首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Oaks (Quercus spp.) represent the most important broadleaf genus with respect to forest-shaping tree species in the Mediterranean. Considering future climate scenarios (increased drought conditions), the identification of drought tolerant oak species is of great importance for future forest management in this region. The objective of the study was the comparison of physiological status of three economically and ecologically valuable oak species (Quercus ilex, Quercus frainetto and Quercus pubescens) co-existing in natural coppice stands in NE Greece, in response to seasonal drought stress. Measurements were conducted between June and September 2016, every 15–20 days until leaf falling. The parameters studied were predawn leaf water potential and fast chlorophyll fluorescence induction curves (OJIP test), chlorophyll content, and relative water content. Meteorological data from the area were also collected. Photosynthetic parameters such as performance indices (PIabs and PItot) reacted to summer drought conditions, with Q. frainetto showing the lowest values. The discrepancy between species increased with duration of drought period. Q. frainetto revealed the lowest predawn water potential values. The results indicate that Q. frainetto is less suitable for future forestry applications in the studied climate/elevation zone than Q. pubescens and Q. ilex.  相似文献   

2.
 叶面积指数(leaf area index, LAI)是定量描述冠层结构的最有效指标之一。鉴于森林冠层三维结构的高度复杂性和异质性, 迄今仍没有形成统一标准的LAI测量方法。该文利用LAI-2000冠层分析仪、CI-110冠层分析仪和半球摄影法(digital hemispherical photograph, DHP), 对北京东灵山地区以蒙古栎(Quercus mongolica)为主的落叶阔叶林、华北落叶松(Larix gmelinii var. principis-rupprechtii)林和油松(Pinus tabuliformis)林的有效叶面积指数(effective leaf area index, LAIe)进行了动态监测, 探寻其季节变化规律。为准确地估算温带山地主要森林类型的LAI, 对光学仪器测量值进行了去除木质成分、聚集效应等校正, 与基于凋落物收集法的相应实测值进行了比较分析。结果表明: 3种典型森林在生长季期间叶片生长均呈现单峰型; 3种光学仪器测量方法的同期LAIe数值大小顺序为: LAI-2000冠层分析仪>DHP>CI-110冠层分析仪。光学仪器的直接测量值LAIe包含了木质成分的贡献, 钝化了季节动态的变化幅度, 这对有明显季节交替的落叶林尤为突出。经校正, LAI-2000冠层分析仪和DHP的测量值与实测值都表现出显著的相关性, 其中LAI-2000冠层分析仪最适于采用基于空隙大小的校正方法, 而基于空隙度和空隙大小的综合算法则是校正DHP的最佳选择。结合经济成本和野外实际操作等因素考虑, DHP具有更大的推广优势, 特别适用于温带山地落叶林。  相似文献   

3.
Variety of responses of plant phenolic concentration to CO2 enrichment   总被引:1,自引:0,他引:1  
Leaf area index (LAI) of a stand of adult black alder trees(Alnus glutinosa L., Gaertn.) was determined by means of threeindependent methods. (1) The seasonal course of LAI was directlyobtained by counting leaves in situ and adding up their areas,estimated from harvested subsamples of leaves. (2) The seasonalvariation of LAI in the stand was estimated using the Li-CorLAI-2000 PCA in parallel and with this instrument a VegetationArea Index (VAI, projected area of all phyto-elements) was actuallymeasured. (3) Maximum LAI was calculated from leaf litter collectionstaking into account specific leaf area within different layersof the alder crown. Direct LAI estimates (1) and calculationsfrom leaf litter (3) revealed the same figure of maximum LAI(4.8). This LAI was reached in August. The LAI-2000 PCA capturedthe seasonal variation and underestimated, by 11% on average,the LAI obtained directly. Compared with results gained withother broad-leaved tree species the LAI-2000 PCA values foralder were reliable. It is suggested that this is due to thehorizontal homogeneous structure of the main leaf layer. Thisis in the periphery of the crown, where 90% of the light interceptionoccurs. Taking the het-erogeneity into account a satisfactorycompatibility of the three methods applied to the alder standwas achieved. Key words: Alnus glutinosa, leaf area index, in situ counting, LAI-2000 PCA, litter collections  相似文献   

