首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degans  Hanne  De Meester  Luc 《Hydrobiologia》2002,479(1-3):39-49
Biomanipulation, through the reduction of fish abundance resulting in an increase of large filter feeders and a stronger top-down control on algae, is commonly used as a lake restoration tool in eutrophic lakes. However, cyanobacteria, often found in eutrophic ponds, can influence the grazing capacity of filter feeding zooplankton. We performed grazing experiments in hypertrophic Lake Blankaart during two consecutive summers (1998, with and 1999, without cyanobacteria) to elucidate the influence of cyanobacteria on the grazing pressure of zooplankton communities. We compared the grazing pressure of the natural macrozooplankton community (mainly small to medium-sized cladocerans and copepods) with that of large Daphnia magna on the natural bacterioplankton and phytoplankton prey communities. Our results showed that in the absence of cyanobacteria, Daphnia magna grazing pressure on bacteria was higher compared to the grazing pressure of the natural zooplankton community. However, Daphnia grazing rates on phytoplankton were not significantly different compared to the grazing rates of the natural zooplankton community. When cyanobacteria were abundant, grazing pressure of Daphnia magnaseemed to be inhibited, and the grazing pressure on bacteria and phytoplankton was similar to that of the natural macrozooplankton community. Our results suggest that biomanipulation may not always result in a more effective top-down control of the algal biomass.  相似文献   

2.
SUMMARY. 1. Food web manipulation, by removal of planktivorous or benthivorous fish, is a promising method for reducing phytoplankton concentrations in shallow lakes. The part that nutrients may play in the success of such a measure is not well documented.
2. In this study, we analysed the flow of phosphorus through the food web of the shallow, eutrophic Lake Wolderwijd/Nuldernauw. Our studies occurred in the years 1981 (when a bloom of cyanobacteria occurred) and 1987 (no bloom); a hypothetical situation was also examined in which most of the bream are assumed to be removed.
3. The analysis shows that the success of biomanipulation is probably due not only to an increased grazing pressure on the phytoplankton, but also to a decreased availability of phosphorus. The reason for this is the removal of detrital phosphorus by increased sedimentation as a result of a predicted increase in growth of macrophytes after biomanipulation.  相似文献   

3.
1. Three series of field experiments with different zooplankton species composition and biomass were performed in a small lake in the south Andes. We attempted to measure the responses of phytoplankton species resulting from grazing mortality and stimulation of growth by nutrient recycling.
2. Nanoflagellates contributed substantially to total phytoplankton cell abundance. Chrysochromulina parva represented 93.4%, 92.2% and 95.9% of total phytoplankton density in December, January and February, respectively. This fraction was reduced in all treatments with increasing zooplankton biomass.
3. A negative relationship was obtained between C. parva cell numbers and increase in dissolved P. On the other hand, a significant positive relationship between the abundance of the diatom Aulacoseira granulata and P concentration was observed. These results indicate that the ungrazed diatom was able to capitalise on the increase in nutrient availability.
4. As a net result of the increase or decrease of algal species we observed a change in the nano:net phytoplankton relationship. The outcome of three‐day incubations with increased zooplankton biomass was an increasing importance of net phytoplankton.
5. The results indicate the importance of the indirect effects of zooplankton (through nutrient recycling) in the increase in diatoms, and the role of grazing as a growth‐limiting factor for the flagellate C. parva .  相似文献   

