首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
Certain genes exhibit notable diversity in their expression patterns both within and between species. One such gene is the vasopressin receptor 1a gene (Avpr1a), which exhibits striking differences in neural expression patterns that are responsible for mediating differences in vasopressin-mediated social behaviors. The genomic mechanisms that contribute to these remarkable differences in expression are not well understood. Previous work has suggested that both the proximal 5′ flanking region and a polymorphic microsatellite element within that region of the vole Avpr1a gene are associated with variation in V1a receptor (V1aR) distribution and behavior, but neither has been causally linked. Using homologous recombination in mice, we reveal the modest contribution of proximal 5′ flanking sequences to species differences in V1aR distribution, and confirm that variation in V1aR distribution impacts stress-coping in the forced swim test. We also demonstrate that the vole Avpr1a microsatellite structure contributes to Avpr1a expression in the amygdala, thalamus, and hippocampus, mirroring a subset of the inter- and intra-species differences observed in central V1aR patterns in voles. This is the first direct evidence that polymorphic microsatellite elements near behaviorally relevant genes can contribute to diversity in brain gene expression profiles, providing a mechanism for generating behavioral diversity both at the individual and species level. However, our results suggest that many features of species-specific expression patterns are mediated by elements outside of the immediate 5′ flanking region of the gene.  相似文献   

2.
Promiscuity and monogamy are two extremes of fitness optimisation. Direct evidence for both extremes is documented in numerous studies where a measure of promiscuity/monogamy is often the number of fathers in individual litters using, for example, fragment analysis of highly polymorphic microsatellite loci. In this study, five known polymorphic microsatellite loci were used to assess biological parentage of 174 embryos of 24 pregnant females from a natural Czech population of pygmy field-miceApodemus microps Kratochvíl et Rosicky, 1952. The results revealed that the majority (67%) of litters were fathered by single males. However, there was a trend showing that the number of males successively (but not significantly) increased during the season, thus suggesting that monogamy in the pygmy field mouse is not obligatory but may depend on a population density and habitat type.  相似文献   

3.
Vasopressin affects behavior via its two brain receptors, the vasopressin 1a and vasopressin 1b receptors (Avpr1b). Recent work from our laboratory has shown that disruption of the Avpr1b gene reduces intermale aggression and reduces social motivation. Here, we further characterized the aggressive phenotype in Avpr1b -/- (knockout) mice. We tested maternal aggression and predatory behavior. We also analyzed the extent to which food deprivation and competition over food increases intermale aggression. We quantified defensive behavior in Avpr1b -/- mice and later tested offensive aggression in these same mice. Our results show that attack behavior toward a conspecific is consistently reduced in Avpr1b -/- mice. Predatory behavior is normal, suggesting that the deficit is not because of a global inability to detect and attack stimuli. Food deprivation, competition for food and previous experience increase aggression in both Avpr1b +/+ and -/- mice. However, in these circumstances, the level of aggression seen in knockout mice is still less than that observed in wild-type mice. Defensive avoidance behaviors, such as boxing and fleeing, are largely intact in knockout mice. Avpr1b -/- mice do not display as many 'retaliatory' attacks as the Avpr1b +/+ mice. Interestingly, when territorial aggression was measured following the defensive behavior testing, Avpr1b -/- mice typically show less initial aggressive behavior than wild-type mice, but do show a significant increase in aggression with repeated testing. These studies confirm that deficits in aggression in Avpr1b -/- mice are limited to aggressive behavior involving the attack of a conspecific. We hypothesize that Avpr1b plays an important role in the central processing that couples the detection and perception of social cues (which appears normal) with the appropriate behavioral response.  相似文献   

