共查询到20条相似文献,搜索用时 15 毫秒
1.
Computational Consequences of Temporally Asymmetric Learning Rules: I. Differential Hebbian Learning
Roberts PD 《Journal of computational neuroscience》1999,7(3):235-246
Temporally asymetric learning rules governing plastic changes in synaptic efficacy have recently been identified in physiological studies. In these rules, the exact timing of pre- and postsynaptic spikes is critical to the induced change of synaptic efficacy. The temporal learning rules treated in this article are approximately antisymmetric; the synaptic efficacy is enhanced if the postsynaptic spike follows the presynaptic spike by a few milliseconds, but the efficacy is depressed if the postsynaptic spike precedes the presynaptic spike. The learning dynamics of this rule are studied using a stochastic model neuron receiving a set of serially delayed inputs. The average change of synaptic efficacy due to the temporally antisymmetric learning rule is shown to yield differential Hebbian learning. These results are demonstrated with both mathematical analyses and computer simulations, and connections with theories of classical conditioning are discussed. 相似文献
2.
Numerous studies over the past decade have established a role(s) for protein phosphorylation in modulation of synaptic efficiency. This article reviews this data and focuses on putative functions of Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) which is highly concentrated at these synapses which utilize glutamate as the neurotransmitter. Evidence is presented that CaM-kinase II can phosphorylate these glutamate receptor/ion channels and enhance the ion current flowing through them. This may contribute to mechanisms of synaptic plasticity that are important in cellular paradigms of learning and memory such as long-term potentiation in the hippocampus. 相似文献
3.
4.
Alexander Kozlov Jeanette Hellgren Kotaleski Erik Aurell Sten Grillner Anders Lansner 《Journal of computational neuroscience》2001,11(2):183-200
Consequences of synaptic plasticity in the lamprey spinal CPG are analyzed by means of simulations. This is motivated by the effects substance P (a tachykinin) and serotonin (5-hydroxytryptamin; 5-HT) have on synaptic transmission in the locomotor network. Activity-dependent synaptic depression and potentiation have recently been shown experimentally using paired intracellular recordings. Although normally activity-dependent plasticity presumably does not contribute to the patterning of network activity, this changes in the presence of the neuromodulators substance P and 5-HT, which evoke significant plasticity. Substance P can induce a faster and larger depression of inhibitory connections but potentiation of excitatory inputs, whereas 5-HT induces facilitation of both inhibitory and excitatory inputs. Changes in the amplitude of the first postsynaptic potential are also seen. These changes could thus be a potential mechanism underlying the modulatory role these substances have on the rhythmic network activity.The aim of the present study has been to implement the activity dependent synaptic depression and facilitation induced by substance P and 5-HT into two alternative models of the lamprey spinal locomotor network, one relying on reciprocal inhibition for bursting and one in which each hemicord is capable of oscillations. The consequences of the plasticity of inhibitory and excitatory connections are then explored on the network level.In the intact spinal cord, tachykinins and 5-HT, which can be endogenously released, increase and decrease the frequency of the alternating left-right burst pattern, respectively. The frequency decreasing effect of 5-HT has previously been explained based on its conductance decreasing effect on KCa underlying the postspike afterhyperpolarization (AHP). The present simulations show that short-term synaptic plasticity may have strong effects on frequency regulation in the lamprey spinal CPG. In the network model relying on reciprocal inhibition, the observed effects substance P and 5-HT have on network behavior (i.e., a frequency increase and decrease respectively) can to a substantial part be explained by their effects on the total extent and time dynamics of synaptic depression and facilitation. The cellular effects of these substances will in the 5-HT case further contribute to its network effect. 相似文献
5.
6.
S. Amagai 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1998,182(2):131-143
The anterior and posterior exterolateral nuclei (ELa and ELp) of the mormyrid midbrain are thought to play a critical role in the temporal analysis of the electric discharge waveforms of other individuals. The peripheral electroreceptors receiving electric organ discharges (EODs) of other fish project through the brainstem to ELa via a rapid conducting pathway. EODs, composed of brief, but stereotyped waveforms are encoded as a temporal pattern of spikes. From previous work, we know that phase locking is precise in ELa. Here it is shown that evoked potentials recorded from ELp show a similar high degree of phase locking, although the evoked potentials last much longer. Single-unit recordings in ELp reveal two distinct populations of neurons in ELp: type I cells are responsive to voltage step functions, and not tuned for stimulus duration; type II cells are tuned to a specific range of stimulus durations. Type II cells are less responsive than type I cells, tend to respond with bursts of action potentials rather than with single spikes, have a longer latency, show weaker time locking to stimuli, and are more sensitive to stimulus polarity and amplitude. The stimulus selectivity of type II cells may arise from convergence of type I cell inputs. Despite the loss of rapid conduction between ELa and ELp, analysis of temporal features of waveforms evidently continues in ELp, perhaps through a system of labeled lines. Accepted: 25 June 1997 相似文献
7.