4.
Using empirical data from 466 temperate to arctic lakes covering a total phosphorus (TP) gradient of 2-1036 mg L-1, we describe how the relative contributions of resource supply, and predator control change along a nutrient gradient. We argue that (a) predator control on large-bodied zooplankton is unimodally related to TP and is highest in the most nutrient-rich and nutrient-poor lakes and generally higher in shallow than deep lakes, (b) the cascading effect of changes in predator control on phytoplankton decreases with increasing TP, and (c) these general patterns occur with significant variations--that is, the predation pressure can be low or high at all nutrient levels. A quantile regression revealed that the median share of the predator-sensitive Daphnia to the total cladoceran biomass was significantly related unimodally to TP, while the 10% and 90% percentiles approached 0 and 100%, respectively, at all TP levels. Moreover, deep lakes (more than 6 m) had a higher percentage of Daphnia than shallow (less than 6 m) lakes. The median percentage of Daphnia peaked at 0.15 mg L-1 in shallow lakes and 0.09 mg L-1 in deep lakes. The assumption that fish are responsible for the unimodality was supported by data on the abundance of potential planktivorous fish (catch net-1 night-1 gill nets with the different mesh sizes [CPUE]). To elucidate the potential cascading effect on phytoplankton, we examined the zooplankton phytoplankton biomass ratio. Even though this ratio was inversely related to CPUE at all TP levels, we found an overall higher ratio in oligotrophic lakes that declined toward low values (typically below 0.2) in hypertrophic lakes. These results suggest that planktivorous fish have a more limited effect on the grazing control of phytoplankton in oligotrophic lakes than in eutrophic lakes, despite similar predator control of large-bodied zooplankton. Accordingly, the phytoplankton yield, expressed as the chlorophyll a-TP ratio, did not relate to CPUE at low TP, but it increased significantly with CPUE at high TP. We conclude that the chances of implementing a successful restoration program using biomanipulation as a tool to reduce phytoplankton biomass increase progressively with increasing TP, but that success in the long term is most likely achieved at intermediate TP concentrations.  相似文献   

5.
1. Over a 1-year period, twenty controlled experiments were performed using small mesocosms (20-l clear plastic carboys) and plankton communities collected from four sites in shallow, subtropical Lake Okeechobee, Florida. In replicated treatments, macrozooplankton grazers were excluded by size fractionation (115 μm), and/or nutrients (N and P) were added, and impacts on phytoplankton biomass and productivity were measured after 3-day incubations.
2. In most experiments (fifteen out of twenty), there was no significant effect of zooplankton exclusion on phytoplankton biomass or productivity, but there were significant increases in those attributes due to nutrient additions. The magnitude of the responses was a function of light availability at the collection sites.
3. In three experiments, zooplankton exclusion led to declines in phytoplankton biomass and productivity, suggesting that animals may sometimes have net positive effects on the phytoplankton, perhaps via nutrient recycling.
4. In only two experiments was there evidence of net negative impacts of grazers on the phytoplankton. In both instances, cladocerans ( Daphnia ambigua and Eubosmina tubicen ) were dominant in the zooplankton. However, the increases in chlorophyll a due to zooplankton exclusion were small (5–20%), probably because of the small size and relatively low grazing rates of the cladocerans.
5. The results support the hypothesis that phytoplankton biomass in Lake Okeechobee is little affected by herbivorous macrozooplankton. This may be a common feature of lowland tropical and subtropical lakes.  相似文献   

6.
1. Over a 1-year period, twenty controlled experiments were performed using small mesocosms (20-l clear plastic carboys) and plankton communities collected from four sites in shallow, subtropical Lake Okeechobee, Florida. In replicated treatments, macrozooplankton grazers were excluded by size fractionation (115 μm), and/or nutrients (N and P) were added, and impacts on phytoplankton biomass and productivity were measured after 3-day incubations.
2. In most experiments (fifteen out of twenty), there was no significant effect of zooplankton exclusion on phytoplankton biomass or productivity, but there were significant increases in those attributes due to nutrient additions. The magnitude of the responses was a function of light availability at the collection sites.
3. In three experiments, zooplankton exclusion led to declines in phytoplankton biomass and productivity, suggesting that animals may sometimes have net positive effects on the phytoplankton, perhaps via nutrient recycling.
4. In only two experiments was there evidence of net negative impacts of grazers on the phytoplankton. In both instances, cladocerans ( Daphnia ambigua and Eubosmina tubicen ) were dominant in the zooplankton. However, the increases in chlorophyll a due to zooplankton exclusion were small (5–20%), probably because of the small size and relatively low grazing rates of the cladocerans.
5. The results support the hypothesis that phytoplankton biomass in Lake Okeechobee is little affected by herbivorous macrozooplankton. This may be a common feature of lowland tropical and subtropical lakes.  相似文献   