4.
Two receptors for vasopressin (Avp) are expressed in the brain, the Avp 1a receptor (Avpr1a) and the Avp 1b receptor (Avpr1b). To investigate the role of Avpr1a in behaviors in mice more extensively, we generated a line of mice lacking a functional Avpr1a (knockout, Avpr1a(-/-)). We first performed a baseline phenotypic screen of the Avpr1a knockouts followed by a more detailed analysis of their circadian rhythms and olfactory function. When free-running in constant darkness, the Avpr1a(-/-) mice have a longer circadian tau than the wild types. There are also subtle olfactory deficits in Avpr1a(-/-) mice as measured in an olfactory habituation/dishabituation test and in the discrimination of female urine from male urine using an operant testing paradigm. An extensive body of research has shown that manipulation of the Avpr1a alters behavior, including aggression and social recognition. Therefore, we expected profound behavioral deficits in mice lacking the Avpr1a gene. Contrary to our expectations, social aggression, anxiety-like behavior and social recognition are unaffected in this line of Avpr1a knockout mice. These data suggest either that the Avpr1a is not as critical as we thought for social behavior in mice or, more likely, that the neural circuitry underlying aggression and other social behaviors compensates for the life-long loss of the Avpr1a. However, the olfactory deficits observed in the Avpr1a(-/-) mice suggest that Avp and Avpr1a drugs may affect behavior, in part, by modulation of chemosensory systems.  相似文献   

5.
To date, much of the work in rodents implicating vasopressin (Avp) in the regulation of social behavior has focused on its action via the Avp 1a receptor (Avpr1a). However, there is mounting evidence that the Avp 1b receptor (Avpr1b) also plays a significant role in Avp's modulation of social behavior. The Avpr1b is heavily expressed on the anterior pituitary cortiocotrophs where it acts as an important modulator of the endocrine stress response. In the brain, the Avpr1b is prominent in the CA2 region of the hippocampus, but can also be found in areas such as the paraventricular nucleus of the hypothalamus and the olfactory bulb. Studies that have employed genetic knockouts or pharmacological manipulation of the Avpr1b point to the importance of central Avpr1b in the modulation of social behavior. However, there continues to be a knowledge gap in our understanding of where in the brain this is occurring, as well as how and if the central actions of Avp acting via the Avpr1b interact with the stress axis. In this review we focus on the genetic and pharmacological studies that have implicated the Avpr1b in the neural regulation of social behaviors, including social forms of aggressive behavior, social memory, and social motivation. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

6.
Recent discoveries of single-gene influences on social behaviour have generated a great deal of interest in the proximate mechanisms underlying the expression of complex behaviours. Length polymorphism in a microsatellite in the regulatory region of the gene encoding the vasopressin 1a receptor (avpr1a) has been associated with both inter- and intra-specific variation in socially monogamous behaviour in voles (genus Microtus) under laboratory conditions. Here, we evaluate the relationship between avpr1a length polymorphism and social associations, genetic monogamy, and reproductive success in free-living prairie vole (M. ochrogaster) populations. We found no evidence of a relationship between avpr1a microsatellite length and any of our correlates of either social or genetic monogamy in the field. Our results, especially when taken in conjunction with those of recent experimental studies in semi-natural enclosures, suggest that avpr1a polymorphism is unlikely to have been a major influence in the evolution or maintenance of social monogamy in prairie voles under natural conditions.  相似文献   

7.
In the majority of birds and mammals, social monogamy is not congruent with genetic monogamy. No research to date has compared social and genetic monogamy in amphibians. We analysed paternity in clutches of red-backed salamanders (Plethodon cinereus), a species in which social monogamy has been demonstrated in the laboratory, and 28% of individuals in the forest are found in male-female pairs in the noncourtship season. We collected 16 clutches of eggs of P. cinereus in the southern Appalachian Mountains of Virginia and collected tail clippings from attending mothers. We genotyped embryos and adults at five microsatellite loci in order to analyse paternity of clutches. Most clutches (84.6%) had multiple sires, with two to three sires per clutch. In this study, 25% of clutches had males in addition to females attending eggs. None of the mothers of these clutches were genetically monogamous. All attending males sired some of the offspring in the clutch that they attended (between 9% and 50%) but never sired a majority in that clutch. We conclude that, at least in this population, social monogamy in P. cinereus is not concomitant with genetic monogamy.  相似文献   

