首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The amino-acid enzymes (aspartate-, alanine- and tyrosine transaminases, serine dehydratase, glutamate dehydrogenase, glutamine synthetase, adenylate deaminase and arginase) activities in the liver and kidney of developing rats (days 19 and 21 after conception and 1, 5, 10, 20 and 30 after birth) compared with adults were determined in crude homogenates. Most enzymes attained the adult levels early after birth or at weaning, showing a marked trend towards amino-acid nitrogen conservation during late foetal and specially during the neonatal period, increasing their activity during lactation. It is postulated that these changes are closely related to availability of low grade protein in diet as well as to maturation of amino-acid homeostasis maintenance for growth.  相似文献   

2.
The activities of alanine-, aspartate- and branched-chain amino-acid transaminases, glutamine synthetase, glutamate dehydrogenase and adenylate deaminase in white adipose tissue of adult male rats have been determined in animals submitted to 12-h cold exposure (4 degrees C) or to 24-h food deprivation. Starvation resulted in small changes in glutamate dehydrogenase and alanine transaminase when expressed per unit of protein weight, inducing an increase in branched-chain amino-acid transaminase and glutamine synthetase. Cold exposure showed the same effects as starvation with respect to glutamate dehydrogenase and alanine transaminase, but induced increases in glutamine synthetase and aspartate transaminase. It is concluded that starvation increases the handling of some amino acids by white adipose tissue and the detoxification of the ammonia thus evolved. The changes observed suggest a different pattern of amino-acid metabolism enzyme changes with either cold or starvation.  相似文献   

3.
Aspartate transaminase, alanine transaminase, glutamate dehydrogenase, arginase, serine dehydratase, tyrosine transaminase, glutamine synthetase, glutaminase and adenylate deaminase activities were measured in crude homogenates of 12, 19 and 21-day rat placentae. There is a considerable quantitative importance in enzymes able to produce free ammonia, such as adenylate deaminase and glutamate dehydrogenase, activity that progressively decrease with the age of placenta. The glutamine synthetase and tyrosine transaminase activities increase with age, while serine dehydratase decreases considerably and aspartate and alanine transaminase do not change practically. Arginase shows a maximum at 19, with lower 12 and 21-day activities. No measurable glutaminase activity has been found. The possible implications of the enzymes studied upon the ammonia-producing activity of rat placenta are discussed together with the relative decreasing role of placenta for the overall metabolic activity of the foetus, especially during the last phases of its development.  相似文献   

4.
There was a nil arginase and serine dehydratase activities in interscapular brown adipose tissue, but the activity of adenylate deaminase, glutamine synthetase, glutamate dehydrogenase and the aspartate, alanine and branched chain amino acid transaminases was higher than those of white adipose tissue; the differences were diminished when expressed per unit of protein weight. Brown adipose tissue enzyme activities were in a range between those of liver and muscle. The high amino acid handling capabilities, together with its physiological role, suggest that brown adipose tissue can metabolize significant amounts of amino acids, its enzyme pattern being different both from white adipose tissue, as well as of liver and muscle.  相似文献   

5.
The effect of 24-hr starvation on the amino acid pool composition and its concentration ratios with respect to blood and plasma as well as the activities of alanine, aspartate and branched chain amino acid transaminases, glutamate dehydrogenase, glutamine synthetase and adenylate deaminase have been studied in rat brown adipose tissue. Starvation induced a considerable decrease of pool amino acid concentration. Alanine and taurine were the amino acids in which the decrease was more marked. Small changes were observed in the activities of the enzymes studied, with decreases only in glutamate dehydrogenase and adenylate deaminase. These changes agree with a decrease in amino acid utilization in this tissue induced by starvation.  相似文献   

6.
To contribute to our understanding of nitrogen metabolism in the developing chick we have studied in liver, intestine and yolk sac membrane the ontogeny of both aspartate- and alanine transaminases, glutamate dehydrogenase, adenylate deaminase, glutamine synthetase and xanthine dehydrogenase activities. Liver enzyme activities were much higher than those of the same enzymes in intestine and yolk sac membrane, the latter having the lowest activities. In the liver, both alanine transaminase and glutamate dehydrogenase increased their activity just before hatching, xanthine dehydrogenase and glutamine synthetase develop their highest activity just after hatching, while aspartate transaminase and adenylate deaminase attained the highest levels just with adulthood. From the pattern of enzyme activity in yolk sac membrane and intestine it can be inferred that after hatching, the amino-acid metabolism in these tissues is considerably enhanced, with higher production of ammonia from amino acids, as indicated by the rise in adenylate deaminase, as well as increased potentiality in production of both alanine and glutamine. It can be concluded that hatching coincides with a deep change of pace in amino-acid metabolism in the organs studied fully comparable with that observed in Mammals at the end of lactation, with the difference that the adaptation to the new diet in the case of the chick is much more sudden than weaning is for the rat.  相似文献   

