for the analysis of penicillin G in bovine plasma. The assay utilizes a simple extraction of penicillin G from plasma (with a known amount of penicillin V added as internal standard) with water, dilute sulphuric acid and sodium tungstate solutions, followed by concentration on a conditioned C18 solid-phase extraction column. After elution with 500 μl of elution solution, the penicillins are derivatized with 500 μl of 1,2,4-triazole—mercuric chloride solution at 65°C for 30 min. The penicillin—mercury mercaptide complexes are separated by reversed-phase liquid chromatography on a C18 column. The method, which has a detection limit of 5 ng/ml (ppb) in bovine plasma, was used to quantitatively measure the concentrations of penicillin G in plasma of steers at a series of intervals after the intramuscular administration of a commercial formulation of procaine penicillin G.  相似文献   

2.
We report a reversed-phase high-performance liquid chromatography method which resolves 13 identified carotenoids and nine unknown carotenoids from human plasma. A Nucleosil C18 column and a Vydac C18 column in series are used with an isocratic solvent system of acetonitrile–methanol containing 50 mM acetate ammonium–dichloromethane–water (70:15:10:5, v/v/v/v) as mobile phase at a flow-rate of 2 ml/min. The intra-day (4.5–8.3%) and inter-day (1.3–12.7%) coefficients of variation are suitable for routine clinical determinations.  相似文献   

3.
A sensitive and selective method for the determination of cefuroxime in bronchoalveolar lavage (BAL) fluid using high-performance liquid chromatography (HPLC) with UV detection at 280 nm after solid-phase extraction with C18 cartridges was developed. A Waters symmetry C18 column was used and the mobile phase was acetonitrile-0.05 M ammonium phosphate buffer (pH 3.2) (15:85, v/v). The method enabled the determination of cefuroxime at concentrations below 100 ng/ml, with a linear calibration curve at concentrations of 5–100 ng/ml for 400 μl of BAL. The intra- and inter-assay coefficient of variations for 10, 40 and 80 ng/ml were between 5.3 and 8.9%. Analytical recoveries were between 92.7 and 106.2%. The detection limit was 1 ng/ml at a signal-to-noise ratio of 3:1 using 400 μl of BAL. The method was successfully used for the analysis of BAL fluid from patients after oral administration of 500 mg cefuroxime axetil twice daily.  相似文献   

4.
An isocratic high-performance liquid chromatographic method for the determination of 5-methyltetrahydrofolate (5-MTHF) in human plasma is described. The method involves solid-phase extraction of 5-MTHF and p-aminoacetophenon (an internal standard) using Sep-Pak C18 cartridges. Separation was achieved with an ODS column using acetonitrile and phosphate buffer supplemented with octanesulfonic acid (an ion-pairing agent). The pH of the mobile phase (2.5) was optimal with respect to the mode of detection (fluorescence). The method was validated in the range of 5-MTHF concentrations from 0.0625 μmol/l to 4.0 μmol/l. Within-day and inter-day precision expressed by the relative standard deviation was less than 8.1% and inaccuracy did not exceed 8.7%. The method is specific, accurate and sensitive enough to be used in pharmacokinetic studies for the assessment of the systemic availability of 5-MTHF after leucovorin administration to patients as a rescue after high-dose therapy with methotrexate. The limit of detection was 0.17 pmol which corresponds to a plasma concentration of 1.7 nmol/l. Thus, the assay could potentially be used for the measurement of 5-MTHF in the range of physiological concentrations in plasma (5–20 nmol/l).  相似文献   

5.
A sensitive, selective, and reproducible GC–MS–SIM method was developed for determination of artemether (ARM) and dihydroartemisinin (DHA) in plasma using artemisinin (ART) as internal standard. Solid phase extraction was performed using C18 Bond Elut cartridges. The analysis was carried out using a HP-5MS 5% phenylmethylsiloxane capillary column. The recoveries of ARM, DHA and ART were 94.9±1.6%, 92.2±4.1% and 81.3±1.2%, respectively. The limit of quantification in plasma was 5 ng/ml (C.V.≤17.4% for ARM and 15.2% for DHA). Calibration curves were linear with R2≥0.988. Within day coefficients of variation were 3–10.4% for ARM and 7.7–14.5% for DHA. Between day coefficients of variations were 6.5–15.4% and 7.6–14.1% for ARM and DHA. The method is currently being used for pharmacokinetic studies. Preliminary data on pharmacokinetics showed Cmax of 245.2 and 35.6 ng/ml reached at 2 and 3 h and AUC0–8h of 2463.6 and 111.8 ngh/ml for ARM and DHA, respectively.  相似文献   