4.
Leaf area index (LAI) of a stand of adult black alder trees(Alnus glutinosa L., Gaertn.) was determined by means of threeindependent methods. (1) The seasonal course of LAI was directlyobtained by counting leaves in situ and adding up their areas,estimated from harvested subsamples of leaves. (2) The seasonalvariation of LAI in the stand was estimated using the Li-CorLAI-2000 PCA in parallel and with this instrument a VegetationArea Index (VAI, projected area of all phyto-elements) was actuallymeasured. (3) Maximum LAI was calculated from leaf litter collectionstaking into account specific leaf area within different layersof the alder crown. Direct LAI estimates (1) and calculationsfrom leaf litter (3) revealed the same figure of maximum LAI(4.8). This LAI was reached in August. The LAI-2000 PCA capturedthe seasonal variation and underestimated, by 11% on average,the LAI obtained directly. Compared with results gained withother broad-leaved tree species the LAI-2000 PCA values foralder were reliable. It is suggested that this is due to thehorizontal homogeneous structure of the main leaf layer. Thisis in the periphery of the crown, where 90% of the light interceptionoccurs. Taking the het-erogeneity into account a satisfactorycompatibility of the three methods applied to the alder standwas achieved. Key words: Alnus glutinosa, leaf area index, in situ counting, LAI-2000 PCA, litter collections  相似文献   

5.
We investigated the relationship between leaf shape and leaf hydraulic resistance in a set of broadleaf Quercus tree species (Q. cerris, Q. frainetto, Q. petraea, Q. pyrenaica, Q. robur, Q. rubra, Q. velutina). Seedlings of all the studied species were grown under uniform environmental conditions. A new high-pressure flowmeter was designed to measure leaf-blade hydraulic resistance. Leaf shape was characterised by the complexity of leaf outline which was regarded as an estimate of leaf lobation. This was done using the box-counting fractal dimension of the leaf silhouette. Leaf hydraulic resistance was negatively related to leaf lobation. It is suggested that the lower hydraulic resistance in deeply lobed leaves may constitute a mechanism for improving water balance under dry atmospheric conditions.  相似文献   

6.
Sun and shade leaves of two Mediterranean Quercus species, Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L., were compared by measuring leaf optical properties, photosynthetic pigment composition and photosystem II efficiency. The presence of trichomes in the adaxial (upper) leaf surface of Q. ilex subsp. ballota seems to constitute an important morphological mechanism that allows this species to maintain a good photosystem II efficiency during the summer. Q. coccifera has almost no trichomes and seems instead to develop other physiological responses, including a smaller light-harvesting antenna size, higher concentrations of violaxanthin cycle pigments and a higher (zeaxanthin + antheraxanthin)/(violaxanthin + antheraxanthin + zeaxanthin) ratio. Q. coccifera was not able to maintain a good photosystem II efficiency up to the end of the summer. In Q. ilex subsp. ballota leaves, natural loss or mechanical removal of adaxial-face leaf trichomes induced short-term decreases in photosystem II efficiency. These changes were accompanied by de-epoxidation of violaxanthin cycle pigments, suggesting that the absence of trichomes would trigger physiological responses in this species. Our data have revealed different patterns of response of Q. ilex subsp. ballota and Q. coccifera facing the stress conditions prevailing in the Mediterranean area.  相似文献   

7.
Seasonal changes in physiological and biochemical parameters were studied in 35-, 55- and 140-year-old trees of Turkey oak (Quercus cerris L.) and Hungarian oak (Q. frainetto Ten.), growing in natural stands in Eastern Balkan Mountains (Bulgaria). During the seasonal drought period (August), assimilation activity, transpiration rate, stomatal conductance and water potential had a seasonal minimum in all the studied tree ages and species. The foliar concentrations of glutathione, ascorbate, α-tocopherol, as well as photosynthetic pigments in oak leaves were significantly affected by season. With the increasing age of the studied trees, we observed a decrease of the physiological activity and an increase of the antioxidants’ accumulation. Both the species were drought tolerant and anisohydric, where Q. frainetto exhibited higher rates of gas exchange than Q. cerris. Moreover, they differed in the extent of increase in the foliar antioxidants and carotenoids.  相似文献   

8.

