首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This research was undertaken to distinguish between local and global unfolding in the reversible thermal denaturation of bovine pancreatic ribonclease A (RNase A). Local unfolding was monitored by steady-state and time-resolved fluorescence of nine mutants in each of which a single tryptophan was substituted for a wild-type residue. Global unfolding was monitored by far-UV circular dichroism and UV absorbance. All the mutants (except F8W and D38W) exhibited high specific enzymatic activity, and their far-UV CD spectra were very close to that of wild-type RNase A, indicating that the tryptophan substitutions did not affect the structure of any of the mutants (excluding K1W and Y92W) under folding conditions at 20 degrees C. Like wild-type RNase A, the various mutants exhibited reversible cooperative thermal unfolding transitions at pH 5, with transition temperatures 2.5-11 degrees C lower than that of the wild-type transition, as detected by far-UV CD or UV absorbance. Even at 80 degrees C, well above the cooperative transition of all the RNase A mutants, a considerable amount of secondary and tertiary structure was maintained. These studies suggest the following two-stage mechanism for the thermal unfolding transition of RNase A as the temperature is increased. First, at temperatures lower than those of the main cooperative transition, long-range interactions within the major hydrophobic core are weakened, e.g., those involving residues Phe-8 (in the N-terminal helix) and Lys-104 and Tyr-115 (in the C-terminal beta-hairpin motif). The structure of the chain-reversal loop (residues 91-95) relaxes in the same temperature range. Second, the subsequent higher-temperature cooperative unfolding transition is associated with a loss of secondary structure and additional changes in the tertiary contacts of the major hydrophobic core, e.g., those involving residues Tyr-73, Tyr-76, and Asp-38 on the other side of the molecule. The hydrophobic interactions of the C-terminal loop of the protein are enhanced by high temperature, and perhaps are responsible for the preservation of the local structural environment of Trp-124 at temperatures slightly above the major cooperative transition. The results shed new light on the thermal unfolding transitions, generally supporting the thermal unfolding hypothesis of Burgess and Scheraga, as modified by Matheson and Scheraga.  相似文献   

2.
Acetimidation of bovine pancreatic ribonuclease A   总被引:6,自引:0,他引:6  
J H Reynolds 《Biochemistry》1968,7(9):3131-3135
  相似文献   

3.
Bovine seminal ribonuclease (BS-RNase) contains the MxM (noncovalent dimer) and M=M (free monomer) in constant ratio. The aim of this work was to evaluate the effect of BS-RNase, its monomer and dimer forms, and also various mutants of this enzyme on meiotic completion in cattle oocytes. It was found that BS-RNase has irreversible effects on the meiotic maturation of bovine oocytes in vitro, particularly on the completion of meiosis. The effect of BS-RNase is dose-dependent. In medium supplemented with 1 microg/ml, the results were comparable with those of the control (70% MII oocytes after 24 hr of culture). Whereas 5 microg/ml reduced the number of MII oocytes to 50%, 10 and 25 microg/ml arrested this process completely. The MxM form and RNase A at 5 microg/ml inhibited the maturation rate by 71 and 48%, respectively, but a less significant effect was observed for the M=M form, or the carboxymethylated monomers MCM31 and MCM32 (21%, 16%, and 42% MII oocytes, respectively, in comparison with control). These data demonstrate that bovine ribonucleases can have variable detrimental effects on the maturation of bovine oocyte. J. Exp. Zool. 287:394-399, 2000.  相似文献   

4.
Affinity chromatography of bovine pancreatic ribonuclease A   总被引:12,自引:0,他引:12  
  相似文献   

5.
6.
Expression of bovine pancreatic ribonuclease A in Escherichia coli   总被引:3,自引:0,他引:3  
A synthetic gene for bovine pancreatic ribonuclease A (RNase A) has been expressed in Escherichia coli as a fusion protein with beta-galactosidase linked by the tetrapeptide Ile-Glu-Gly-Arg. RNase A was cleaved from the fusion using factor Xa, and the resulting product purified and reconstituted. The isolated RNase A was chromatographically, catalytically, and immunologically identical with authentic RNase A. This work argues that the method suggested by Nagai and Thogersen [Nagai, K. & Thogersen, H. C. (1984) Nature (Lond.) 309, 810-812] for releasing fusion proteins is quite general, even when applied to particularly complicated expression problem. The procedure here makes RNase A available for the first time as a model for studying structure-function relationships in proteins using site-directed mutagenesis.  相似文献   