7.
The activities of alanine and aspartate transaminases, adenylate deaminase, glutamine synthetase and glutamate and xanthine dehydrogenases have been measured in liver, yolk sac membrane, intestine and breast and leg muscle of domestic fowl hatchlings receiving for 3 or 5 days either a standard diet or hard boiled eggwhite as well as in 3 or 5 days starved animals. The patterns of activation of amino acid metabolism enzymes were fully comparable in protein-fed and starved groups with respect to fed controls; the differences with respect to the latter became more marked in 5- than in 3-days old chicks. In 5-days old chicks intestine alanine transaminase activity increased in parallel to that of liver in protein-fed animals but not in those starved, in agreement with an enhanced alanine transfer between both organs under this situation. Both, starvation and protein-feeding, induced a general decrease in the amino acid metabolizing ability of muscle. Glutamine (but not alanine) synthetizing capabilities were enhanced.  相似文献   

8.
The infusion of ether anesthaetized rats with 0.2 M (1 mmols in total) ammonium acetate or glutamine were compared with the infusion of 0.2 M NaCl. The levels of circulating glucose, amino acids, lactate, urea and ammonium were measured as well as liver glycogen and tissue amino acids and the liver and muscle activities of carbamoyl phosphate synthetases I and II, glutamate dehydrogenase, glutamine synthetase and adenylate deaminase. Neither treatment altered the glucose and glycogen homeostasis. The infusion of ammonium did not result in increases in circulating ammonium, but resulted in increased circulating urea after a short delay; the infusion of glutamine resulted also in urea production but much later on. Glutamine infusion also resulted in increased tissue free amino-acid levels. There was little alteration in enzyme activities, except for decreased glutamine synthetase and adenylate deaminase activity in muscle of glutamine-infused rats and higher tissue carbamoyl phosphate synthetase II. The results agree with a fast removal of infused ammonium, and maintenance of glutamine, with their channeling towards urea production at a rate comparable with that of infusion, that did not alter significantly the homeostasis of the experimental animals.  相似文献   

9.
The effect of feeding a high-energy highly palatable cafeteria diet on the liver and muscle ontogenesis of serine dehydratase, alanine transaminase, glutamine synthetase and adenylate deaminase during postnatal development of the rat has been studied. The results are in agreement with the lower amino acid utilization in cafeteria rats, both adults and during postnatal development. The feeding of excess energy coupled with high-quality protein resulted in changes in the ontogenesis of the studied enzymes that coincide with the development of protein synthesis and overall pup growth even before they had direct access to this rich diet, suggesting that cafeteria feeding already affects the amino acid metabolism of the pup through the dam's milk.  相似文献   

10.
The amino acid pool composition and its concentration ratios with respect to blood and plasma, as well as the activities of alanine, aspartate and branched chain amino acid transaminases, glutamine synthetase, adenylate deaminase and glutamate dehydrogenase have been studied in the interscapular brown adipose tissue of control, 12-h cold-exposed and 15-day cold-acclimated rats. Cold temperature affected the amino acid metabolism and pool composition more intensely after 15 days than after 12-h cold-exposure, even though the patterns of change were very similar in both groups. Cold temperatures induced a decrease in glutamine and an increase in glutamate concentration in the tissue. This probably increased the metabolism of branched chain amino acids and caused a decrease in adenylate deaminase activity. It also seemed to increase alanine utilization. We concluded that amino acid metabolism in brown adipose tissue is enhanced by cold temperature acclimation.  相似文献   

