首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In different marine red algae (Chondrus crispus, Delesseria sanguinea, Membranoptera alata, Phycodrys rubens, Phyllophora truncata, Polyneura hilliae) photoinhibition of photosynthesis has been investigated by means of both fluorescence and oxygen measurements. Measurements of absolute oxygen production show that photoinhibition causes a decline in the initial slope and in the rate of bending of the fluence rate-response curve (i.e. the photosynthetic efficiency at non-saturating fluence rates), as well as a decline in the photosynthetic capacity (Pm) at saturating fluence rates. Fluorescence data (Fv/Fm) were consistent with the results of oxygen measurements. Under excessive light photoinhibition protects photosynthesis against photo-damage in red algae. However, an increase in the initial fluorescence (Fo) after photoinhibitory treatment indicates that it could not prevent photodamage entirely. Action spectra of photoinhibition demonstrate that the main photoinhibition site in Polyneura hiliae is PS II, because far red light absorbed by PS I was ineffective. The strong increase of Fo in the blue wavelength range and the slight and partial recovery in weak blue light indicate that blue light especially causes photodamage. Recovery of photosynthesis requires dim white light conditions. Experiments with monochromatic light also show a wavelength dependence of recovery. Moreover, the recovery of photosynthesis after a photoinhibitory treatment is strongly temperature dependent, indicating participation of enzymatic processes. The comparison of fluorescence and oxygen measurement of the recovery shows different results in some species. The rate of oxygen production in red control light increased immediately after photoinhibited algae were exposed to weak light conditions. Surprisingly, the ratio of variable to maximum fluorescence (Fv/Fm) of Phyllophora truncata and the maximum fluorescence (Fm) of Polyneura hilliae show first a delay of the recovery under weak light conditions. Thus, in recovery experiments fluorescence and oxygen data are not quite consistent.  相似文献   

2.
The effect of exposing intact leaves and isolated chloroplast membranes of Nerium oleander L. to excessive light levels under otherwise favorable conditions was followed by measuring photosynthetic CO2 uptake, electron transport and low-temperature (77K=-196°C) fluorescence kinetics. Photoinhibition, as manifested by a reduced rate and photon (quantum) yield of photosynthesis and a reduced electron transport rate, was accompanied by marked changes in fluorescence characteristics of the exposed upper leaf surface while there was little effect on the shaded lower surface. The most prominent effect of photoinhibitory treatment of leaves and chloroplasts was a strong quenching of the variable fluorescence emission at 692 nm (Fv,692) while the instantaneous fluorescence (Fo,692) was slightly increased. The maximum and the variable fluorescence at 734 nm were also reduced but not as much as FM,692 and Fv,692. The results support the view that photoinhibition involves an inactivation of the primary photochemistry of photosystem II by damaging the reaction-center complex. In intact leaves photoinhibition increased with increased light level, increased exposure time, and with decreased temperature. Increased CO2 pressure or decreased O2 pressure provided no protection against photoinhibition. With isolated chloroplasts, inhibition of photosystem II occurred even under essentially anaerobic conditions. Measurements of fluorescence characteristics at 77K provides a simple, rapid, sensitive and reproducible method for assessing photoinhibitory injury to leaves. The method should prove especially useful in studies of the occurrence of photoinhibition in nature and of interactive effects between high light levels and major environmental stress factors.Abbreviations and symbols PFD photon flux area density - PSI, PSII photosystem I, II - FM, FO, FV maximum, instantaneous, variable fluorescence emission C.I.W.-D.P.B. Publication No. 773  相似文献   