8.
We have previously reported that mice with a targeted disruption of their vasopressin 1b receptor gene, Avpr1b, have mild impairments in social recognition and reduced aggression. The reductions in aggression are limited to social forms of aggression, i.e., maternal and inter-male aggression, while predatory aggression remains unaffected. To further clarify the role of the Avpr1b in the regulation of social behavior we first examined anxiety-like and depression-like behaviors in Avpr1b knockout (Avpr1b −/−) mice. We then went on to test the ability of Avpr1b −/− mice to form dominance hierarchies. No major differences were found between Avpr1b −/− and wildtype mice in anxiety-like behaviors, as measured using an elevated plus maze and an open field test, or depression-like behaviors, as measured using a forced swim test. In the social dominance study we found that Avpr1b −/− mice are able to form dominance hierarchies, though in early hierarchy formation dominant Avpr1b −/− mice display significantly more mounting behavior on Day 1 of testing compared to wildtype controls. Further, non-socially dominant Avpr1b −/− mice spend less time engaged in attack behavior than wildtype controls. These findings suggest that while Avpr1b −/− mice may be able to form dominance hierarchies they appear to employ alternate strategies.  相似文献   

9.
[Arg(8)]-vasopressin (Avp), a nonapeptide hormone, is known to regulate blood pressure, water balance, and a variety of behaviors such as anxiety, aggression, and bonding. Although some evidence that Avp modifies ethanol consumption and some of the effects of ethanol on behavior have been reported, the role of Avp in alcohol consumption and preference is poorly understood. The Avp1a receptor (Avpr1a) is ubiquitously expressed in the central nervous system. To determine the role of Avp signaling on the behavioral effects of alcohol, we examined voluntary ethanol consumption in mice with targeted disruptions of the Avpr1a knockout (Avpr1a KO) gene. Avpr1a KO mice displayed both increased ethanol consumption and preference compared with wild-type (WT) mice. Enhanced ethanol consumption was dramatically and reversibly reduced by treatment with N-methyl-D-aspartic acid antagonists. Basal glutamate release was elevated around the striatum in Avpr1a KO mice. Elevation of extracellular glutamate was also produced in WT mice by local application of an Avpr1a antagonist though a dialysis probe, and this elevation was quickly reversed by stopping the perfusion. These results suggest that Avp can inhibit the release of glutamate from the presynaptic terminal via the Avp1a receptor and that elevation of glutamate levels owing to loss of the inhibitory effect via Avp-Avpr1a signaling may play an important role in the preference for ethanol.  相似文献   

10.
Monogamy is a rare strategy among mammals but relatively common among primates. The study of the evolution of monogamy in mammals and primates is lacking empirical studies that assess the relationship between a pair‐living social organization and genetic monogamy. Sexual or genetic monogamy can only be assessed by performing molecular analyses and investigating rates of extra‐pair paternity (EPP). Studying the occurrence of EPP can provide valuable insights into reproductive strategies and their adaptive value. The indri is a pair‐living primate that lives in stable groups. Their social units are composed of the reproductive pair and up to four more individuals, but extra‐pair copulation (EPC) can occur. This raises the question of whether this event may or may not lead to EPP. Here, we investigated whether a pair‐living social organization corresponds to genetic monogamy in indris (Indri indri). We analyzed the paternity of 12 offspring from seven pairs using a set of six microsatellite loci on fecal samples (mean number of alleles 11.7 ± 1.8 (mean ± standard deviation). We found that in 92% of cases the genetic profile of the offspring matched the paired male of the group for all the loci considered. In the only case of paternity mismatch, the paternity assignment remained inconclusive. Our results show that I. indri genetic monogamy is the norm and supports the hypothesis that pair‐living social organization is associated with low EPP rate. Also, our results are in contrast with the hypothesis of infertility as a reason to engage in EPC for this species.  相似文献   

