首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence-specific labeling methods for double-stranded DNA are required for mapping protein binding sites or specific DNA structures on circular DNA molecules by high-resolution imaging techniques such as electron and atomic force microscopies. Site-specific labeling can be achieved by ligating a DNA fragment to a stem-loop-triplex-forming oligonucleotide, thereby forming a topologically linked complex. The superhelicity of the plasmid is not altered and the process can be applied to two different target sites simultaneously, using DNA fragments of different sizes. Observation of the labeled plasmids by electron microscopy revealed that, under conditions where the triple helices were stable, the two labels were located at 339+/-34 bp from one another, in agreement with the distance between the two target sequences for triple helix formation (350 bp). Under conditions where the triple helices were not stable, the short DNA fragments could slide away from their target site. The concomitant attachment of two different stable labels makes it possible, for the first time to our knowledge, to label a circular DNA molecule and obtain information on its direction. In addition to its potential applications as a tool for structural investigations of single DNA molecules and their interactions with proteins, this DNA labeling method may also prove useful in biotechnology and gene therapy.  相似文献   

2.
Padlock oligonucleotides as a tool for labeling superhelical DNA   总被引:2,自引:1,他引:1       下载免费PDF全文
Labeling of a covalently closed circular double-stranded DNA was achieved using a so-called ‘padlock oligonucleotide’. The oligonucleotide was targeted to a sequence which is present in the replication origin of phage f1 and thus in numerous commonly used plasmids. After winding around the double-stranded target DNA sequence by ligand-induced triple helix formation, a biotinylated oligonucleotide was circularized using T4 DNA ligase and in this way became catenated to the plasmid. A gel shift assay was developed to measure the extent of plasmid modification by the padlock oligonucleotide. A similar assay showed that a modified supercoiled plasmid was capable of binding one streptavidin molecule thanks to the biotinylated oligonucleotide and that this binding was quantitative. The catenated complex was visualized by electron and atomic force microscopies using streptavidin conjugates or single strand-binding proteins as protein tags for the padlock oligonucleotide. This method provides a versatile tool for plasmid functionalization which offers new perspectives in the physical study of supercoiled DNA and in the development of improved vectors for gene therapy.  相似文献   

3.
The intramolecular diffusive motion within supercoiled DNA molecules is of central importance for a wide array of gene regulation processes. It has recently been shown, using fluorescence correlation spectroscopy, that plasmid DNA exhibits unexpected acceleration of its internal diffusive motion upon supercoiling to intermediate density. Here, we present an independent study that shows a similar acceleration for fully supercoiled plasmid DNA. We have developed a method that allows fluorescent labeling of a 200-bp region, as well as efficient supercoiling by Escherichia coli gyrase. Compared to plain circular or linear DNA, the submicrosecond motion within the supercoiled molecules appears faster by up to an order of magnitude. The mean-square displacement as a function of time reveals an additional intermediate regime with a lowered scaling exponent compared to that of circular DNA. Although this unexpected behavior is not fully understood, it could be explained by conformational constraints of the DNA strand within the supercoiled topology in combination with an increased apparent persistence length.  相似文献   

4.
The effect of high supercoil densities on the melting characteristics of a supercoiled DNA has been studied. It is found that although the melting temperature increases abruptly on converting a linear DNA merely into the relaxed circular form, it falls back substantially at high supercoil densities. It is further predicted, in such cases, that the number of melted base pairs should be significantly enhanced even at the physiological temperature, which may facilitate the binding of other molecules to the highly supercoiled DNA.  相似文献   

5.
Heterozygous, partial diploid Salmonella typhosa hybrids obtained from matings with Escherichia coli K-12 Hfr strains were observed to contain supercoiled, circular deoxyribonucleic acid (DNA) when examined by the dye-buoyant density method. Examination of one such S. typhosa hybrid after its loss, by segregation, of the inherited E. coli genetic markers revealed a concurrent loss of its supercoiled circular DNA. Subsequent remating of this segregant with various E. coli Hfr strains resulted in the reappearance of the circular DNA. Molecular weight determinations of circular DNA molecules isolated from a number of S. typhosa partial diploid hybrids were made by sucrose density gradient ultracentrifugation and electron microscopy. These studies revealed a range of molecular sizes among the various hybrids examined, but each hybrid exhibited only a single characteristic size for its contained circular DNA. The range of size is consistent with the presence in each hybrid of a different length of E. coli chromosome. It was concluded that the E. coli Hfr genetic segments transferred to these S. typhosa hybrids were conserved, in the diploid state, in the form of supercoiled, circular DNA molecules.  相似文献   