3.
P. Horton  P. Lee 《Planta》1985,165(1):37-42
Thylakoids isolated from peas (Pisum sativum cv. Kelvedon Wonder) and phosphorylated by incubation with ATP have been compared with non-phosphorylated thylakoids in their sensitivity to photoinhibition by exposure to illumination in vitro. Assays of the kinetics of fluorescence induction at 20° C and the fluorescence emission spectra at-196° C indicate a proportionally larger decrease in fluorescence as a result of photoinhibitory treatment of non-phosphorylated compared with phosphorylated thylakoids. It is concluded that protein phosphorylation can afford partial protection to thylakoids exposed to photoinhibitory conditions.Abbreviations and symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F 0 Level of chlorophyll fluorescence when photosystem 2 traps are open - F m Level of chlorphyll fluorescence when photosystem 2 traps are closed - P Maximum level of fluorescence reached in the absence of DCMU - PSI (II) photosystem I(II)  相似文献   

4.
The fluence rate dependence of the photobleaching in the cyanobacterium Anabaena variabilis was studied under physiological conditions. According to the in-vivo absorption spectra measured every day during the 5 d exposition the phycobiliproteins are more sensitive to high fluence rates than chlorophyll a. The carotenoids are least sensitive, so that a relative, but not an absolute increase in the carotenoid content occurred. At very high fluence rates exceeding about 50 Wm-2 white light the organisms were photokilled after 5 d of irradiation. Measurements of the nitrate concentrations during the experiments have shown that nitrate was not the limiting factor in these experiments. Analysis of the photobleaching kinetics at 13.5 Wm-2 white light revealed that after about 8 d the contents of all the pigments studied have reached a new, constant level. After exposure of the photobleached cyanobacteria to low irradiances repigmentation occurred. Thus, photobleaching is a light adaptation process and not simply a photodamage phenomenon. Studying the wavelength dependence of photobleaching at a constant photon fluence rate of 4·10-8 mol cm-2 s-1 we found that the photobleaching of both phycobiliproteins and chlorophyll a was exclusively caused by wavelengths absorbed by the phycobiliproteins, mainly phycoerythrocaynin, and red light absorbed by short wavelength chlorophyll. Wavelengths <520 nm were ineffective.  相似文献   

5.
The F 0 and F M level fluorescence from a wild-type barley, a Chl b-less mutant barley, and a maize leaf was determined from 430 to 685 nm at 10 nm intervals using pulse amplitude-modulated (PAM) fluorimetry. Variable wavelengths of the pulsed excitation light were achieved by passing the broadband emission of a Xe flash lamp through a birefringent tunable optical filter. For the three leaf types, spectra of F V/F M (=(F M − F 0)/F M) have been derived: within each of the three spectra of F V/F M, statistically meaningful variations were detected. Also, at distinct wavelength regions, the F V/F M differed significantly between leaf types. From spectra of F V/F M, excitation spectra of PS I and PS II fluorescence were calculated using a model that considers PS I fluorescence to be constant but variable PS II fluorescence. The photosystem spectra suggest that LHC II absorption results in high values of F V/F M between 470 and 490 nm in the two wild-type leaves but the absence of LHC II in the Chl b-less mutant barley leaf decreases the F V/F M at these wavelengths. All three leaves exhibited low values of F V/F M around 520 nm which was tentatively ascribed to light absorption by PS I-associated carotenoids. In the 550–650 nm region, the F V/F M in the maize leaf was lower than in the barley wild-type leaf which is explained with higher light absorption by PS I in maize, which is a NADP-ME C4 species, than in barley, a C3 species. Finally, low values of F V/F M at 685 in maize leaf and in the Chl b-less mutant barley leaf are in agreement with preferential PS I absorption at this wavelength. The potential use of spectra of the F V/F M ratio to derive information on spectral absorption properties of PS I and PS II is discussed.  相似文献   