11.
In contrast to the polygynous mating systems typically displayed by most reptilian taxa, long-term genetic monogamy appears to be widespread within a lineage of group-living Australian scincid lizards, the Egernia group. We have recently shown that White's skink, Egernia whitii, lives in small but temporally stable social aggregations. Here, we examine the mating system, spatial organization, and dispersal patterns of E. whitii using behavioural field studies and data from four microsatellite loci. Parentage analysis of E. whitii litters revealed that its mating system is characterized by both polygyny and monogamy. Polygyny was the predominant mating system but within-season social and genetic monogamy was common (36-45% of breeding pairs). The incidence of between-season monogamy in E. whitii was rare compared to that reported for its congeners. Low levels of multiple paternity (12% of litters) and extra-group paternity (16%) were detected. Social groups are generally comprised of closely related individuals, but breeding pairs were not more closely related compared to other potential mates. Spatial autocorrelation analyses revealed significant positive local genetic structure over 50 m, which was consistent for all age-sex classes. There was no clear and consistent evidence for sex-biased dispersal, with assignment tests (mean assignment index) and relatedness analyses suggesting female-biased dispersal, but spatial autocorrelation analyses indicating a trend for male-biased dispersal. We discuss the implication of our results in regard to the factors promoting the evolution of monogamy within the Egernia group.  相似文献   

12.
Mate-choice theory predicts different optimal mating systems depending on resource availability and habitat stability. Regions with limited resources are thought to promote monogamy. We tested predictions of monogamy in a social rodent, the hoary marmot (Marmota caligata), at the northern climatic extreme of its distribution. Mating systems, social structure and genetic relationships were investigated within and among neighbouring colonies of marmots within a 4 km(2) valley near Kluane National Park, Yukon, Canada, using 21 microsatellite loci. While both monogamous and polygynous populations of hoary marmots have been observed in the southern reaches of this species' range; northern populations of this species are thought to be predominantly monogamous. Contrary to previous studies, we did not find northern hoary marmot social groups to be predominantly monogamous; rather, the mating system seemed to be facultative, varying between monogamy and polygyny within, as well as among, social groups. These findings reveal that the mating systems within colonies of this species are more flexible than previously thought, potentially reflecting local variation in resource availability.  相似文献   

13.
Oxytocin (Oxt) and vasopressin (Avp) are important for a wide variety of behaviors and the use of transgenic mice lacking the peptides or their receptors, particularly when their loss is spatially and temporally manipulated, offers an opportunity to closely examine their role in a particular behavior. We used a cued fear conditioning paradigm to examine associative learning in three lines of transgenic mice: mice that constitutively lack vasopressin 1a (Avpr1a(-/-)) or Oxt receptors (Oxtr(-/-)) and mice that have Oxt receptor loss restricted to the forebrain that begins postweaning (Oxtr(FB/FB)). Oxtr(-/-) and Avpr1a(-/-) mice have normal conditioned freezing. Oxtr(FB/FB) mice have a reduction in freezing behavior during acquisition, as well as during context and cue retention. In addition to reduction of Oxtr in the central nucleus of the amygdala, in vitro receptor autoradiography showed that the Oxtr(FB/FB) mice have significantly reduced levels of Avpr1a only in that structure. Our results show that postweaning alteration of the distribution of Oxtr receptors is critically important for fear behavior, an effect mirrored in the neural structures that mediate it. While constitutive knockouts of Oxtr and Avpr1a are useful for identifying the neural underpinnings of some behaviors, compensatory mechanisms within some circuits may obscure other behavioral roles.  相似文献   