7.
Stocking piscivorous salmonids in Lake Michigan produced dramaticalterations in food-web structure, including higher numbersof large-bodied zooplankton (especially Daphnia pulicaria),lower summer chlorophyll concentrations and increased watertransparency. Experimental determinations of epilimnetic phytoplanktongrowth rates and of zooplankton grazing rates indicate thatherbivorous zooplankton controlled algal dynamics during thesummer of 1983 because grazers occupied the surface waters throughoutthe day. In 1985, however, both large- and small-bodied Daphniamade approximately equal contributions to total grazer biomass,and all grazers displayed pronounced diel vertical migrations,visiting epilimnetic waters only at night. This prohibited zooplanktonfrom controlling algal dynamics because grazing losses did notexceed phytoplankton growth rates. The changes in zooplanktoncommunity composition and behavior observed in summer 1985 probablyresulted from increased predation by visually orienting planktivorousfish, especially bloater chub (Coregonus hoyi). Effects of food-webmanipulations on phytoplankton dynamics were evident only duringJuly and August. During spring and early summer copepods dominateLake Michigan's zooplankton community. Owing to their smallbody size, copepods are less susceptible to fish predation andexhibit much lower filtering rates than Daphnia. Variabilityin zooplanktivorous fish abundance probably has little effecton phytoplankton dynamics during spring and early summer.  相似文献   

8.
Biomanipulation was carried out in order to improve the water quality of the small hypertrophic Lake Zwemlust (1.5 ha; mean depth 1.5 m). In March 1987 the lake was drained to facilitate the elimination of fish. Fish populations were dominated by planktivorous and benthivorous species (total stock c. 1500 kg) and were collected by seine- and electro-fishing. The lake was subsequently re-stocked with 1500 northern pike fingerlings (Esox lucius L.) and a low density of adult rudd (Scardinius erythrophthalmus). The offspring of the rudd served as food for the predator pike. Stacks of Salix twigs, roots of Nuphar lutea and plantlets of Chara globularis were brought in as refuge and spawning grounds for the pike, as well as shelter for the zooplankton.The impact of this biomanipulation on the light penetration, phytoplankton density, macrophytes, zooplankton and fish communities and on nutrient concentrations was monitored from March 1987 onwards. This paper presents the results in the first year after biomanipulation.The abundance of phytoplankton in the first summer (1987) after this biomanipulation was very low, and consequently accompanied by increase of Secchi-disc transparency and drastic decline of chlorophyll a concentration.The submerged vegetation remained scarce, with only 5 % of the bottom covered by macrophytes at the end of the season.Zooplankters became more abundant and there was a shift from rotifers to cladocerans, comprised mainly of Daphnia and Bosmina species, the former including at least 3 species.The offspring of the stocked rudd was present in the lake from the end of August 1987. Only 19% of the stocked pike survived the first year.Bioassays and experiments with zooplankton community grazing showed that the grazing pressure imposed by the zooplankton community was able to keep chlorophyll a concentrations and algal abundance to low levels, even in the presence of very high concentrations of inorganic N and P. The total nutrient level increased after biomanipulation, probably due to increased release from the sediment by bioturbation, the biomass of chironomids being high.At the end of 1987 Lake Zwemlust was still in an unstable stage. A new fish population dominated by piscivores, intended to control the planktivorous and benthivorous fish, and the submerged macrophytes did not yet stabilize.  相似文献   