6.
A method is described for the isolation and purification of active oxygen-evolving photosystem II (PS II) membranes from the green alga Chlamydomonas reinhardtii. The isolation procedure is a modification of methods evolved for spinach (Berthold et al. 1981). The purity and integrity of the PS II preparations have been assesssed on the bases of the polypeptide pattern in SDS-PAGE, the rate of oxygen evolution, the EPR multiline signal of the S2 state, the room temperature chlorophyll a fluorescence yield, the 77 K emission spectra, and the P700 EPR signal at 300 K. These data show that the PS II characteristics are increased by a factor of two in PS II preparations as compared to thylakoid samples, and the PS I concentration is reduced by approximately a factor ten compared to that in thylakoids.Abbreviations BSA bovine serum albumin - Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,5-dimethyl-p-benzoquinone - EDTA ethylenediamine tetraacetic acid - EPR electron paramagnetic resonance - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2-[N-Morpholino]ethanesulfonic acid - OEE oxygen evolving enhancer - PS II photosystem II - SDS-PAGE sodium dedocyl sulfate polyacrylamide gel electrophoresis  相似文献   

7.
Photoinhibitory processes in the photosynthetic apparatus of the seedlings of Abies alba (Mill.), Picea abies (Karst.), and Pinus mugo (Turra) growing under strong shade (5 % of full solar irradiance) or full irradiance conditions were investigated in winter and spring using chlorophyll a fluorescence techniques. The extent of photoinhibition in needles as indicated by a decrease in maximum quantum yield of PS II photochemistry (Fv/Fm) depended on species, air temperature and acclimation to the light environment. Unexpectedly, shade-tolerant Abies alba was less affected by low-temperature photoinhibition compared to the other species. Fv/Fm recovered with increasing air temperature. During winter, the seedlings of Picea abies growing in shade showed higher Fv/Fm than those from full light. Non-photochemical quenching of fluorescence (NPQ) measured at the same levels of actinic light was higher in needles acclimated to full light except for Abies alba in February. Photosynthetic performance in term of ETR (apparent electron transfer rate) was also higher in full light-acclimated needles. In April, at ambient temperature, recovery of PS II efficiency from the stress induced by illumination with saturating light was faster in the needles of Picea abies than in those of Abies alba. The shade-acclimated needles of Abies alba and Picea abies showed greater down-regulation of PS II induced by high light stress.  相似文献   

8.
The energy distribution, state transitions and photosynthetic electron flow during photoinhibition of Chlamydomonas reinhardtii cells have been studied in vivo using photoacoustics and modulated fluorescence techniques. In cells exposed to 2500 W/m2 light at 21 °C for 90 min, 90% of the oxygen evolution activity was lost while photochemical energy storage as expressed by the parameter photochemical loss (P.L.) at 710–720 nm was not impaired. The energy storage vs. modulation frequency profile indicated an endothermic step with a rate constant of 2.1 ms. The extent of the P.L. was not affected by DCMU but was greatly reduced by DBMIB. The regulatory mechanism of the state 1 to state 2 transition process was inactivated and the apparent light absorption cross section of photosystem II increased during the first 20 min of photoinhibition followed by a significant decrease relative to that of photosystem I. These results are consistent with the inactivation of the LHC II kinase and the presence of an active cyclic electron flow around photosystem I in photoinhibited cells.Abbreviations PS I, PS II Photosystem I and Photosystem II respectively - P.L. photochemical loss - DCMU 3-(3,4-dichlorophenyl-1,1-dimethyl urea - LHC II light harvesting chlorophyll a,b-protein complex of PS II - DBMIB 2,5 dibromo-3-methyl-6-isopropyl-p-benzoquinone  相似文献   