Key message

We developed the empirical regression models relating the direct LAI and optical LAI from initial leaf out to the leaf fall in different forest types in China.

Abstract

Optical methods have usually been used to estimate the leaf area index (LAI) in a forest stand because of rapidity and reduced labor requirements. However, few studies have reportedly improved the accuracy of the optical LAI estimates for seasonal dynamics using empirical models in different forest types. In the present study, we directly measured the seasonal dynamics of LAI from leaf out to leaf fall based on litter collection (defined as direct LAI) in a mixed evergreen–deciduous forest, an evergreen forest and a deciduous forest. Meanwhile, the effective LAI was estimated using digital hemispherical photography (DHP) and LAI-2000 instruments. Our main objective was to explore the seasonal changes in the relationship between direct LAI and effective LAI values and to find the best LAI empirical estimation model in different forest types. The season-dependent models relating direct LAI and effective LAI in each period were developed through a power function regression model in several forest types. Then, significance tests were applied to compare the different season-dependent models. The analysis showed that the season-dependent models can be merged into different aggregated models depending on forest types and optical methods. We confirm that the seasonal changes in LAI in different forest types can be fully estimated through aggregated models using both DHP and LAI-2000 methods with accuracies of more than 87 and 92 %, respectively. Meanwhile, our results suggest that the forest type (i.e., species composition of forest stand) and optical method should be seriously considered to correctly and quickly estimate the seasonal changes of LAI through the aggregated models.
  相似文献   

9.
Indirect estimates of leaf area from measurements with three commercially available instruments (DEMON, LAI-2000 and Sunfleck Ceptometer) were compared with directly measured areas of individual Retama sphaerocarpa bushes. The three indirect methods gave good estimates of the total surface area of individual bushes. For the DEMON, the method of log-linear averaging of transmitted radiation gave estimates closer to directly measured surface area than the method of averaging transmission linearly. For the LAI-2000, estimated surface area index multiplied by canopy projected area gave the best agreement with directly measured values. For measurements with the Sunfleck Ceptometer, values of surface area estimated from the transmission of photosynthetic quantum flux density, without correcting for diffuse radiation, gave the best agreement with directly measured values. Surface areas estimated by the three instruments were not significantly different from directly measured total (leaf + branch + stem) surface areas. Leaf surface area could be calculated from estimated total surface area minus directly measured branch surface area. Measured branch surface area was linearly related to canopy projected area.  相似文献   

10.
The accuracy of LAI-2000 Plant Canopy Analyzer for leaf (LAI) and plant (PAI) area indexes measurements was tested in 20-year-old Norway spruce stand using the reduction of canopy biomass. Needle and branch areas were reduced progressively upward every one meter. Values of effective leaf area index (LAIe), as an uncorrected product of LAI-2000, were compared with directly estimated LAI and PAI values after each reduction step. LAI-2000 underestimates PAI and LAI values according to LAI-2000 rings readings, and varied proportions between leaf and wood areas. The values of LAIc have been increased with decreasing of the view angle of the relevant LAI-2000 rings. Therefore, the underestimation of LAI becomes smaller when the readings near the horizon are masked. More accurate results, for projected LAI (LAIp) calculation, are produced by LAI-2000 when some dense grids of measurement points and the most vertical ring readings (0 –13 °) are used. Correction factor 1.6 is possible to use for unreduced canopy hemi-surface LAI estimation, when the last rings (i.e. 5th and 4th rings, 47 –74 °) are excluded. Correction factor of 1.25 can be used to compute LAIp if the angle readings under 43 °are also masked.  相似文献   

11.
The floristic differentiation of the deciduousQuercus frainetto forests along the climatic gradients of Apennine Italy has been studied. The ecological amplitude of this oak, and the bioclimatological relationships here assessed, suggest potentiality for the growth ofQ. frainetto-rich communities as broad zonal vegetation belt, ranging from NW to SE along the W side of peninsular Italy. Strong floristical and ecological similarities to the balcanic stands are described.The status of real vegetation belt for the ItalianQuercion frainetto s.l. is here emphasized.  相似文献   