11.
In confirmation of the findings of Gaitonde et al. (1974), a decrease in the brain concentration of threonine and serine, and an increase in glycine, were observed in rats maintained on a thiamin-deficient diet. Similar changes were found in the blood, and the concentration of several other amino acids in the blood decreased significantly. There was a correlation between the concentrations of threonine, serine, aspartate and asparagine in the brain and blood. In experiments in which [U-14C]threonine was injected into rats most of the radioactivity in the brain and blood of control rats was, as expected, in threonine in the acid soluble metabolites. In contrast, a considerable proportion of radioactivity was also found in other amino acids, namely glutamate, glutamine, aspartate, gamma-aminobutyrate and alanine, in the brain of thiamin-deficient rats. [U-14C]Threonine was also converted into 14C-labelled lactate and glucose, but the extent of this conversion was severalfold higher in thiamin-deficient than in control rats. This finding gave evidence of the stimulation in thiamin-deficient rats of the catabolism of [U-14C]threonine to [14C]lactate by the aminoacetone pathway catalysed by threonine dehydrogenase, and into succinate via propionate by the alpha-oxobutyrate pathway catalysed by threonine dehydratase (deaminase). The measurement of specific radioactivities of glutamate, aspartate and glutamine after injection of [U-14C]threonine, indicated a stimulation of the activities of threonine dehydrogenase and threonine dehydratase (deaminase) in the brain of thiamin-deficient rats. The specific radioactivities of glutamate, asparatate and glutamine int he brain were consistent with an alteration in the metabolism of threonine, mainly in the 'large' compartment of the brain of thiamin-deficient rats. The measurement of relative specific radioactivity of proteins after injection of [U-14C]threonine indicated a marked decrease in the synthesis of proteins, mainly in the liver of thiamin-deficient rats.  相似文献   

12.
The activities of alanine, aspartate and branched-chain amino acid transaminases, glutamate dehydrogenase, glutamine synthetase and adenylate deaminase have been studied in liver of male rats exposed [12 hours at 4 degrees C] or acclimated [15 days at 4 degrees C] to cold temperature. Cold temperature induced an increase of the activities of glutamate dehydrogenase and alanine and aspartate transaminases both in cold-exposed and cold-acclimated animals; adenylate deaminase activity diminished after 15-day cold acclimation. There were not significant changes induced by cold temperature in the activities of the other two enzymes studied. These results agree with a possible direct implication of amino acid utilization by the liver in the context of the overall thermogenic response to cold temperature.  相似文献   

13.
The activities of alanine, aspartate and tyrosine transaminase, adenylate deaminase, glutamate dehydrogenase and glutamine synthetase have been measured in hind leg striated muscle, lumbar adipose tissue and lumbar skin of developing rats from late foetal to weaning stage. In a general way, despite minor differences and different physiological r?les, the three peripheral tissues studied showed a concordant enzyme activity pattern with the r?les found for these enzymes in the adult. Muscle had a more constant pattern throughout development, with wider changes in skin and widest in adipose tissue. The results found agree with a marked "synthetic" mode in the tissues studied throughout all development studied. The patterns observed agree with a strict amino-acid conservation scheme during foetal life and lactation that progressively changes with weaning towards a frank degrading mode.  相似文献   

14.
Activities of alanine and aspartate transaminases, glutamine synthetase, adenylate deaminase, glutamate and xanthine dehydrogenases and lactate dehydrogenase were measured in leg and breast muscles of developing chicks from day 10 in ovo to day 5 of free life, and compared with measurements for adult hens. Xanthine dehydrogenase activity was low in both muscles with adult levels attained on day 15 in ovo. Glutamine synthetase for chicks was maintained higher during development than for adults in both muscles. Minor differences were observed between both muscles in all enzymes tested up to day 18. With low embryonic values and important rises before hatching, the differences were initiated in the posthatching period. Important differences were observed between adult levels of activity. Leg muscle revealed higher enzyme values except for lactate dehydrogenase and indistinguishable levels for adenylate deaminase and xanthine dehydrogenase in both muscles. Alanine, instead of glutamine, is postulated as the main nitrogen transport between muscle and liver in the domestic fowl.  相似文献   

15.
Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown on glutamate and glutamine; thus, gln3 mutations were epistatic to the ure2 mutations. The results suggest that the GLN3 product is capable of promoting increases in enzyme levels in the absence of a functional URE2 product and that the URE2 product antagonizes the GLN3 product. The URE2 and GLN3 genes were also found to regulate the level of arginase activity. This regulation is completely independent of the regulation of arginase by substrate induction. The activities of glutamate dehydrogenase, glutamine synthetase, and arginase were higher in cells grown on glutamate as the nitrogen source than they were in cells grown under a nitrogen-limiting condition. It had previously been shown that the levels of these enzymes can be increased by glutamine deprivation. We propose that the URE2-GLN3 system regulates enzyme synthesis, in response to glutamine and glutamate, to adjust the intracellular concentration of ammonia so as to maintain glutamine at the level required for optimal growth.  相似文献   