6.
Selective binding of the wild type tumor suppressor protein p53 to negatively and positively supercoiled (sc) DNA was studied using intercalative drugs chloroquine (CQ), ethidium bromide, acridine derivatives and doxorubicin as a modulators of the level of DNA supercoiling. The p53 was found to lose gradually its preferential binding to negatively scDNA with increasing concentrations of intercalators until the DNA negative superhelix turns were relaxed. Formation of positive superhelices (due to further increasing intercalator concentrations) rendered the circular duplex DNA to be preferentially bound by the p53 again. CQ at concentrations modulating the closed circular DNA topology did not prevent the p53 from recognizing a specific target sequence within topologically unconstrained linear DNA. Experiments with DNA topoisomer distributions differing in their superhelix densities revealed the p53 to bind selectively DNA molecules possessing higher number of negative or positive superturns. Possible modes of the p53 binding to the negatively or positively supercoiled DNA and tentative biological consequences are discussed.  相似文献   

7.
8.
RecA protein promotes two distinct types of synaptic structures between circular single strands and duplex DNA; paranemic joints, where true intertwining of paired strands is prohibited and the classically intertwined plectonemic form of heteroduplex DNA. Paranemic joints are less stable than plectonemic joints and are believed to be the precursors for the formation of plectonemic joints. We present evidence that under strand exchange conditions the binding of HU protein, from Escherichia coli, to duplex DNA differentially affects homologous pairing in vitro. This conclusion is based on the observation that the formation of paranemic joint molecules was not affected, whereas the formation of plectonemic joint molecules was inhibited from the start of the reaction. Furthermore, introduction of HU protein into an ongoing reaction stalls further increase in the rate of the reaction. By contrast, binding of HU protein to circular single strands has neither stimulatory nor inhibitory effect. Since the formation of paranemic joint molecules is believed to generate positive supercoiling in the duplex DNA, we have examined the ability of positive superhelical DNA to serve as a template in the formation of paranemic joint molecules. The inert positively supercoiled DNA could be converted into an active substrate, in situ, by the action of wheat germ topoisomerase I. Taken collectively, these results indicate that the structural features of the bacterial chromosome which include DNA supercoiling and organization of DNA into nucleosome-like structures by HU protein modulate homologous pairing promoted by the nucleoprotein filaments of recA protein single-stranded DNA.  相似文献   

9.
Compactization of supercoiled circular plasmid pBR322 caused by interaction with synthetic oligopeptide dansyl hydrazide trivaline capable of beta-structure formation was studied by electron microscopy. The results show that at rising input peptide concentration circular DNA molecules undergo intramolecular structural transition with the formation of compact ring structures. The compact ring structures are formed by the fiber having the thickness of 60 A. The analysis of morphology of intermediate structures and the contour length measurements enable us to conclude that 60 A-fiber contains three lying side-by-side and interwound double-stranded DNA segments. Thus, the compact ring structures are addressed to as triple rings. The triple ring have one special point, where the triple region ends are locked by a duplex DNA segment. The mechanisms responsible for the triple ring formation may be of importance for DNA and chromatin compactization processes in vivo.  相似文献   

10.
Structure-specific binding of the proto-oncogene protein DEK to DNA   总被引:5,自引:1,他引:4       下载免费PDF全文
The ubiquitous proto-oncogene protein DEK has been found to be associated with chromatin during the entire cell cycle. It changes the topology of DNA in chromatin and protein-free DNA through the introduction of positive supercoils. The sequence and structure specificities of DEK–DNA interactions are not completely understood. The binding of DEK to DNA is not sequence specific, but we describe here that DEK has a clear preference for supercoiled and four-way junction DNA. In the presence of topoisomerase II, DEK stimulates intermolecular catenation of circular DNA molecules. DEK also increases the probability of intermolecular ligation of linear DNA molecules by DNA ligase. These binding properties qualify DEK as an architectural protein.  相似文献   

11.
B S Rao  R G Martin 《Journal of virology》1988,62(10):3879-3882
We have studied the early transition of newly replicated, segregated daughter molecules of simian virus 40 (SV40) into their mature, fully supercoiled state. The DNA of SV40 replicating in African green monkey kidney CV1 cells was chronically labeled with [14C]thymidine and pulse-labeled with [3H]thymidine. The cells were lysed and the viral DNA was isolated. Density gradient centrifugation of viral DNA in cesium chloride revealed that the pulse-labeled, newly synthesized, closed circular supercoiled DNA molecules banded at a slightly higher density (delta sigma = 0.0025) than the chronically labeled DNA, suggesting that the newly completed molecules were in a different structural state. Electrophoresis of DNA in agarose gels at appropriate chloroquine concentrations demonstrated that the mobility of the pulse-labeled closed, superhelical DNA was retarded relative to that of the chronically labeled DNA. These observations indicated that the newly completed SV40 DNA molecules existed in a structural state more relaxed than that of mature DNA by one or two linking numbers.  相似文献   