12.
Photosynthesis and related leaf characteristics were measured in canopies of co-occurring Quercus rubra L. (red oak), Quercus prinus L. (chestnut oak) and Acer rubrum L. (red maple) trees. Mature (20+ m tall) trees were investigated at sites of differing soil water availability within a catchment (a drier upper site and a wetter lower site). Leaf photosynthetic characteristics differed significantly between species and in response to site and position in the canopy. Photosynthetic capacity (Amax) was significantly greater at the wetter site in all canopy strata in A. rubrum but not in Q. rubra or Q. prinus. Our findings for A. rubrum are generally consistent with those predicting that species with higher specific leaf area (SLA) will have higher Amax per unit leaf nitrogen (N) and that species with leaves with lower SLA (e.g. Q. rubra and Q. prinus) will have shallower slopes of the Amax-N relationship. Importantly, the relationships between Amax and Narea (and by implication photosynthetic nitrogen-use efficiency, PNUE) differed in A. rubrum between the sites, with PNUE significantly lower at the drier site. The lower photosynthetic capacity and PNUE must substantially reduce carbon acquisition capacity in A. rubrum under these field conditions. Maximum stomatal conductance (gsmax) differed significantly between species, with gsmax greatest in Q. rubra and Q. prinus. In Q. rubra and Q. prinus, gsmax was significantly lower at the upper site than the lower site. There was no significant response of gsmax to site in A. rubrum. These stomatal responses were consistent with the Ci/Ca ratio, which was significantly lower in leaves of Q. rubra and Q. prinus at the upper site, but did not differ between sites in A. rubrum. Leaf '13C was significantly lower in A. rubrum than in either Q. rubra or Q. prinus at both sites. These findings indicate differences in stomatal behaviour in A. rubrum which are likely to contribute to lower water use efficiency at both sites. Our results support the hypothesis that the two Quercus species, in contrast to A. rubrum, maintain photosynthetic capacity at the drier site whilst minimising transpirational water loss. They also suggest, based primarily on physiological evidence, that the ability of A. rubrum to compete with other species of these deciduous forests may be limited, particularly in sites of low moisture availability and during low rainfall years.  相似文献   

13.
The canopy structure of a stand of vegetation is determined by the growth patterns of the individual plants within the stand and the competitive interactions among them. We analyzed the carbon gain of individuals in two dense monospecific stands of Xanthium canadense and evaluated the consequences for intra-specific competition and whole-stand canopy structure. The stands differed in productivity, and this was associated with differences in nitrogen availability. Canopy structure, aboveground mass, and nitrogen contents per unit leaf area (Narea) were determined for individuals, and leaf photosynthesis was measured as a function of Narea. These data were used to calculate the daily carbon gain of individuals. Within stands, photosynthesis per unit aboveground mass (Pmass) of individual plants increased with plant height, despite the lower leaf area ratios of taller plants. The differences in Pmass between the tallest most dominant and shortest most subordinate plants were greater in the high-nitrogen than in the low-nitrogen stand. This indicated that competition was asymmetric and that this asymmetry increased with nitrogen availability. In the high-nitrogen stand, taller plants had a higher Pmass than shorter ones, because they captured more light per unit mass and because they had higher photosynthesis per unit of absorbed light. Conversely, in the low-nitrogen stand, the differences in Pmass between plants of different heights resulted only from differences in their light capture per unit mass. Sensitivity analyses revealed that an increase in Narea, keeping leaf area of plants constant, increased whole-plant carbon gain for the taller more dominant plants but reduced carbon gain in the shorter more subordinate ones, which implies that the Narea values of shorter plants were greater than the optimal values for maximum photosynthesis. On the other hand, the carbon gain of all individual plants, keeping their total canopy N constant, was positively related to an increase in their individual leaf area. At the same time, however, increasing the leaf area for all plants simultaneously reduced the carbon gain of the whole stand. This result shows that the optimal leaf area index (LAI), which maximizes photosynthesis of a stand, is not evolutionarily stable because at this LAI, any individual can increase its carbon gain by increasing its leaf area.  相似文献   