6.
A sensitive high-performance liquid chromatographic method for the determination of paromomycin in human plasma and urine was developed. Paromomycin was quantitated following pre-column derivatization with 2,4-dinitrofluorobenzene (DNFB). The chromatographic separation was carried out on a C18 column at 50°C using a mobile phase consisting of 64% methanol in water adjusted to pH 3.0 with phosphoric acid. The eluents were monitored by UV detection at 350 nm. The linearity of response for paromomycin was demonstrated at concentrations from 0.5 to 50 μg/ml in plasma and 1 to 50 μg/ml in urine. The relative standard deviation of the assay procedure is less than 5%.  相似文献   

7.
Indomethacin and mefenamic acid are widely used clinically as non-steroidal anti-inflammatory agents. Both drugs have also been found effective to produce closure of patent ductus arteriosus in premature neonates. A simple, rapid, sensitive and reliable HPLC method is described for the determination of indomethacin and mefenamic acid in human plasma. As these drugs are not applied together, the compounds are alternately used as analyte and internal standard. Plasma was deproteinized with acetonitrile, the supernatant fraction was evaporated to dryness and the resulting residue was reconstituted in the mobile phase and injected into the HPLC system. The chromatographic separation was performed on a C18 column (250 × 4.6 mm I.D.) using 10 mM phosphoric acid—acetonitrile (40:60, v/v) as the mobile phase and both drugs were detected at 280 nm. The calibration graphs were linear with a correlation coefficient (r) of 0.999 or better from 0.1 to 10 μg/ml and the detection limits were 0.06 μg/ml for indomethacin and 0.08 μg/ml for mefenamic acid, for 50μl plasma samples. The method was not interfered with by other plasma components and has been found particularly useful for paediatric use. The within-day precision and accuracy of the method were evaluated for three concentrations in spiked plasma samples. The coefficients of variation were less than 5% and the accuracy was nearly 100% for both drugs.  相似文献   

8.
A rapid and accurate method for the determination of tetracycline in human plasma and urine is presented. Determination of tetracycline in plasma is based on precipitation of plasma proteins with trifluoroacetic acid, followed by injection of the centrifuged plasma sample onto a μBondapak C18 column. Acetonitrile in phosphate buffer pH 2.2 is used as mobile phase. Only tetracycline, and no trace of lumecycline can be detected in plasma and urine after administration of lumecycline, indicating that lumecycline is completely degraded to tetracycline, lysine and formaldehyde in the gastrointestinal tract prior to absorption.Determination of tetracycline in urine was performed by injection of urine diluted with phosphoric acid onto a μBondapak Phenyl column. The precision of determination of tetracycline in plasma, expressed as the relative standard deviation, was < 3% at tetracycline concentrations of 0.05 and 3.7 μg/ml. Urine determinations were made with a precision of < 1.5% at tetracycline concentrations of 0.5 and 6.7 μg/ml.  相似文献   

9.
Two high-performance liquid chromatographic (HPLC) methods are described for determination of (±)-ethopropazine (ET) in rat plasma. After deproteination and liquid–liquid extraction, assay of (±)-ET was performed using either a C18 column (non-stereospecific assay) or an (α-R-naphthyl)ethylurea column (stereospecific assay). The UV detection was at 250 nm. Mean recovery was >85%. Both assays demonstrated excellent linear relationships between peak height ratios and plasma concentrations; quantitation limits were ≤25 ng/ml, based on 100 μl rat plasma. Accuracy and precision were <17% with both methods. Both methods were applied successfully to the measurement of ET plasma concentrations in rats given the drug intravenously.  相似文献   

10.
This study describes a sensitive HPLC–electrochemical detection method for the analysis of ceftazidime, a third-generation cephalosporin, in human plasma. The extraction procedure involved protein precipitation with 30% trichloroacetic acid. The separation was achieved on a reversed-phase column (250×4.6 mm I.D., 5 μm) packed with C18 Kromasil with isocratic elution and a mobile phase consisting of acetonitrile–25 mM KH2PO4–Na2HPO4 buffer, pH 7.4 (10:90, v/v). The proposed analytical method is selective, reproducible and reliable. The assay has a precision of 0.2–15.1% (C.V.) in the range of 5–200 μg ml−1. (corresponding to 0.5 to 20 ng of ceftazidime injected onto the column), and is optimised for assaying 50 μl of plasma. The extraction recovery from plasma was approximately 100%. The method was highly specific for ceftazidime and there was no interference from either commonly administered drugs or endogenous compounds. This assay was used to measure ceftazidime in elderly patients for therapeutic drug monitoring.  相似文献   