14.
Social monogamy, considered rare in mammals, has been described in two species of beaver, the Eurasion beaver (Castor fiber), and the North American beaver (Castor Canadensis). Social monogamy, however, does not necessarily imply genetic monogamy. For example, in group living mammals, females may engage in extra-pair copulations as a result of increased female mate choice opportunities. Recently, following genetic analysis, a wide range of genetic relationships among colony members have been documented in the North American beaver, including extra-pair paternity. Here, we used microsatellite loci to provide parentage estimates from colonies of the Eurasian beaver in the Kirov region, Russia. No evidence for the presence of any extra-pair young was detected. However, in two cases, we found a pair of unrelated males inhabiting a single colony. Our results suggest that while colonies may comprise both related and unrelated individuals, the genetic mating system appears to match that of the previously inferred social monogamy.  相似文献   

15.
Recent literature has revealed the importance of variation in neuropeptide receptor gene sequences in the regulation of behavioral phenotypic variation. Here we focus on polymorphisms in the oxytocin receptor gene (OXTR) and vasopressin receptor gene 1a (Avpr1a) in chimpanzees and bonobos. In humans, a single nucleotide polymorphism (SNP) in the third intron of OXTR (rs53576 SNP (A/G)) is linked with social behavior, with the risk allele (A) carriers showing reduced levels of empathy and prosociality. Bonobos and chimpanzees differ in these same traits, therefore we hypothesized that these differences might be reflected in variation at the rs53576 position. We sequenced a 320 bp region surrounding rs53576 but found no indications of this SNP in the genus Pan. However, we identified previously unreported SNP variation in the chimpanzee OXTR sequence that differs from both humans and bonobos. Humans and bonobos have previously been shown to have a more similar 5′ promoter region of Avpr1a when compared to chimpanzees, who are polymorphic for the deletion of ∼360 bp in this region (+/− DupB) which includes a microsatellite (RS3). RS3 has been linked with variation in levels of social bonding, potentially explaining part of the interspecies behavioral differences found in bonobos, chimpanzees and humans. To date, results for bonobos have been based on small sample sizes. Our results confirmed that there is no DupB deletion in bonobos with a sample size comprising approximately 90% of the captive founder population, whereas in chimpanzees the deletion of DupB had the highest frequency. Because of the higher frequency of DupB alleles in our bonobo population, we suggest that the presence of this microsatellite may partly reflect documented differences in levels of sociability found in bonobos and chimpanzees.  相似文献   

16.
Integrative studies of genetics, neurobiology and behaviour indicate that polymorphism in specific genes contributes to variation observed in some complex social behaviours. The neuropeptide arginine vasopressin plays an important role in the regulation of a variety of social behaviours, including social attachment of males to females, through its action on the vasopressin 1a receptor (V1aR). In socially monogamous prairie voles ( Microtus ochrogaster ), polymorphism in the length of microsatellite DNA within the regulatory region of the gene ( avpr1a ) encoding the V1aR predicts differences among males in neural expression of V1aRs and partner preference under laboratory conditions. However, understanding the extent to which V1aR mediates variation in prairie vole social and reproductive behaviour observed in nature requires investigating the consequences of avpr1a polymorphism and environmental influences under ecologically relevant conditions. We examined the relationship between avpr1a length polymorphism and monogamy among male prairie voles living in 0.1 ha enclosures during a time similar to their natural lifespan. We found no evidence that avpr1a genotype of males predicts variation in social monogamy measured in the field but some indices of social monogamy were affected by population density. Parentage data indicated that a male's avpr1a genotype significantly influenced the number of females with which he sired offspring and the total number of offspring sired. Total brain concentrations of V1aR mRNA were not associated with either male behaviour or avpr1a genotype. These data show that melding ecological field studies with neurogenetics can substantially augment our understanding of the effects of genes and environment on social behaviours.  相似文献   