9.
Functional organization of the photosynthetic apparatus in the unique chlorophyll d-predominating prokaryote, Acaryochloris marina, was studied using polarographic measurements of single-turnover flash yields, action spectra and optical cross sections for PS-specific reactions. O2 evolution was indicative of PS II activity, while reversible photoinhibition of respiratory O2 uptake under aerobic conditions in the presence of DCMU and H2 photoevolution by anaerobically adapted cells were the indicatives of PS I activity. O2 evolution in the cells upon single-turnover flashes followed the normal S-state cycle with a period-4 oscillation. Analysis of action spectra for the partial reactions of photosynthesis revealed that: (1) distinct spectral forms of Chl d are nonuniformly distributed between PS I and PS II, e.g. Chl d-695 and Chl d-735 are preferentially located in PS II and PS I, respectively; (2) a minor fraction of Chl a in the cells belongs mostly to PS II; (3) biliproteins transfer excitation energy both to PS II and, with a lower efficiency, PS I; (4) the efficiency of energy transfer from biliproteins to PS II depends on the light quality growth conditions and is larger in white light (WL)-grown cells compared to the red light (RL)-grown cells. Content of functional O2 evolving PS II centers decreases 2 times in the RL-grown cells relative to the WL-grown cells, whereas content of competent PS I centers involved in photoinhibition of respiration remains almost the same in both the cultures. The effective antenna size of PS I was estimated to be 80–90 Chl d including 3–10 molecules absorbing at 735 nm. The effective optical cross-section of PS II corresponded to 90–100 Chl d and, presumably, 4 Chl a + 2 Pheo a [Mimuro et al. (1999) Biochim Biophys Acta 1412: 37–46]. Optical cross-section measurements indicated that the functional PS II units of A. marina attach one rod of four hexameric units of biliproteins. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Zhang  Shouren  Gao  Rongfu 《Photosynthetica》2000,37(4):559-571
Diurnal changes in net photosynthetic rate (P N), chlorophyll (Chl) fluorescence, and stomatal aperture of several hybrid poplar clones subjected to midday light stress were measured in July and August of 1996. Midday depression of P N, photosystem 2 (PS2) efficiency, stomatal conductance (g s), and stomatal aperture was observed in all clones, though at differing rates among them. Non-uniform stomatal closure occurred at noon and at other times, requiring a modification of intercellular CO2 concentration (C 1). A linear relationship was found between g s and stomatal aperture. More than half of the photons absorbed by PS2 centre dissipated thermally when subjected to light stress at noon. There was a linear relationship between the rate of PS2 photochemical electron transport (PxPFD) and P N. There was a consensus for two fluorescence indicators (1 – qP/qN and (Fm' – F)/Fm') in assessment of susceptibility of photoinhibition in the clones. According to P N, Chl fluorescence, and stomatal aperture, we conclude that midday depression of photosynthesis can be attributed to both stomatal and non-stomatal limitations.  相似文献   

11.
Effects of photoinhibition on photosynthesis in pea (Pisum sativum L.) leaves were investigated by studying the relationship between the severity of a photoinhibitory treatment (measured as Fv/Fm) and several photoacoustic and chlorophyll a fluorescence parameters. Because of the observed linear relationship between the decline of Fv/Fm and the potential oxygen evolution rate determined by the photoacoustic method, the parameter Fv/Fm was used as an indicator for the severity of photoinhibition. Our analysis revealed that part of the Photosystem II (PS II) reaction centers is inactive in oxygen evolution and is also less sensitive to photoinhibition. Correcting the parameter qP (fraction of open PS II reaction centers) for inactive PS II centers unveiled a strong increase of qP in severely inhibited pea leaves, indicating that the inactivated active centers do no longer contribute to qP and that photoinhibition has an all or none effect on PS II centers. Analysis of qE (energy quenching) demonstrated its initial increase possibly associated with dephosphorylation of LHC II. Analysis of qI (photoinhibition dependent quenching) showed that the half-time of recovery of qI increases steeply below an Fv/Fm of 0.65. This increase of the relaxation half-time corresponds with a decrease of the electron transport rate J and tentatively indicates that the supply of ATP, needed for the recovery, starts to decrease. The data indicate the necessity of correcting for inactive centers in order to make valuable conclusions about effects of photoinhibition on photosynthetic parameters.  相似文献   