11.
A selective high-performance liquid chromatographic method to assess either bezafibrate, ciprofibrate or fenofibric acid plasma levels is described. Drugs are extracted with diethyl ether, after acidification with HCl. An isocratic acetonitrile-0.02 M H3PO4 (55:45) mobile phase, a C18 (5 μm) column and UV detection are used. The LOQ found was 0.25 μg/ml for the three fibrates. Intra- and inter-assay accuracy ranges were 90–107% and 82–111%; 96–115% and 94–107%; 94–114% and 94–126% for bezafibrate, ciprofibrate and fenofibric acid, respectively. Intra- and inter-assay precision (C.V.% ranges) were 1.72–3.06% and 2.66–7.67%; 1.88–4.64% and 0.62–2.99%; 1.26–4.69% and 3.56–7.17% for the three fibrates studied. Its sensitivity, accuracy and precision make it a useful tool for monitoring plasma levels of these drugs in a clinical setting and for research purposes.  相似文献   

12.
A sensitive, selective and reproducible reversed-phase HPLC method with ultraviolet detection was developed for the quantification of diazepam in small plasma samples from children with severe malaria. The method involves plasma deproteinization with acetonitrile, followed by liquid–liquid extraction with ethyl acetate–n-hexane. Diazepam was eluted at ambient temperatures from a reversed-phase C18 column with an acidic (pH 3.5) aqueous mobile phase (10 mM KH2PO4–acetonitrile, 69:31, v/v). Calibration curves in spiked plasma were linear from 10 to 200 ng (r2≥0.99). The limit of detection was 5.0 ng/ml, and relative recoveries at 25 and 180 ng were >87%. Intra- and inter-assay relative standard deviations were <15%. There was no interference from drugs commonly administered to children with severe malaria (phenobarbitone, phenytoin, chloroquine, quinine, sulfadoxine, pyrimethamine, halofantrine, cycloguanil, chlorcycloguanil, acetaminophen and salicylate). This method has been used for monitoring plasma diazepam concentrations in children with seizures associated with severe malaria.  相似文献   

13.
We describe a simple method for extracting homovanillic acid (HVA) from plasma. An aliquot of 0.5 ml of the internal standard solution (3-hydroxy-4-methoxycinnamic acid in 0.2 mol/l phosphoric acid) and 0.5 ml of the sample are applied to a 1-ml Bond Elut C18 column prewashed with methanol and 0.2 mol/l phosphoric acid. The sample is drawn through the column at low speed. The column is washed with water and eluted with dichloromethane. The eluate is evaporated under vacuum at ambient temperature and the residue reconstituted with 250 μl of the mobile phase. A 10-μl aliquot of the resulting solution is injected onto a 150 mm × 4.6 mm I.D. column packed with 5-μm octadecylsilyl silica particles (Beckman). Peaks are detected coulometrically in the screening-oxidation mode with E1 = +0.25 V and E2 = +0.38 V. In the resulting chromatogram, HVA and the internal standard give sharp peaks and are well separated from solvent and other endogenous electroactive acids. The extraction recovery is 90–95% which allows the determination of 0.5 μg/l analyte.  相似文献   

14.
A simple high-performance liquid chromatographic method for determination of ticlopidine in human plasma using ultra violet detection was developed. The separation of the investigated compound and internal standard was achieved on a C18 BD column with a 0.01 M potassium dihydrogen phosphate buffer (pH 4)–acetonitrile–methanol (20:40:40, v/v) mobile phase. The detection was performed at 215 nm. The compounds were isolated from plasma by Bond Elut C18 solid-phase extraction, the mean absolute recovery was 84.9%. The limit of quantitation was 10 ng ml−1, the limit of detection was 5 ng ml−1. The bioanalytical method was validated with respect to linearity, within- and between-day accuracy and precision, system suitability and stability. All validated parameters were found to be within the internationally required limits. The developed analytical method for ticlopidine was found to be suitable for application in pharmacokinetic studies and human drug monitoring.  相似文献   

15.
A coupled column liquid chromatographic (LC–LC) method for high-speed analysis of the urinary ring-opened benzene metabolite, trans,trans-muconic acid (t,t-MA) is described. Efficient on-line clean-up and concentration of t,t-MA from urine samples was obtained using a 3 μm C18 column (50×4.6 mm I.D.) as the first column (C-1) and a 5 μm C18 semi-permeable surface (SPS) column (150×4.6 mm I.D.) as the second column (C-2). The mobile phases applied consisted, respectively, of methanol–0.05% trifluoroacetic acid (TFA) in water (7:93, v/v) on C-1, and of methanol–0.05% TFA in water (8:92, v/v) on C-2. A rinsing mobile phase of methanol–0.05% TFA in water (25:75, v/v) was used for cleaning C-1 in between analysis. Under these conditions t,t-MA eluted 11 min after injection. Using relatively non-specific UV detection at 264 nm, the selectivity of the assay was enhanced remarkably by the use of LC–LC allowing detection of t,t-MA at urinary levels as low as 50 ng/ml (S/N>9). The study indicated that t,t-MA analysis can be performed by this procedure in less than 20 min requiring only pH adjustment and filtration of the sample as pretreatment. Calibration plots of standard additions of t,t-MA to blank urine over a wide concentration range (50–4000 ng/ml) showed excellent linearity (r>0.999). The method was validated using urine samples collected from rats exposed to low concentrations of benzene vapors (0.1 ppm for 6 h) and by repeating most of the analyses of real samples in the course of measurement sequences. Both the repeatability (n=6, levels 64 and 266 ng/ml) and intra-laboratory reproducibility (n=6, levels 679 and 1486 ng/ml) were below 5%.  相似文献   