14.
Seedling growth dynamics of Quercus macrocarpa Michx. and Quercus muhlenbergii Engelm. were compared over a 3-month period under optimal growth conditions. These two species are the dominant trees at the western limit of the eastern deciduous forest, and are typically confined to gallery forests along stream beds in tallgrass prairie. Since tallgrass prairie is characterized by a highly variable climate and is prone to periodic drought, we hypothesized that these oaks would have rapid root growth and produce deep taproots as seedlings, enabling them to avoid drought stress and persist in this region. These traits may also facilitate forest expansion into the more xeric tallgrass prairie if fires are suppressed. Taproots of Q. macrocarpa and Q. muhlenbergii grew to approximately 140 cm and 100 cm in length, respectively, after 104 days. In both species, 65% or more of seedling biomass was allocated below ground, and root/total biomass was significantly greater in Q. muhlenbergii at 0-20 and 21-40 days after germination. The seedling taproot elongation rates reported here are much greater than rates reported in other eastern deciduous forest trees. Long-term precipitation data and soil moisture patterns from tallgrass prairie, when combined with rapid taproot elongation rates, suggest that soil moisture may not limit oak establishment or growth in tallgrass prairie in most years, although water uptake by roots was not measured in this study. Other factors, such as fire, herbivory, and seed predation and dispersal may be equally important in constraining the distribution of these species to gallery forests.  相似文献   

15.
Leaf morphology and macronutrients in broadleaved trees in central Italy   总被引:1,自引:0,他引:1  
As part of an intensive monitoring programme (MON.I.TO, Intensive Monitoring of Forests in Tuscany), a 3-year survey was carried out, which included three tree species (beech, Fagus sylvatica L.; Turkey oak, Quercus cerris L.; holm-oak, Quercus ilex L.) located at six different sites. Leaves were sampled annually and analysed for nutrient concentrations (nitrogen, sulphur, phosphorus, magnesium, calcium, potassium and sodium) and morphological parameters (leaf area, dry weight, leaf mass per area, leaf thickness and leaf density). Results indicated considerable interannual variation of all the parameters. Differences between sampling sites indicated that, of all parameters measured, leaf mass per area could explain best the differences in field performance under conditions of stress. In fact, leaf mass per area was greater in the drier sites or when sea salt deposition occurred. Nevertheless, the variation of leaf mass per area over the 3 years did not reflect the differences in rainfall. Higher leaf mass per area was accompanied by lower concentrations of phosphorus and nitrogen, which could be a dilution effect due to an increase of structural carbon compounds in sclerophyllous leaves, as revealed by the total foliar content of these elements. Leaf mass per area as a measure of sclerophylly reached very high values among mesophile vegetation. Long-range transport of sea salt from coastal areas to mountain areas was mirrored in sodium concentrations of leaves.  相似文献   

16.
ABSTRACT

Drought responses, leaf area index (LAI), leaf characteristics and light extinction coefficient (k) were analysed in thinned and unthinned Turkey oak (Quercus cerris L.) stands at two sites: Valsavignone, in the Apennines, with a mild climate, and Caselli, near the Tyrrhenian coast, with a longer and more accentuated dry period in the summer. Turkey oak showed a good adaptability to drought due to a series of modifications in leaf characteristics, canopy properties and biomass allocation such as leaf area reduction, increased leaf thickness, smaller number of leaves and, at stand level, lower LAI, leaf biomass and LWR values and higher light extinction coefficients. In spite of the better environmental conditions and the higher LAI values, productivity was lower in the wet site. The differences in Turkey oak canopy properties, light extinction coefficients, LAI and their relations with drought and productivity are discussed.  相似文献   