12.
When the shrub Nerium oleander L., growing under full natural daylight outdoors, was subjected to water stress, stomatal conductance declined, and so did non-stomatal components of photosynthesis, including the CO2-saturated rate of CO2 uptake by intact leaves and the activity of electron transport by chloroplasts isolated from stressed plants. This inactivation of photosynthetic activity was accompanied by changes in the fluorescence characteristics determined at 77 K (-196°C) for the upper leaf surface and from isolated chloroplasts. The maximum (F M) and the variable (F V) fluorescence yield at 692 nm were strongly quenched but there was little effect on the instantaneous (F O) fluorescence. There was a concomitant quenching of the maximum and variable fluorescence at 734 nm. These results indicate an inactivation of the primary photochemistry associated with photosystem II. The lower, naturally shaded surfaces of the same leaves were much less affected than the upper surfaces and water-stress treatment of plants kept in deep shade had little or no effect on the fluorescence characteristics of either surface, or of chloroplasts isolated from the water-stressed leaves. The effects of subjecting N. oleander plants, growing in full daylight, to water stress are indistinguishable from those resulting when plants, grown under a lower light regime, are exposed to full daylight (photoinhibition). Both kinds of stress evidently cause an inactivation of the primary photochemistry associated with photosystem II. The results indicate that water stress predisposes the leaves to photoinhibition. Recovery from this inhibition, following restoration of favorable water relations, is very slow, indicating that photoinhibition is an important component of the damage to the photosynthetic system that takes place when plants are exposed to water stress in the field. The underlying causes of this water-stress-induced susceptibility to photoinhibition are unknown; stomatal closure or elevated leaf temperature cannot explain the increased susceptibility.Abbreviations and symbols Chl chlorophyll - PFD photon flux area density - PSI, PSII photosystem I, II - F M, F O, F V maximum, instantaneous, variable fluorescence emission - leaf water potential C.I.W.-D.P.B. Publication No. 775  相似文献   

13.
The photoinhibition of photosynthesis at chilling temperatures was investigated in cold-acclimated and unhardened (acclimated to +18° C) spinach (Spinacia oleracea L.) leaves. In unhardened leaves, reversible photoinhibition caused by exposure to moderate light at +4° C was based on reduced activity of photosystem (PS) II. This is shown by determination of quantum yield and capacity of electron transport in thylakoids isolated subsequent to photoinhibition and recovery treatments. The activity of PSII declined to approximately the same extent as the quantum yield of photosynthesis of photoinhibited leaves whereas PSI activity was only marginally affected. Leaves from plants acclimated to cold either in the field or in a growth chamber (+1° C), were considerably less susceptible to the light treatment. Only relatively high light levels led to photoinhibition, characterized by quenching of variable chlorophyll a fluorescence (FV) and slight inhibition of PSII-driven electron transport. Fluorescence data obtained at 77 K indicated that the photoinhibition of cold-acclimated leaves (like that of the unhardened ones) was related to increased thermal energy dissipation. But in contrast to the unhardened leaves, 77 K fluorescence of cold-acclimated leaves did not reveal a relative increase of PSI excitation. High-light-treated, cold-acclimated leaves showed increased rates of dark respiration and a higher light compensation point. The photoinhibitory fluorescence quenching was fully reversible in low light levels both at +18° C and +4° C; the recovery was much faster than in unhardened leaves. Reversible photoinhibition is discussed as a protective mechanism against excess light based on transformation of PSII reaction centers to fluorescence quenchers.Abbreviations FO initial fluorescence - FM maximal fluorescence - FV devariable fluorescence (fm-fo) - PFD photon flux density - PS photosystem - SD standard deviation The authors thank the Deutsche Forschungsgemeinschaft and the Academy of Finland for financial support.  相似文献   

14.
Intact Lemna gibba plants were photoinhibited under anaerobic conditions on illumination with monochromatic light which selectively excited the photosystems. Photoinhibition was less when PS 1 was excited and greatest when mainly PS 2 was excited, which suggests that PS 2 was most damaged by photoinhibition induced in complete absence of O2 and CO2.The illumination of plants with monochromatic light exciting PS 1, at different O2 concentrations (in CO2 deficient conditions), showed that PS 1 photoinhibition was increased at the low O2 concentrations. The damage to PS 1 was more evident at 2% O2 than at the higher O2 concentrations.CO2 as well as O2 at atmospheric concentration, (air), was necessary for complete protection of the plant from photoinhibition when both photosystems were excited either separately or together.Abbreviations I irradiance, photon fluence rate - PCO photosynthetic carbon oxidation cycle - PCR photosynthetic carbon reduction cycle - PS 1 photosystem 1 - PS 2 photosystem 2  相似文献   