7.
8.
9.
10.
Song MC  Scheraga HA 《FEBS letters》2000,471(2-3):177-181
It has been shown previously that the oxidative folding of bovine pancreatic ribonuclease A proceeds through parallel pathways with two major native-like three-disulfide (3S) intermediates. We show here that, under some conditions, the native disulfide bonds can also be regenerated through disproportionation reactions; in other words, the protein can serve as its own redox reagent. The results also show that disulfide species of the unstructured 3S ensemble have a strong propensity to participate in intermolecular interactions. These interactions are favored at high protein concentration, temperature and pH, and lead to formation of the native structure during disulfide reshuffling in the rate-determining step.  相似文献   

11.
12.
Amide H/2H exchange reveals a mechanism of thrombin activation   总被引:1,自引:0,他引:1  
Koeppe JR  Komives EA 《Biochemistry》2006,45(25):7724-7732
Thrombin is a dual action serine protease in the blood clotting cascade. Similar to other clotting factors, thrombin is mainly present in the blood in a zymogen form, prothrombin. Although the two cleavage events required to activate thrombin are well-known, little is known about why the thrombin precursors are inactive proteases. Although prothrombin is much larger than thrombin, prethrombin-2, which contains all of the same amino acids as thrombin, but has not yet been cleaved between Arg320 and Ile321, remains inactive. Crystal structures of both prethrombin-2 and thrombin are available and show almost no differences in the active site conformations. Slight differences were, however, seen in the loops surrounding the active site, which are larger in thrombin than in most other trypsin-like proteases, and have been shown to be important for substrate specificity. To explore whether the dynamics of the active site loops were different in the various zymogen forms of thrombin, we employed amide H/(2)H exchange experiments to compare the exchange rates of regions of thrombin with the same regions of prothrombin, prethrombin-2, and meizothrombin. Many of the surface loops showed less exchange in the zymogen forms, including the large loop corresponding to anion binding exosite 1. Conversely, the autolysis loop and sodium-binding site exchanged more readily in the zymogen forms. Prothrombin and prethrombin-2 gave nearly identical results while meizothrombin in some regions more closely resembled active thrombin. Thus, cleavage of the Arg320-Ile321 peptide bond is the key to formation of the active enzyme, which involves increased dynamics of the substrate-binding loops and decreased dynamics of the catalytic site.  相似文献   

13.
Bovine pancreatic ribonuclease A loses almost completely its activity in 2-3 M guanidine, whereas only very slight conformational changes can be detected when following its unfolding by changes in its intrinsic fluorescence at 305 nm and ultraviolet absorbance at 287 nm. Reactivation on diluting out the denaturant is a time-dependent process, indicating that the inactivation is not due to inhibition by a reversible association of the enzyme with guanidine. The kinetic method of following the substrate reaction, in the presence of the denaturant previously proposed for use in the study of rapid inactivation reactions (Tian, W.X. and Tsou, C.-L. (1982) Biochemistry 21, 1028-1032), is applied to examine the inactivation rates of this enzyme during guanidine denaturation, and these have been compared with the unfolding rates as followed by fluorescence and absorbance changes. It is shown that during the unfolding of this enzyme in guanidine, the inactivation of the enzyme occurs within the dead time of mixing in a stopped-flow apparatus and is at least several orders of magnitude faster than the unfolding reaction as detected by the optical parameters. It appears that, as in the case of creatine kinase reported previously, the active site of a small enzyme stabilized by multiple disulfide linkages, such as ribonuclease A, is also situated in a region which is much more liable to being perturbed by denaturants than is the molecule as a whole.  相似文献   

14.
The chemical modification of bovine pancreatic ribonuclease A by 6-chloropurine riboside was studied to obtain information about the role of the purine nucleoside moiety of the ribonucleic acid in the enzyme-substrate interaction. The residues involved in the reaction were identified, after performic acid oxidation and trypsin digestion, by reverse-phase HPLC peptide mapping. The labeled peptides were detected by following the absorbance at 254 nm, and amino acid analyses of these peptides showed that the reaction had taken place with the amino groups of Lys-1, -37, -41, and -91. The specificity of the reaction was unaffected by changing the ligand:protein molar ratio. Partial separation of the reaction products was accomplished by means of chromatography on CM-Sepharose: four labeled fractions corresponding to mono- and bisubstituted derivatives were found. One of the monosubstituted fractions (fraction E) contained a homogeneous protein with the nucleoside bound to the alpha-amino group of Lys-1 whereas the other (fraction D) was a mixture of derivatives labeled in the epsilon-amino group of Lys-1, -37, -41, and -91. Kinetic studies of these two monosubstituted fractions were performed with cytidine 2',3'-phosphate and ribonucleic acid as substrates. These derivatives showed a noncompetitive inhibition-like behavior with respect to RNase A. Results support the existence of several RNase A regions with affinity for purine nucleosides.  相似文献   