9.
Böing  Wiebke J.  Wagner  Annekatrin  Voigt  Hanno  Deppe  Thomas  Benndorf  Jürgen 《Hydrobiologia》1998,389(1-3):101-114
We studied the response of phytoplankton to grazing by Daphnia galeata in the hypertrophic Bautzen reservoir (Dresden, Germany) from January 1995 to May 1996 during a long-term whole-lake biomanipulation experiment. The correlation between clearance rate of D. galeata and total phytoplankton biomass was negative only if biomass of Microcystis aeruginosa was excluded. This suggests that M. aeruginosa is the main grazing resistant phytoplankton species in the Bautzen reservoir. Except for M. aeruginosa and grazing-resistant Staurastrum quadridentatum spec. nov. (Scharf, 1995) no other phytoplankton species was able to reach a biovolume above 1 mm3 L-1 when the clearance rate of Daphnia exceeded 0.1 L L-1 d-1. There was significant positive correlation between mean cell or colony size of phytoplankters and clearance rate of D. galeata, showing an advantage of bigger cells or colonies at high grazing pressure. Cross-correlation indicated a time lag of about one month between changes in grazing pressure and a change in phytoplankton mean size. The phytoplankton species were divided into edible and inedible fractions, depending on their width and length. No edible species were able to reach high biovolumes during high biomasses of D. galeata but a positive correlation was found between the edible fraction of phytoplankton biovolume and the clearance rate of D. galeata. However, this relationship disappeared when the ‘ingestible edible’ fraction of M. aeruginosa was excluded, suggesting a rejection of ‘edible’ Microcystis colonies by D. galeata. A negative correlation was found between the inedible fraction of phytoplankton biovolume without M. aeruginosa and the clearance rate of D. galeata which might be due to superior competition of M. aeruginosa. We could clearly show that biomanipulation might not work well with respect to the reduction of total phytoplankton biomass under hypertrophic conditions and finally discuss a theoretical threshold of phosphorus (probably around 80 μg L-1), below which biomanipulation should become effective. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Phytoplankton periodicity in a subtropical lake (Lake Kinneret,Israel)   总被引:5,自引:5,他引:0  
Lake kinneret is a subtropical monomictic lake characterized by a Pyrrhophyta-Chlorophyta assemblage, supplemented by Cyanophyta in some years. Concerning their abundance and seasonal occurrence, the phytoplanktonic algae belong to two groups: algae appearing in quantity at a definite annual period and algae present throughout the year. Four stages of algal succession occur in the lake. There is a marked periodicity in the phytoplankton composition with a high standing stock in winter-spring, due to the dinoflagellate water-bloom, and a low one during the summer months, related to the high stability of summer stratification. The annual succession at the species level has been an almost constant event in the lake for many years.The increase in nutrient concentrations in 1973 and 1974 increased the diversity and abundance of algae (except Peridinium) but did not lead to significant changes in algal succession. Conversely, the decrease of the zooplankton grazing pressure in 1975 and 1976 facilitated the development of algal maxima during summer-fall. They were caused by nanoplanktonic forms, and they developed without additional enrichment of nutrients. The algal abundance and diversity decreased. The years 1981 and 1982 were characterized by both an increase in phosphorus and a decrease in zooplankton. These conditions favored the concomitant abundance of many species and an increase of non-Pyrrhophyta biomass.  相似文献   

11.
1. The light-nutrient hypothesis (LNH) predicts that changes in light supply can alter the balance of nutrient and energy limitation in primary producers. We tested this prediction by examining temporal changes in vernal forest ponds, which are highly dynamic systems with respect to seasonal change in light and nutrient supply. In three vernal ponds that differ in productivity, we measured changes in light, total and seston nitrogen and phosphorus, and seston carbon and chlorophyll during the spring, before and after tree leaf-out. We also quantified changes in the population dynamics of the major zooplankton grazers in these systems.
2. In each pond, nutrient levels increased and light levels declined, creating a temporal shift in light-nutrient supply to the plankton. Results generally supported predictions of stoichiometric theory and the LNH, but there were notable exceptions.
3. Seston C : N : P ratios rapidly changed in response to dramatic increases in N and P supply rates. However, seston N : P was typically lower than values for total N : P in the water. Furthermore, as predicted, we observed a decline in seston C : P as the light : nutrient ratio declined, but seston C : N simultaneously increased. These results suggest an unexpected shift towards potential nitrogen limitation. Alternatively, this change in nutrient ratios may be driven by a seasonal change in phytoplankton composition or nutritional mode.
4. Seston carbon concentrations remained stable despite seasonal changes in grazing intensity associated with the phenology of large-bodied Daphnia grazers. However, chlorophyll concentrations declined dramatically as the season progressed, resulting in a simultaneous decline in the C : Chlorophyll ratio of seston. Both pond shading and increased grazing probably contributed to the decline in chlorophyll.  相似文献   

12.
Data are presented on nutrient concentrations, phytoplankton biovolume development, zooplankton composition and population dynamics, and fish from a deep, stratifying, alpine lake (Mondsee, Austria) during a three-year period between 1982 and 1984. Development of the phytoplankton is closely related to structuring events of the physico-chemical environment. Dissolved silicate and phosphorus concentrations are critical for the summer situation. During summer algal abundance is largely affected by grazing of zooplankton, but no clear-water phase was observed at the end of the spring peak of phytoplankton.Temperature and food are factors responsible for the timing and growth of the zooplankton populations. Because of close overlap in the epilimnion, exploitative and mechanical interference competition and predation by invertebrate and vertebrate predators are the main structuring forces acting on the zooplankton community, and hence influence phytoplankton indirectly.  相似文献   