The 1992 survey of zooplankton structure in fourteen London supply reservoirs showed the overall dominance of large-bodied
zooplankton, mainly species of Daphnia. These reservoirs can be considered as ‘anti-fish’ by virtue of their steeply sloping concrete or brick sides. The average
biomass of large Daphnia spp (retained on a 710 μm sieve) in the total zooplankton biomass was higher than 20% for twelve out of fourteen reservoirs.
The cladoceran-copepod ratio was inversely correlated with both dominance of large-bodied Daphnia magna and cladoceran body-size structure. Parallelly, there were tendency of more efficient utilization of lowered algal crops
in reservoirs dominated by large-bodied Daphnia spp.
A graphical model is presented which relates daphnid species composition and zooplankton size structure to a presumed gradient
of fish biomass in these reservoirs. 相似文献
8.
9.
B. A. Djebar J. -P. Denizot 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1995,165(5):336-340
The effect of deafferentation on glycogen metabolism was studied in the sensory cells of mormyrid Knollenorgan electroreceptors. Glycogen was visualized in the sensory cells after fixation in a solution containing potassium ferricyanide and osmium tetroxide. The density variations of glycogen were evaluated by a morphometric method. Sectioning of the afferent nerve results in a cessation of the spontaneous receptor cells activity after 48 h and the glycogen content of these cells increases three fold in the first 5 days after nerve transection. From day 5 on, the glycogen concentration diminishes progressively until day 13. After the sensory cells had become completely deformed, the quantification of glycogen particles was no longer possible and the degeneration of the sensory cells was complete within 20 days after nerve section. These results show that (1) the afferent nerve fibre is indispensable for the anatomo-functional maintenance of the sensory cells and (2) the nerve has only an indirect influence on glycogen variations within the sensory cells. 相似文献
10.
Because the Hermissenda eye is relatively simple and its cells well characterized, it provides an attractive preparation for detailed computational analysis. To examine the neural mechanisms of learning in this system, we developed multicompartmental models of the type-A and type-B photoreceptors, simulated the eye, and asked three questions: First, how do conductance changes affect cells in a network as compared with those in isolation; second, what are the relative contributions of increases in B-cell excitability and synaptic strength to network output; and third, how do these contributions vary as a function of network architecture? We found that reductions in the type-B cells of two K+ currents, I A and I C, differentially affected the type-B cells themselves, with I C reductions increasing firing rate (excitability) in response to light, and I A reductions increasing quantal output (synaptic strength) onto postsynaptic targets. Increases in either type-B cell excitability or synaptic strength, induced directly or indirectly, each suppressed A-cell photoresponses, and the combined effect of both changes occurring together was greater than either alone. To examine the effects of network architecture, we compared the full network with a simple feedforward B-A pair and intermediate configurations. Compared with a feedforward pair, the complete network exhibited greater A-cell sensitivity to B-cell changes. This was due to many factors, including an increased number of B-cells (which increased B-cell impact on A-cells), A-B feedback inhibition (which slowed both cell types and altered spike timing relationships), and B-B lateral inhibition (which reduced B-cell sensitivity to intrinsic biophysical modifications). These results suggest that an emergent property of the network is an increase both in the rate of information acquisition (“learning”) and in the amount of information that can be stored (“memory”). 相似文献
11.