15.
The aromatic region of the NMR spectrum of bovine pancreatic ribonuclease A was analyzed in order to clarify the nature of the microenvironments surrounding the individual histidine, tyrosine, and phenylalanine residues and the interactions with inhibitors. The NMR titration curves of ring protons of six tyrosine and three phenylalanine residues as well as four histidine residues were determined at 37 degrees C between pH 1.5 and pH 11.5 under various conditions. The titration curves were analyzed on the basis of a scheme of a simple proton dissociation sequence and the most probable values were obtained for the macroscopic pK values and intrinsic chemical shifts. The microenvironments surrounding the residues and the effects of inhibitors are discussed on the basis of these results. Based on the titration curves of ring protons, the six tyrosine residues were classified into the following four groups: (1) titratable and different chemical shifts for C(delta) and C(epsilon) protons (two tyrosine residues), (2) titratable but similar chemical shifts for C(delta) and C(epsilon) protons (two tyrosine residues), (3) not titratable and different chemical shifts for C(delta) and C(epsilon) protons (one tyrosine residues), and (4) not titratable and similar chemical shifts for C(delta) and C(epsilon) protons (one tyrosine residue). The resonance signals of ring protons were tentatively assigned to tyrosine and phenylalanine residues. The NMR titration curves of His-48 ring protons were continuous in solution containing 0.2 M sodium acetate but were discontinuous in solution containing 0.3 M NaCl because the NMR signals disappeared at pH values between 5 and 6.5. The effects of addition of formate, acetate, propionate, and ethanol were investigated in order to elucidate the mechanism of the continuity of the titration curves of His-48 in the presence of acetate ion. The NMR signal of His-48 C(2) protons was observed at pH 6 in the presence of acetate and propionate ions but was not observed in the presence of formate ion or ethanol. This indicated that both the alkyl chain and the anionic carboxylate group are necessary for the continuity of the titration curves of His-48 ring protons. Based on the results, the mechanism of the effects of acetate ion is discussed.  相似文献   

16.
17.
18.
CD spectra of bovine pancreatic ribonuclease A (RNase A) and its subtilisin-modified form (RNase S) have been calculated, based upon high-resolution structures from x-ray diffraction. All known transitions in the peptide and side-chain groups, especially the aromatic and disulfide groups, have been included. Calculations have been performed with both the matrix method and with first-order perturbation theory. A newly developed method for treating the electrostatic interactions among transition charge densities and between static charge distributions and transition charge densities is used. The effects of local electrostatic fields upon the group transition energies are included for all transitions. Rotational strengths generated by the matrix method were combined with Gaussian band shapes to generate theoretical CD spectra. The calculated spectra reproduce the signs and approximate magnitudes of the near-uv CD bands of both RNase A and S. Agreement is most satisfactory for the negative 275 nm band, dominated by tyrosine contributions. In agreement with two previous studies by other workers, coupling between Tyr 73 and Tyr 115 is the single most important factor in this band. The positive band observed near 240 nm is dominated by disulfide contributions, according to our results. The far-uv CD spectrum is poorly reproduced by the calculations. The observed 208 nm band, characteristic of α-helices, is absent from the calculated spectrum, probably because the helices in RNase are short. A strong positive couplet centered near 190 nm is predicted but not observed. Possible reasons for these incorrect predictions of the current theoretical model in the far-uv are discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
20.
A fully active semisynthetic ribonuclease, RNase 1-118:111-124, may be prepared by enzymatically removing six residues from the COOH terminus of the protein (positions 119-124) and then complementing the inactive RNase 1-118 with a chemically synthesized peptide containing the COOH-terminal 14 residues of the molecule (RNase 111-124) [M. C. Lin, B. Gutte, S. Moore, and R. B. Merrifield (1970) J. Biol. Chem. 245, 5169-5170]. Nitration of tyrosine-115 in the peptide followed by complex formation with RNase 1-118 affords a fully active enzyme containing a unique nitrotyrosine residue in a position which is known and which is very likely to be completely exterior to the active site region. The binding constant between the tetradecapeptide and RNase 1-118 (5 X 10(6) M-1 at pH 6.0) is not changed by the nitration. Crystals of the nitrated complex are isomorphous with those of RNase 1-118:111-124, for which a refined 1.8-A structure has recently been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号