16.
1. Factors regulating the release of alanine and glutamine in vivo were investigated in starved rats by removing the liver from the circulation and monitoring blood metabolite changes for 30 min. 2. Alanine and glutamine were the predominant amino acids released into the circulation in this preparation. 3. Dichloroacetate, an activator of pyruvate dehydrogenase, inhibited net alanine release: it also interfered with the metabolism of the branched-chain amino acids valine, leucine and isoleucine. 4. L-Cycloserine, an inhibitor of alanine aminotransferase, decreased alanine accumulation by 80% after functional hepatectomy, whereas methionine sulphoximine, an inhibitor of glutamine synthetase, decreased glutamine accumulation by the same amount. 5. It was concluded that: (a) the alanine aminotransferase and the glutamine synthetase pathways respectively were responsible for 80% of the alanine and glutamine released into the circulation by the extrasplanchnic tissues, and extrahepatic proteolysis could account for a maximum of 20%; (b) alanine formation by the peripheral tissues was dependent on availability of pyruvate and not of glutamate; (c) glutamate availability could influence glutamine formation subject, possibly, to renal control.  相似文献   

17.
Pregnant rats of 19th and 21st days were given an acute nitrogen overload produced by an infusion of either 0.2 M ammonium acetate or 0.2 M glutamine. Metabolic adaptations to nitrogen excess were studied measuring--in fetomaternal unit--non-protein nitrogen content and the activities of enzymes related with ammonia metabolism. Maternal and fetal plasma urea levels were increased by ammonium acetate treatment. Glutamine overload increased more the amino acid content in the mothers than in conceptus. As response to ammonium acetate treatment, glutamate dehydrogenase activity in liver was more sensitive in pregnant than in nonpregnant rats, suggesting more nitrogen incorporation into amino acids in pregnancy. Regarding glutamine synthetase activity, both treatments had an opposite effect except in kidney. The adenylate deaminase activity of pregnant rats was inhibited similarly to nonpregnant rats by nitrogen overloads, but stronger after glutamine infusion. Placenta and fetal metabolism were adjusted, as the dams, to lack of ammonia production by nitrogen overloads and to glutamine synthesis by ammonium acetate infusion.  相似文献   

18.
The escape of several enzymes from “ammonia catabolite repression” in gdhA? (NADP-linked glutamate-dehydrogenase-less) mutants, as well as in gdhCR mutants of Saccharomyces cerevisiae, does not involve glutamine synthetase, either as a positive or as a negative control element. A glutamine-synthetase-less mutant (gln?) was used in this demonstration.In addition to its derepressing effect on the NAD-linked glutamate dehydrogenase, the gdhCR mutation releases “nitrogen catabolite repression” on arginase and allatoinase, as well as glutamine repression on glutamine synthetase. A gdhCS mutation was used to demonstrate that these effects are not mediated through the NAD-linked glutamate dehydrogenase.  相似文献   

19.
Besides the synthesis of urea, ammonia detoxication at high concentrations can also be effected through enzyme reactions involved in glutamic acid metabolism. These mechanisms are also operative in extrahepatic tissues. Hyperammonemia is also found in the animal model of the portacaval shunt (PCS) rat. This model was chosen to study the activities of glutamate dehydrogenase, glutamine synthetase and glutaminase I in liver, brain and kidney 10, 20 and 30 days after PCS. In brain and kidney ammonia is detoxified mainly by the glutamate dehydrogenase and glutamine synthetase reactions whereas in the liver these enzyme reactions play a minor role.  相似文献   

20.
Abstract. Under stress conditions (darkness, nitrogen starvation, high ammonium concentrations, glutamine synthetase and glutamate synthase inhibition) glutamate dehydrogenase animating activity levels of Chlamydomonas cells varied inversely to those of glutamine synthetase. Nitrogen and carbon sources also influenced glutamate dehydrogenase levels in Chlamydomonas , the highest values being found in cells cultured mixotrophically with ammonium, under which conditions glutamate dehydrogenase and glutamine synthetase levels were likewise inversely related. These facts, together with the analysis of internal fluctuations of ammonium, 2-oxoglutarate, and the amino acid pool as well as the variations of certain enzymes involved in carbon metabolism indicate that glutamate dehydrogenase animating activity is adaptative, being involved in the maintenance of intracellular levels of L-glutamate when they cannot be maintained by the GS-GOGAT cycle, and probably more connected with carbon than nitrogen metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号