C. R. Franchina P. K. Stoddard 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1998,183(6):759-768
The electric organ discharge of the gymnotiform fish Brachyhypopomus pinnicaudatus is a biphasic waveform. The female's electric organ discharge is nearly symmetric but males produce a longer second phase
than first phase. In this study, infrared-sensitive video cameras monitored the position of unrestrained fish, facilitating
precise measurement of electric organ discharge duration and amplitude every 2 h for 24 h. Males (n=27) increased electric organ discharge duration by 37 ± 12% and amplitude by 24 ± 9% at night and decreased it during the
day. In contrast, females (n=8) exhibited only minor electric organ discharge variation over time. Most of a male's increase occurred rapidly within the
first 2–3 h of darkness. Electric organ discharge values gradually diminished during the second half of the dark period and
into the next morning. Modulation of the second phase of the biphasic electric organ discharge produced most of the duration
change in males, but both phases changed amplitude by similar amounts. Turning the lights off at mid-day triggered an immediate
increase in electric organ discharge, suggesting modification of existing ion channels in the electric organ, rather than
altered genomic expression. Exaggeration of electric organ discharge sex differences implies a social function. Daily reduction
of duration and amplitude may reduce predation risk or energy expenditure.
Accepted: 12 September 1998 相似文献
12.
Cataldo E Brunelli M Byrne JH Av-Ron E Cai Y Baxter DA 《Journal of computational neuroscience》2005,18(1):5-24
Bursts of spikes in T cells produce an AHP, which results from activation of a Na+/K+ pump and a Ca2+-dependent K+ current. Activity-dependent increases in the AHP are believed to induce conduction block of spikes in several regions of the neuron, which in turn, may decrease presynaptic invasion of spikes and thereby decrease transmitter release. To explore this possibility, we used the neurosimulator SNNAP to develop a multi-compartmental model of the T cell. The model incorporated empirical data that describe the geometry of the cell and activity-dependent changes of the AHP. Simulations indicated that at some branching points, activity-dependent increases of the AHP reduced the number of spikes transmitted from the minor receptive fields to the soma and beyond. More importantly, simulations also suggest that the AHP could modulate, under some circumstances, transmission from the soma to the synaptic terminals, suggesting that the AHP can regulate spike conduction within the presynaptic arborizations of the cell and could in principle contribute to the synaptic depression that is correlated with increases in the AHP. 相似文献
13.
B. Rasnow J. M. Bower 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1996,178(3):383-396
We present high temporal and spatial resolution maps in 3-dimensions of the electric field vector generated by the weakly electric fish, Apteronotus leptorhynchus. The waveforms and harmonic composition of the electric organ discharge (EOD) are variable around the fish but highly stable over long times at any position. We examine the role of harmonics on the temporal and spatial characteristics of the EOD, such as the slew rate and rostral-to-caudal propagation. We also explore the radial symmetry of the fish's field. There are major differences in the direction of the electric field vector at the head and caudal body. In the caudal part of the fish, the electric field vector rotates during the EOD cycle. However, rostral of the pectoral fin, the field magnitude and sign oscillate while maintaining relatively constant orientation. We discuss possible functional ramifications of these electric field patterns to electrolocation, communication, and electrogenesis.Abbreviations EOD electric organ discharge - EO electric organ - RMS root mean square - ADC analog-to-digital converter 相似文献
14.
Understanding how electrosensory images are generated and perceived in actively electrolocating fish requires the study of the characteristics of fish bodies as electric sources. This paper presents a model ofGymnotus carapo based on measurements of the electromotive force generated by the electric organ and the impedance of the passive tissues. A good agreement between simulated and experimentally recorded transcutaneous currents was obtained. Passive structures participate in the transformation of the electromotive force pattern into transcutaneous current profiles. These spatial filtering properties of the fish's body were investigated using the model. The shape of the transcutaneous current profiles depends on tissue resistance and on the geometry and size of the fish. Skin impedance was mainly resistive. The effect of skin resistance on the spatial filtering properties of the fish's body was theoretically analyzed.The model results show that generators in the abdominal and central regions produce most of the currents through the head. This suggests that the electric organ discharge (EOD), generated in the abdominal and central regions is critical for active electrolocation. In addition, the well-synchronized EOD components generated all along the fish produce large potentials in the far field. These components are probably involved in long-distance electrocommunication.Preliminary results of this work were published as a symposium abstract. 相似文献
15.
We developed a multicompartmental Hodgkin-Huxley model of the Hermissenda type-B photoreceptor and used it to address the relative contributions of reductions of two K+ currents, I
a and I
C, to changes in cellular excitability and synaptic strength that occur in these cells after associative learning. We found that reductions of gC, the peak conductance of I
C, substantially increased the firing frequency of the type-B cell during the plateau phase of a simulated light response, whereas reductions of gA had only a modest contribution to the plateau frequency. This can be understood at least in part by the contributions of these currents to the light-induced (nonspiking) generator potential, the plateau of which was enhanced by gC reductions, but not by gA reductions. In contrast, however, reductions of gA broadened the type-B cell action potential, increased Ca2+ influx, and increased the size of the postsynaptic potential produced in a type-A cell, whereas similar reductions of gC had only negligible contributions to these measures. These results suggest that reductions of I
A and I
C play important but different roles in type-B cell plasticity. 相似文献
16.