13.
1. The relative importance of zooplankton grazing and nutrient limitation in regulating the phytoplankton community in the non-stratified Lake Kvie, Denmark, were measured nine times during the growing season.
2. Natural phytoplankton assemblage bioassays showed increasing importance of nutrient limitation during summer. Growth rates at ambient nutrient concentrations were continually below 0.12 per day, while co-enrichment with nitrogen (N) and phosphorus (P) to above concentration-saturated conditions enhanced growth rates from May to the end of July.
3. Stoichiometric ratios of important elements in seston (C : N, C : P, N : P), in lake water (TN : TP), in external loading (TN : TP) and in internal loading (DIN : DIP) were measured to determine whether N or P could be the limiting nutrient. TN : TP molar ratio of both lake water, benthic fluxes and external loading suggested P limitation throughout the growing season. However, seston molar ratios suggested moderate P-deficiency only during mid-summer.
4. Abundance and community structure of the zooplankton varied considerably through the season and proved to be important in determining the responses of algal assemblages to grazing. High abundance of cladocerans and rotifers resulted in significant grazing impact, while cyclopoid copepods had no significant effect on the phytoplankton biomass.
5. Regeneration of ammonium and phosphate by zooplankton were periodically important for phytoplankton growth. A comparison of nutrient regeneration by zooplankton with nutrient inputs from sediment and external sources indicated that zooplankton may contribute significantly in supplying N and P for the growth of phytoplankton.  相似文献   

14.
Biomanipulation has been employed in numerous locations throughout the world as a means for reducing phytoplankton biomass; however, it has not been employed very often in Japan. A common approach involves the introduction of piscivorous fish to reduce the abundance of planktivorous fish. In our study, to first apply biomanipulation, we stocked Lake Shirakaba (a high-altitude, protected area in a park) in central Japan with rainbow trout fingerlings and cladoceran Daphnia (Daphnia galeata) in 2000. A “pre-biomanipulation” data set (1997–1999) and “a post-biomanipulation” data set (2000–2006) allowed us to evaluate the lake's response to biomanipulation. After the biomanipulation, zoo-planktivorous pond smelt disappeared and a large population of Daphnia had been established, which substantially reduced the number of the previously dominant small cladocerans and rotifers. Water transparency increased from about 2 m (before biomanipulation) to more than 4 m (after biomanipulation). Reductions in algal biomass and increased transparency led to expansion of the submerged macrophyte Elodea nuttallii. Total phosphorus concentrations declined as well over this time period. Based on these results, we concluded that biomanipulation using piscivore and Daphnia stocking succeeded in improving lake water quality by reducing algal abundance and providing favorable conditions for the establishment of rooted plants.  相似文献   

15.
The phytoplankton community of south Lake George, New York,has recently undergone a dramatic shift in composition; froma community dominated by Chrysophytes, Cryptomonads, and Chlorophyta(1975–1976) to one currently dominated by blue-green algae,i.e.Anacystis incerta and Aphanothece nidulans. No increasesin nutrient concentrations or inputs have been documented beforeor during this period. This shift in dominance can be relatedto changes in higher trophic levels, i.e. grazers and planktivores.Standing crop and abundance of the small-bodied filter feeders,Bosmina longirostris, Daphnia galeata, D. dubia, Holopediumgibberum, Diaptomus minutus and D. sicilis are significantlygreater in the south basin. Standing crop and abundance of thelarge-bodied Crustacea, Daphnia pulicaria, Epishura lacustrisand Mysis relicta, are significantly greater in the north basin.The clutch sizes of all herbivorous species except D. minutuswere significantly greater in the south basin populations. Thesedifferences are consistent with greater productivity and sizeslective planktivory in the south basin. Stomach analysis ofthe recently introduced rainbow smelt, Osmerus mordax indicatesa marked selection for the large-bodied Crustacea. The establishmentof large populations of rainbow smelt in the south basin ofLake George is responsible for significant basin differencesin the abundance of large-bodied Crustacea and appears to havecontributed to the changes in phytoplankton community composition.The shift to small-bodied Crustacea in the south basin has resultedin significantly lower grazing rates but generally higher Prelease rates in the south basin. These factors contribute togreater springtime phytoplankton production and silica depletionin the south basin. Coccoid blue-green algae are able to dominatewaters with low phosphorus and silica concentrations, i.e. LakeGeorge. Thus, the establishment of rainbow smelt in Lake Georgecoincides with, and appears to be responsible for, changes inphytoplankton community composition.  相似文献   