17.
Data from savannas of northern Australia are presented for net radiation, latent and sensible heat, ecosystem surface conductance (Gs) and stand water use for sites covering a latitudinal range of 5° or 700 km. Measurements were made at three locations of increasing distance from the northern coastline and represent high- (1,750 mm), medium- (890 mm) and low- (520 mm) rainfall sites. This rainfall gradient arises from the weakened monsoonal influence with distance inland. Data were coupled to seasonal estimates of leaf area index (LAI) for the tree and understorey strata. All parameters were measured at the seasonal extremes of late wet and dry seasons. During the wet season, daily rates of evapotranspiration were 3.1-3.6 mm day-1 and were similar for all sites along the rainfall gradient and did not reflect site differences in annual rainfall. During the dry season, site differences were very apparent with evapotranspiration 2-18 times lower than wet season rates, the seasonal differences increasing with distance from coast and reduced annual rainfall. Due to low overstorey LAI, more than 80% of water vapour flux was attributed to the understorey. Seasonal differences in evapotranspiration were mostly due to reductions in understorey leaf area during the dry season. Water use of individual trees did not differ between the wet and dry seasons at any of the sites and stand water use was a simple function of tree density. Gs declined markedly during the dry season at all sites, and we conclude that the savanna water (and carbon) balance is largely determined by Gs and its response to atmospheric and soil water content and by seasonal adjustments to canopy leaf area.  相似文献   

18.
We compared direct and indirect estimates of leaf area index (LAI) for lodgepole and loblolly pine stands. Indirect estimates of LAI using radiative methods of the LI-COR LAI-2000 Plant Canopy Analyzer (PCA) did not correlate with allometric estimates for lodgepole pine, and correlated only weakly with litter-trap estimates for loblolly pine. The PCA consistently under-estimated LAI in lodgepole pine stands with high LAI, and over-estimated LAI in the loblolly pine stands with low LAI. We developed a physical model to test the hypothesis that the PCA may under-estimate LAI in high leaf area stands because of increased foliage overlap and, therefore, increased selfshading. Radiative estimates of LAI using the PCA for the physical model were consistenly lower than allometric measures. Results from the physical model suggested that increased foliage overlap decreased the ability of the PCA to accurately estimate LAI. The relationship between allometric and radiative measures suggested an upper asymptote in LAI estimated using the PCA. The PCA may not accurately estimate LAI in stands of low or high leaf area index, and the bias or error associated with these estimates probably depends on species and canopy structure. A species specific correction factor will not necessarily correct bias in LAI estimates using the PCA.  相似文献   

19.
This study evaluated one semi-direct and three indirect methods for estimating leaf area index (LAI) by comparing these estimates with direct estimates derived from litter collection. The semi-direct method uses a thin metallic needle to count a number of contacts across fresh litter layers. One indirect method is based on the penetration of diffuse global radiation measured over the course of a day. The second indirect method uses the LAI-2000 plant canopy analyser (PCA) which measures diffuse light penetration from five different sky sectors simultaneously. The third indirect method uses the Demon portable light sensor to measure the penetration of direct beam sunlight at different zenith angles over the course of half a day. The Poisson model of gap frequency was applied to estimate plant area index (PAI) from observed transmittances using the second and third methods. Litter collection from 11 temperate decidous forests gave values of LAI ranging from 1.7 to 7.5. Estimates based on the needle method showed a significant linear relationship with LAI values obtained from litter collections but were systematically lower (by 6–37%). PAI estimates using all three indirect techniques (fixed light sensor system, LAI-2000 and Demon) showed a strong linear relationship with LAI derived from litter collection. Differences, averaged over all forest stands, between PAI estimates from each of the three indirect methods and LAI from litter collections were below 2%. If we consider that LAI=PAI–WAI (wood area index) then, all three indirect methods underestimated LAI by an additional factor close to the value of WAI. One reason could be a local clumping of architectural canopy components: in particular, the spatial dispositions of branchlets and leaves are not independent, leading to a non-random relationship between the distributions of these two canopy components.  相似文献   

20.
Variation in leaf morphology of Quercus petraea in response to several ecological conditions has been studied extensively, although not explicitly in the context of within- and among-tree variation. This study examined leaf morphology and anatomy of Q. petraea, growing in five natural Italian populations adapted to different ecological environments, to understand the pattern of within- and among-tree variation in this species. We used an ANOVA model with both crossed and nested effects. All levels contributed significant components of variation. Within-tree variation due to branch position was large, particularly in thickness and productivity (40%). For 19 of 32 variables, the variation among trees was surprisingly lower than the within-tree variation explained by branch position. Trends in leaf morphology and anatomy with branch position exhibited the sun-shade dichotomy. Patterns of crown plasticity showed lower values in the two xeric populations. Results suggest the need for taxonomic studies to consider variation as a quantitative attribute of individual trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号