17.
B. A. Djebar J. -P. Denizot 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1995,165(5):329-335
The metabolism of glycogen was studied in sensory cells of the mormyrid fish, Gnathonemus petersii. Knollenorgans, specific cutaneous electroreceptor organs of the lateral line system, have a spontancous electrical activity and their resting discharge in the absence of stimulation is about 0.04 kHz. Various types of stimulation can produce an increase in frequency; the highest frequency (1.30 kHz) is obtained by moving the Knollenorgan above water level. Glycogen was visualized in ultrathin sections after fixation in a solution of potassium ferricyanide and osmium tetroxide. The density of glycogen particles was determined morphometrically in sensory cells before stimulation, after high-frequency activity, and after reimmersion in water. An increase in the electrical activity of the Knollenorgan resulted in a decrease of the glycogen content of sensory cells. The glycogen store was replenished to about 85% of control within 40 min after stimulation and subsequent reimmersion. The results demonstrate that glycogen in the sensory cells of the Knollenorgan represents an energy source which can be catabolized during high electrical activity and replenished during rest. 相似文献
18.
《Journal of molecular biology》2023,435(2):167895
Micrograph comparison remains useful in bioscience. This technology provides researchers with a quick snapshot of experimental conditions. But sometimes a two- condition comparison relies on researchers’ eyes to draw conclusions. Our Bioimage Analysis, Statistic, and Comparison (BASIN) software provides an objective and reproducible comparison leveraging inferential statistics to bridge image data with other modalities. Users have access to machine learning-based object segmentation. BASIN provides several data points such as images’ object counts, intensities, and areas. Hypothesis testing may also be performed. To improve BASIN’s accessibility, we implemented it using R Shiny and provided both an online and offline version. We used BASIN to process 498 image pairs involving five bioscience topics. Our framework supported either direct claims or extrapolations 57% of the time. Analysis results were manually curated to determine BASIN’s accuracy which was shown to be 78%. Additionally, each BASIN version’s initial release shows an average 82% FAIR compliance score. 相似文献
19.
The molecular order of brain and liver membranes isolated from deep sea and continental shelf fish species have been estimated and compared using the fluorescence polarization technique in order to determine whether life in a high pressure habitat is associated with an adjustment of membrane order. Fish were trawled at depths between 200 m and 4000 m, liver and brain membranes were fractionated, and fluorescence polarization was measured at 4°C and ambient pressure. Polarization of the brain myelin fraction provided a statistically significant regression with depth of capture () with a slope of ?0.004 km?1. This change in polarization with depth was sufficient to offset approximately half of the pressure-induced increase in polarization and thus represents the first structural evidence of homeoviscous adaptation to pressure. Polarization of the brain synaptic and liver mitochondrial fraction was not significantly related to depth. This may be due, at least in part, to a high individual variability of polarization compared to laboratory-acclimated freshwater fish. 相似文献
20.
Kenneth Wilson 《Journal of evolutionary biology》1994,7(3):365-386
Wilson and Lessells (1993) analysed the effect of constraint assumptions on the predictions of static optimality models for insect clutch size. They concluded that the models could be reliably distinguished between (and hence the main constraints identified) only after precise quantitative predictions had been examined. The present paper describes a series of laboratory experiments, using the bruchid beetle Callosobruchus maculatus, that allow these quantitative predictions to be made and tested. Experiments in which female encounter rate with hosts was altered gave qualitative support for 3 out of 6 basic (single oviposition) models, but the quantitative fit of them all was poor. However, when the (a priori) condition was included in these models that several other females would oviposit on the same hosts (the multiple oviposition models), the time limiting multiple oviposition model alone produced quantitative predictions that were supported by observations. In other words, the results suggest that the main constraints on bruchid oviposition behaviour are the amount of time available for laying eggs and the number of other females ovipositing. However, additional qualitative predictions indicate that the number of eggs available to the female may also constrain clutch size evolutionarily. The usefulness of static optimality models for examining clutch size decisions in insects is discussed in the context of these results. 相似文献