12.
Concatenation of hybridization probe with DNA target is crucial for highly localized detection of targeted sequences and might also be used in various gene-therapy applications. Several approaches based on the attachment of a circular oligonucleotide to designated DNA sites have been proposed. Recently, earring-like probes provide a true topological linkage between a probe and the target, thus allowing the DNA labeling by essentially immobile tags. The latest development in this direction takes advantage of oligonucleotide uptake by supercoiled DNA and is an important step forward.  相似文献   

13.
In chimpanzee hepatitis B virus (HBV) carriers, the mechanism of viral persistence has been examined by analyzing viral DNA molecules in liver and serum. Chimpanzee liver DNA contained two extrachromosomal HBV DNA molecules migrating on hybridization blots at 4.0 kb and 2.3 kb. There was no evidence for integration of HBV DNA into the host genome. The extrachromosomal molecules were distinct from Dane particle DNA and were converted to linear 3.25 kb full-length double-stranded HBV DNA on digestion with Eco RI. Nucleases S1 and Bal 31 converted "2.3 kb" HBV DNA to 3.25 kb via an intermediate of "4.0 kb" apparent length. The HBV DNA molecule that migrated at 2.3 kb represents a supercoiled form I of the HBV genome, and the molecule that migrated at 4.0 kb represents a full-length "nicked," relaxed circular form II. Evidence for supercoiled HBV DNA in serum Dane particles was obtained by production of form II molecules upon digestion with nuclease S1 or Bal 31. It is proposed that most Dane particles represent interfering noninfectious virus containing partially double-stranded DNA circles and that particles containing supercoiled HBV DNA may represent infectious hepatitis B virus.  相似文献   

14.
Interaction of ribavirin with CT-DNA was investigated by emission, absorption, circular dichroism, and viscosity studies to determine the binding mode and binding constant of this drug with DNA. The calculated binding constant, K(b), obtained from UV-vis absorption studies was 4.6 × 10(3) M(-1). In fluorimetric studies, the enthalpy (ΔH<0) and entropy (ΔS>0) of the reaction between ribavirin and CT-DNA showed a hydrophobic interaction. In addition, in the circular dichroism spectrum, the drug induces a B → A structural transition of CT-DNA. These results demonstrate that ribavirin interacts with CT-DNA via the groove binding mode. It was observed that the drug has ability to cleave supercoiled plasmid DNA.  相似文献   

15.
The interaction of supercoiled, circular SV40 DNA with calf thymus histone fractions has been studied. Five- to ten-fold less f1 histone is required to complex a given amount of DNA compared to the other histones. When the supercoiled DNA is converted to either the relaxed circular form, or full length linear molecules, or gragmented linear or denatured stands, the efficiency of complex formation with f1 histone markedly decreases. We conclude that f1 histone has a special ability to interact with supercoiled DNA. This conclusion is supported by the fact that supercoiled circular Col E1 DNA interacts with f1 as efficiently as does SV40 DNA.  相似文献   

16.
Vibrio cholerae strains with the transmissible fertility factor P contained a supercoiled circular deoxyribonucleic acid (DNA) component amounting to between 2 and 6% of the total DNA obtained from the cells. Such a component was not observed in V. cholerae strains lacking the fertility factor. This supercoiled circular DNA was isolated from P(+) cells, and the molecular weight was determined by sedimentation velocity experiments and electron microscopy to be approximately 80 million daltons. These supercoiled circular DNA molecules, which have a guanine plus cytosine (G + C) composition of 42%, were concluded to be the extrachromosomal P factor. It was calculated that there is approximately one copy of the P factor per chromosome. A small amount of supercoiled circular DNA was occasionally isolated from the P(-) strains of V. cholerae. The function of this component, which has a molecular weight of 40 million daltons, is not known. The molecules found in the P(-) strains were readily distinguished from the P(+) circular molecules by their smaller molecular weight and different G + C composition.  相似文献   