15.
Two characteristic temperatures were identified from measurements of the temperature dependence of O2 evolution by Chlorella vulgaris and Anacystis nidulans: T1, the threshold temperature for inhibition of O2 evolution under saturating light conditions, and T2, the upper temperature limit for O2 evolution. Measurement of delayed light emission from photosystem II (PSII) showed that it passed through a maximum at T1 and was virtually eliminated on heating the samples to T2. Related changes were observed in low-temperature (77K) fluoresence emission spectra. Heat-stress had little effect on the absorption properties of the cells at temperatures below T1 but incubation at higher temperatures, particularly under high-light conditions, resulted in extensive absorption losses. An analysis of these measurements suggests that this increased susceptibility to photobleaching is triggered by an inhibition of the flow of reducing equivalents from PSII that normally serves to protect the light-harvesting apparatus of the cells from photo-oxidation. Adaptation to higher growth temperatures resulted in increases in the values of T1 and T2 for Anacystis nidulans but not for Chlorella vulgaris.Abbreviations PSI photosystem I - PSII photosystem II - Chl a chlorophyll a - Chl b chlorophyll b - DCMU 3-(3 4 dichlorophenyl)-11-dimethylurea - PC plastocyanin - APC allophycocyanin CIW-DPB Publication No. 887.  相似文献   

16.
S. B. Powles  S. W. Thorne 《Planta》1981,152(5):471-477
Photoinhibition studies, using gas-exchange techniques, were conducted with leaflets of Phaseolus vulgaris L. plants that were grown under low photonfluence rates. Comparative measurements were made on attached, intact leaflets and in subsequently isolated chloroplasts. Photoinhibition studies were also conducted with attached fronds of the deep-shade fern Lastreopsis microsora (Endl.) Tindale. Leaflets of lowlight-grown Phaseolus vulgaris and fronds of the shade fern were found to be subject to similar photoinhibition when exposed to photon-fluence rates in excess of those at which they were grown. Photoinhibition following exposure to a photon fluence-rate approximating full sunlight is manifested as a reduction in the capacity for both light-saturated and light-limited carbon uptake and is reflected at the chloroplast level as substantial inhibition of electron flow through photosystem (PS) II, with little effect on PS I. The extent of photoinhibition is markedly dependent on the length of exposure to a high-light regime and on the actual photon-fluence rate maintained during treatment. A greater degree of photoinhibition is evident if carbon metabolism is prevented by the removal of CO2 than when maximum rates of CO2 uptake prevail throughout the exposure to a high photonfluence rate. Apparently a certain level of CO2 turnover is beneficial in providing a sink for photochemically generated energy. When leaf material is exposed to photon-fluence rates well in excess of the rate present during growth apparently the potentials of the various biophysical and photochemical means of dissipating excitation energy are exceeded and photoinhibition of photosynthesis results.Abbreviation PFR photon fluence rate  相似文献   