17.
The importance of genes in regulating phenotypic variation of personality traits in humans and animals is becoming increasingly apparent in recent studies. Here we focus on variation in the vasopressin receptor gene 1a (Avpr1a) and oxytocin receptor gene (OXTR) and their effects on social personality traits in chimpanzees. We combine newly available genetic data on Avpr1a and OXTR allelic variation of 62 captive chimpanzees with individual variation in personality, based on behavioral assessments. Our study provides support for the positive association of the Avpr1a promoter region, in particular the presence of DupB, and sociability in chimpanzees. This complements findings of previous studies on adolescent chimpanzees and studies that assessed personality using questionnaire data. In contrast, no significant associations were found for the single nucleotide polymorphism (SNP) ss1388116472 of the OXTR and any of the personality components. Most importantly, our study provides additional evidence for the regulatory function of the 5′ promoter region of Avpr1a on social behavior and its evolutionary stable effect across species, including rodents, chimpanzees and humans. Although it is generally accepted that complex social behavior is regulated by a combination of genes, the environment and their interaction, our findings highlight the importance of candidate genes with large effects on behavioral variation.  相似文献   

18.
Breeding, male North American sunfish (Centrarchidae), are often brightly coloured and promiscuous. However, the largemouth bass (Micropterus salmoides) is sexually monomorphic in appearance and socially monogamous. Unlike some other nest-tending centrarchids in the genus Lepomis, largemouth bass have also been reported to provide biparental care to eggs and fry. Here we use microsatellite markers in order to test whether social monogamy predicts genetic monogamy in the largemouth bass. Offspring were collected from 26 nests each usually guarded by a pair of adults, many of which were also captured. Twenty-three of these progeny cohorts (88%) proved to be composed almost exclusively of full-sibs and were thus the product of monogamous matings. Cuckoldry by males was rare. The genetic data also revealed that some nests contain juveniles that were not the progeny of the guardian female, a finding that can be thought of as low-level 'female cuckoldry'. Overall, however, the data provide what may be the first genetic documentation of near-monogamy and biparental care in a vertebrate with external fertilization.  相似文献   

19.
《Hormones and behavior》2009,55(5):694-702
The neuropeptide vasopressin and its receptor V1aR are broadly implicated in social behavior and play a central role in several key aspects of male mating tactics in voles. In the prairie vole, a microsatellite in the cis-regulatory region of the gene encoding V1aR (avpr1a) provides a potential genetic basis for individual variation in neural phenotype and behavior; recent studies found that allele length predicts V1aR expression and male social attachment in the laboratory. Here, we explore the relationship between avpr1a microsatellite length, V1aR neural phenotype, and field measures of monogamy and fitness in male prairie voles. We found significant effects of allele length on V1aR expression in structures integral to pairbond formation. These effects did not, however, translate to differences in mating tactics or reproductive success. Together, these data suggest that, while length polymorphism in the avpr1a microsatellite influences neuronal phenotype, this variation does not contribute significantly to male reproductive success and field behavior. We propose that previously reported behavioral effects may be mediated primarily by sequence variation at this locus, for which allele length is an imperfect proxy. By combining genetic, neuronal and ecological approaches, these data provide novel insights into the contribution of genotype to natural diversity in brain and behavior.  相似文献   

20.
The neuropeptide vasopressin and its receptor V1aR are broadly implicated in social behavior and play a central role in several key aspects of male mating tactics in voles. In the prairie vole, a microsatellite in the cis-regulatory region of the gene encoding V1aR (avpr1a) provides a potential genetic basis for individual variation in neural phenotype and behavior; recent studies found that allele length predicts V1aR expression and male social attachment in the laboratory. Here, we explore the relationship between avpr1a microsatellite length, V1aR neural phenotype, and field measures of monogamy and fitness in male prairie voles. We found significant effects of allele length on V1aR expression in structures integral to pairbond formation. These effects did not, however, translate to differences in mating tactics or reproductive success. Together, these data suggest that, while length polymorphism in the avpr1a microsatellite influences neuronal phenotype, this variation does not contribute significantly to male reproductive success and field behavior. We propose that previously reported behavioral effects may be mediated primarily by sequence variation at this locus, for which allele length is an imperfect proxy. By combining genetic, neuronal and ecological approaches, these data provide novel insights into the contribution of genotype to natural diversity in brain and behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号