16.
Lake restoration practices based on reducing fish predation and promoting the dominance of large-bodied Daphnia grazers (i.e., biomanipulation) have been the focus of much debate due to inconsistent success in suppressing harmful cyanobacterial blooms. While most studies have explored effects of large-bodied Daphnia on cyanobacterial growth at the community level and/or on few dominant species, predictions of such restoration practices demand further understanding on taxa-specific responses in diverse cyanobacterial communities. In order to address these questions, we conducted three grazing experiments during summer in a eutrophic lake where the natural phytoplankton community was exposed to an increasing gradient in biomass of the large-bodied Daphnia magna. This allowed evaluating taxa-specific responses of cyanobacteria to Daphnia grazing throughout the growing season in a desired biomanipulation scenario with limited fish predation. Total cyanobacterial and phytoplankton biomasses responded negatively to Daphnia grazing both in early and late summer, regardless of different cyanobacterial densities. Large-bodied Daphnia were capable of suppressing the abundance of Aphanizomenon, Dolichospermum, Microcystis and Planktothrix bloom-forming cyanobacteria. However, the growth of the filamentous Dolichospermum crassum was positively affected by grazing during a period when this cyanobacterium dominated the community. The eutrophic lake was subjected to biomanipulation since 2005 and nineteen years of lake monitoring data (1996–2014) revealed that reducing fish predation increased the mean abundance (50%) and body-size (20%) of Daphnia, as well as suppressed the total amount of nutrients and the growth of the dominant cyanobacterial taxa, Microcystis and Planktothrix. Altogether our results suggest that lake restoration practices solely based on grazer control by large-bodied Daphnia can be effective, but may not be sufficient to control the overgrowth of all cyanobacterial diversity. Although controlling harmful cyanobacterial blooms should preferably include other measures, such as nutrient reductions, our experimental assessment of taxa-specific cyanobacterial responses to large-bodied Daphnia and long-term monitoring data highlights the potential of such biomanipulations to enhance the ecological and societal value of eutrophic water bodies.  相似文献   

17.
1. A year-round study was conducted in a mesotrophic reservoir to determine the dynamics of zooplankton populations as a function of food availability (edible phytoplankton), nutrient concentration, temperature and hydraulic regime.
2. Rotifer biomass was correlated with soluble reactive phosphorus (SRP) concentration. The abundance of the rotifers Keratella cochlearis and Anuraeopsis fissa were not correlated with food availability (measured by chlorophyll and cell counts) but showed a strong dependence on P availability. Another rotifer, Synchaeta oblonga , and crustacean species were not related to nutrient availability but seemed to be dependent on food concentrations, especially of some phytoplankton taxa.
3. In this field study, rotifers seemed more susceptible than Daphnia or copepods to P-limitation. Among rotifer species, Keratella seemed to be more susceptible than Anuraeopsis to P limitation. Different susceptibilities of zooplankton species to nutrient limitation may be important in explaining the dynamics of these organisms in natural situations. Further analyses are warranted to clarify the interactions between nutrient limitation and energy limitation among zooplankton.  相似文献   

18.