17.
Photoinhibition was analyzed in O2-evolving and in Tris-treated PS II membrane fragments by measuring flash-induced absorption changes at 830 nm reflecting the transient P680+ formation and oxygen evolution. Irradiation by visible light affects the PS II electron transfer at two different sites: a) photoinhibition of site I eliminates the capability to perform a stable charge separation between P680+ and QA - within the reaction center (RC) and b) photoinhibition of site II blocks the electron transfer from YZ to P680+. The quantum yield of site I photoinhibition (2–3×10-7 inhibited RC/quantum) is independent of the functional integrity of the water oxidizing system. In contrast, the quantum yield of photoinhibition at site II depends strongly on the oxygen evolution capacity. In O2-evolving samples, the quantum yield of site II photoinhibition is about 10-7 inhibited RC/quantum. After selective elimination of the O2-evolving capacity by Tris-treatment, the quantum yield of photoinhibition at site II depends on the light intensity. At low intensity (<3 W/m2), the quantum yield is 10-4 inhibited RC/quantum (about 1000 times higher than in oxygen evolving samples). Based on these results it is inferred that the dominating deleterious effect of photoinhibition cannot be ascribed to an unique target site or a single mechanism because it depends on different experimental conditions (e.g., light intensity) and the functional status of the PS II complex.Abbreviations A830 absorption change at 830 nm - P680 primary electron donor of PS II - PS II photosystem II - Mes 2(N-morpholino)ethansulfonic acid - QA, QB primary and secondary acceptors of PS II - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbohydrazide - FWHM fullwidth at half maximum - Ph-p-BQ phenyl-p-benzoquinone - PFR photon fluence rate - Pheo pheophytin - RC reaction center  相似文献   

18.
A point mutation in the plastome-encoded psaB gene of the mutant en:alba-1 of Antirrhinum majus L. was identified by an analysis of chloroplast DNA with a modified PCR-SSCP technique. Application of this technique is indicated when a gene or a group of genes is known in which the point mutation is located. Analysis of primary photosynthetic reactions in the yellowish white plastome mutant indicated a dysfunction of photosystem (PS) 1. The peak wavelength of PS I-dependent chlorophyll (Chl) fluorescence emission at 77 K was shifted by 4 nm to 730 nm, as compared to fluorescence from wild-type. There were no redox transients of the reaction center Chl P700 upon illumination of leaves with continuous far-red light or with rate-saturating flashes of white light. The PS I reaction center proteins PsaA and PsaB are not detectable by SDS-PAGE in mutant plastids. Hence, plastome encoded PS I genes were regarded as putative sites of mutation. In order to identify plastome mutations we developed a modified SSCP (single-strand conformation polymorphism) procedure using a large PCR fragment which can be cleaved with various restriction enzymes. When DNA from wild-type and en:alba-1 was submitted to SSCP analysis, a single stranded Hinf I fragment of a PCR product of the psaB gene showed differences in electrophoretic mobility. Sequence analysis revealed that the observed SSCP was caused by a single base substitution at codon 136 (TAT TAG) of the psaB gene. The point mutation produces a new stop codon that leads to a truncated PsaB protein. The results presented indicate that the mutation prevents the assembly of a functional PS I complex. The applicability to other plastome mutants of the new method for detection of point mutations is discussed.  相似文献   

19.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

20.
A chlorophyll a, c-fucoxanthin pigment-protein complex8 functions as the major light harvesting antenna in the Chrysophyte Ochromonas danica. The regulated distribution of excitation energy between the two photosystems was investigated in these organisms and was shown to be strongly wavelength dependent. A light state transition was induced by pre-illumination of cells using light 2 (640 nm) and light 1 (700 nm) of equal absorbed intensity, and detected by reversible changes in the 77 K chlorophyll fluorescence emission spectra. Peaks at 690 nm and 720 nm in the low temperature spectra are most likely associated with PS2 and PS1 respectively. A room temperature fluorescence emission at 680 nm induced by modulated light 2 (500 nm) was strongly quenched in the presence of background light 1 (720 nm). Removal of light 1 led to an increase in fluorescence followed by a slow quenching. The room temperature fluorescence changes were directly correlated with changes in the 77 K emission spectra that indicated a change in the distribution of excitation energy between the two photosystems. It was established that DCMU (1 mol) prevented the state 2. The conversion to state 1 followed a simple photochemical dose dependence and had a half-time of 20 s-1.5 min at 6 W m-2. In contrast, the conversion to state 2 was independent of light intensity. These data indicate that O. danica undergoes a light state transition in response to the preferential excitation of PS2 or PS1.Abbreviations PS2 photosystem 2 - PS1 photosystem 1 - LHC light harvesting chlorophyll a/b protein - fx fucoxanthin - PQ plastoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号