17.
Small molecules, like some antibiotics and anticancer agents that bind DNA with high specificity, can represent a relevant alternative as ligands in affinity processes for plasmid DNA (pDNA) purification. In the current study, pDNA binding affinities of berberine, berenil, kanamycin, and neomycin were evaluated by a competitive displacement assay with ethidium bromide using a fluorimetric titration technique. The binding between pDNA and ethidium bromide was tested in different buffer conditions, varying the type and the salt concentration, and was performed in both the absence and presence of the studied compounds. The results showed that the minor groove binder berenil has the higher pDNA binding constant. Chromatographic experiments using a derivatized column with berenil as ligand showed a total retention of pDNA using 1.3 M ammonium sulfate in eluent buffer. A selective separation of supercoiled and open circular isoforms was achieved by further decreasing the salt concentration to 0.6 M and then to 0 M. These results suggest a promising application of berenil as ligand for specific purification of pDNA supercoiled isoform by pseudo-affinity chromatography.  相似文献   

18.
To initiate homologous recombination, sequence similarity between two DNA molecules must be searched for and homology recognized. How the search for and recognition of homology occurs remains unproven. We have examined the influences of DNA topology and the polarity of RecA–single-stranded (ss)DNA filaments on the formation of synaptic complexes promoted by RecA. Using two complementary methods and various ssDNA and duplex DNA molecules as substrates, we demonstrate that topological constraints on a small circular RecA–ssDNA filament prevent it from interwinding with its duplex DNA target at the homologous region. We were unable to detect homologous pairing between a circular RecA–ssDNA filament and its relaxed or supercoiled circular duplex DNA targets. However, the formation of synaptic complexes between an invading linear RecA–ssDNA filament and covalently closed circular duplex DNAs is promoted by supercoiling of the duplex DNA. The results imply that a triplex structure formed by non-Watson–Crick hydrogen bonding is unlikely to be an intermediate in homology searching promoted by RecA. Rather, a model in which RecA-mediated homology searching requires unwinding of the duplex DNA coupled with local strand exchange is the likely mechanism. Furthermore, we show that polarity of the invading RecA–ssDNA does not affect its ability to pair and interwind with its circular target duplex DNA.  相似文献   

19.
Supercoiled DNA is the relevant substrate for a large number of DNA transactions and has additionally been found to be a favorable form for delivering DNA and protein-DNA complexes to cells. We report here a facile method for stoichiometrically incorporating several different modifications at multiple, specific, and widely spaced sites in supercoiled DNA. The method is based upon generating an appropriately gapped circular DNA, starting from single-strand circular DNA from two phagemids with oppositely oriented origins of replication. The gapped circular DNA is annealed with labeled and unlabeled synthetic oligonucleotides to make a multiply nicked circle, which is covalently sealed and supercoiled. The method is efficient, robust and can be readily scaled up to produce large quantities of labeled supercoiled DNA for biochemical and structural studies. We have applied this method to generate dye-labeled supercoiled DNA with heteroduplex bubbles for a Förster resonance energy transfer (FRET) analysis of supercoiled Holliday junction intermediates in the λ integrative recombination reaction. We found that a higher-order structure revealed by FRET in the supercoiled Holliday junction intermediate is preserved in the linear recombination product. We suggest that in addition to studies on recombination complexes, these methods will be generally useful in other reactions and systems involving supercoiled DNA.  相似文献   

20.
Three independently derived antifolate-resistant Leishmania major cell lines overproduce the bifunctional protein thymidylate synthase-dihydrofolate reductase (TS-DHFR) by amplification of a region of DNA (R-region DNA) that contains the gene for TS-DHFR. On orthogonal-field-alteration gel electrophoresis (OFAGE), the extrachromosomal R-region DNAs are circular molecules, and different forms of R-region DNA within these cell lines are resolved. The R-region DNAs migrate aberrantly on OFAGE with respect to linear DNA and supercoiled plasmid standards. We describe a method for the isolation of these R-region DNA forms from OFAGE. By electron microscopy, we show that the extrachromosomal elements are single supercoiled circular DNA molecules, and are predominantly circular monomers and dimers of the original R-region DNA amplification unit. Using OFAGE, an analysis of cloned isolates shows that individual cells may contain multiple forms of R-region DNA. Furthermore, within a given cell line, certain distinguishable forms appear to have the same size and restriction map, suggesting they may be topoisomers. The multiple forms of R-region DNA are in a dynamic state in the antifolate-resistant populations, and the relative amount of DNA in each form as well as the number of forms within each cell line change through time. As currently understood, the generation of amplified R-region DNA in L. major is summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号