Responses of phytoplankton biomass were monitored in pelagic enclosures subjected to manipulations with nutrients (+N/P), planktivore roach (Rutilus rutilus) and large grazers (Daphnia) in 18 bags during spring, summer and autumn in mesotrophic Lake Gjersjøen. In general, the seasonal effects on phytoplankton biomass were more marked than the effects of biomanipulation. Primary top-down effects of fish on zooplankton were conspicuous in all bags, whereas control of phytoplankton growth by grazing was observed only in the nutrient-limited summer situation. The effect of nutrient additions was pronounced in summer, less in spring and autumn; additions of fish gave the most pronounced effect in spring. The phytoplankton/zooplankton biomass ratio remained high (10–100) in bags with fish, with the highest ratios in combination with fertilization. The ratio decreased in bags without fish to<2 in most bags, but a real grazing control was only observed in bags with addition ofDaphnia. No direct grazing effects could be observed on the absolute or relative biomass of cyanobacteria (mainlyOscillatoria agardhii). The share of cyanobacteria in total phytoplankton biomass was lowest in summer (7–26%), higher in spring (39–63%) and more than 90% in the autumn experiment. The development of the cyanobacterial biomass was rather synchronous in all bags in all the three experiments. A high biomass ofDaphnia gave no increase in the pool of dissolved nutrients in spring, a slight increase in summer and a pronounced increase in autumn. While a strong decrease in the P/C-cell quota of the phytoplankton was observed from spring to autumn, no effect of grazing or nutrient release could be related to this P/C-status. The experiments indicate that such systems, with high and stable densities of inedible cyanobacteria, are rather insensitive to short-term (3–4 weeks) biomanipulation efforts. This is supported by observations on the long-term development of the lake.

  相似文献   

19.
Change in the abundance of benthic macroinvertebrates and the stable isotope composition (C, N) of benthic invertebrates and zooplankton in Lake Vaeng, Denmark, was investigated over an 18-year period following biomanipulation (removal of cyprinids). During the first nine years after biomanipulation, the lake was clear and submerged macrophytes were abundant; after this period, a shift occurred to low plant abundance and high turbidity. Two years after the biomanipulation, total density of benthic macroinvertebrates reached a maximum of 17042 (±2335 SE) individuals m−2 and the density was overall higher when the lake was in a clear state. Redundancy analysis (RDA) suggested macrophyte abundance and total nitrogen (TN) concentration were the dominant structuring forces on the benthic macroinvertebrate assemblage. Stable isotope analysis revealed that δ13C of macroinvertebrates and zooplankton was markedly higher in years with high submerged macrophyte abundance than in years without macrophytes, most likely reflecting elevated δ13C of phytoplankton and periphyton mediated by a macrophyte-induced lowering of lake water CO2 concentrations. We conclude that the strong relationship between macrophyte coverage and δ13C of macroinvertebrates and cladocerans may be useful in paleoecological studies of past changes in the dynamics of shallow lakes, as change in macrophyte abundance may be tracked by the δ13C of invertebrate remains in the sediment.  相似文献   

20.
Biomanipulation measures in lakes, taken to diminish algal blooms, have mainly been restricted to the reduction of zooplanktivorous fish with the aim to stimulate the grazing pressure by native filter feeders such as Daphnia. However, larger filter feeders like the exotic zebra mussel, Dreissena polymorpha, have been suggested as an optional tool because of their high filtering capacity. We compared grazing by two filter feeders, D. polymorpha and Daphnia galeata, offered seston from Lake IJsselmeer, the Netherlands in two consecutive years: 2002 and 2003. The seston in both years was dominated by the colony-forming cyanobacterium Microcystis aeruginosa. The grazing studies were performed under controlled conditions in the laboratory and samples were analyzed on a flow cytometer, making it possible to quantify grazing on different seston components and size fractions, including cyanobacteria, other phytoplankton (green algae, diatoms, etc.), and detritus. No differences in clearance rates, on a per weight basis, were found between the two grazer species. The clearance rate on cyanobacteria (especially <20 μm) was lower in 2003 than in 2002. In 2003, the microcystin concentration of cyanobacteria was higher than in 2002, suggesting that the observed lower clearance rate in 2003 was due to the enhanced toxin content of the cyanobacteria. Zebra mussels, although indiscriminately filtering all seston groups out of the water, positively selected for phytoplankton in their mantle cavity, irrespective of its toxicity, and rejected detritus. Since no differences in clearance rates were found between the two grazer species, we conclude that for biomanipulation purposes of shallow lakes, native species like the daphnids should be preferred over exotic species like zebra mussels. When the seston is dominated by phytoplankton that cannot be filtered out of the water column by Daphnia, however, the use of zebra mussels may be considered. Care should be taken, however, in the choice of the lakes since the mussels may have severe ecological and economic impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号