16.
A simple, robust HPLC method was developed to measure simultaneously the plasma concentrations of amoxycillin and metronidazole in order to assess their disposition in the eradication of Helicobacter pylori. Plasma samples were protein precipitated, pH adjusted and the supernatant injected onto the HPLC system which used a C18 column, paired-ion aqueous mobile phase and photodiode array detection of amoxycillin at 230 nm and metronidazole at 313 nm. Intra- and inter-day precision and inaccuracy were less than 10% for concentrations between 5 and 20 mg/l. The limit of quantification was 1 mg/l. Samples were stable on the HPLC injector for 48 h at room temperature and multiple freeze–thaw cycles led to no decomposition.  相似文献   

17.
A simple high-performance liquid chromatographic procedure was developed for the determination of ranitidine in human plasma. The method entailed direct injection of the plasma samples after deproteination using perchloric acid. The chromatographic separation was accomplished with an isocratic elution using mobile phase consisting of 21 mM disodium hydrogen phosphate–triethylamine-acetonitrile (1000:60:150, v/v), pH 3.5. Analyses were run at a flow-rate of 1.3 ml/min using a μbondapak C18 column and ultraviolet detection at a wavelength of 320 nm. The method was specific and sensitive, with a quantification limit of approximately 20 ng/ml and a detection limit of 5 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery was about 96%, while the within- and between-day coefficient of variation and percent error values of the assay method were all less than 8%. The linearity was assessed in the range of 20–1000 ng/ml plasma, with a correlation coefficient of greater than 0.999. This method has been used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

18.
The chromatographic behavior of norepinephrine (NE), epinephrine, dopamine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylacetic acid on octylsilane (C8) reversed-phase high-performance liquid chromatography columns was observed under various mobile phase conditions including manipulations of pH, pairing ion and methanol concentrations. The optimum isocratic conditions permitting quantitative resolution of these substances in minimum time and with maximum detector response were determined. Employing a pH 3.0–3.2 mobile phase comprising an aqueous buffer solution containing 0.1 M NaH2PO4, 0.1 mM EDTA, and 0.2 mM 1-octanesulfonate, admixed with a volume of methanol equal to 4% of the aqueous volume, the performance of the C8 columns compares favorably to that of the more widely used C18 columns. The column eluates were monitored with an amperometric detector utilizing a glassy-carbon flow-cell electrode. The detector response for NE was 1.5–2.0 nA/ng and the baseline noise was as little as 0.002 nA thereby permitting quantitation of 5-pg levels or more in the injected samples. By coupling the liquid chromatographic system to a procedure which eliminates non-catechol contaminants from the neuronal and body fluid specimens by alumina adsorption of the catechols, a sensitive and dependable method was developed and employed for the determination of catechol levels in discrete regions of rat brain, cat spinal cord, and in human plasma.  相似文献   

19.
A high-performance liquid chromatographic method for the determination of eltanolone in plasma has been developed. Plasma samples containing eltanolone were diluted with acetonitrile to precipitate plasma proteins, and derivatized with 2,4-dinitrophenylhydrazine before direct injection onto a C18 column. The mobile phase was acetonitrile–water (70:30, v/v) containing 0.1% trifluoroacetic acid and detection was by UV absorbance at 367 nm. The quantitation limit was 0.020 μg/ml. The method has proven to be rapid, precise and sensitive in the range of concentrations found during and following intravenous anaesthesia.  相似文献   

20.
Methods for the determination of celecoxib in human plasma and rat microdialysis samples using liquid chromatography tandem mass spectrometry are described. Celecoxib and an internal standard were extracted from plasma by solid-phase extraction with C18 cartridges. Thereafter compounds were separated on a short narrow bore RP C18 column (30×2 mm). Microdialysis samples did not require extraction and were injected directly using a narrow bore RP C18 column (70×2 mm). The detection was by a PE Sciex API 3000 mass spectrometer equipped with a turbo ion spray interface. The compounds were detected in the negative ion mode using the mass transitions m/z 380→316 and m/z 366→302 for celecoxib and internal standard, respectively. The assay was validated for human plasma over a concentration range of 0.25–250 ng/ml using 0.2 ml of sample. The assay for microdialysis samples (50 μl) was validated over a concentration range of 0.5–20 ng/ml. The method was utilised to determine pharmacokinetics of celecoxib in human plasma and in rat spinal cord perfusate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号