首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of gentamicin on glucose production in isolated rabbit renal tubules was studied with lactate, propionate, malate, 2-oxoglutarate, and succinate as substrates. This antibiotic at 5 mM concentration inhibited gluconeogenesis from lactate by about 60% and that from either pyruvate or propionate by about 30%. In contrast, it did not alter the rate of glucose formation from other substrates studied. The rate of gluconeogenesis was higher at 1 mM propionate than at increasing concentrations of this substrate and was stimulated in the presence of 1 mM carnitine. However, the addition of carnitine did not affect the degree of inhibition of glucose formation by gentamicin. Since the mitochondrial free coenzyme A level was significantly lower in the presence of 10 than 1 mM propionate and increased on the addition of carnitine to the reaction medium, the inhibitory effect of propionate concentrations above 1 mM on gluconeogenesis in rabbit renal tubules may be due to a depletion of the free mitochondrial coenzyme A level, resulting in an inhibition of the mitochondrial coenzyme A-dependent reactions. In intact rabbit kidney cortex mitochondria incubated in State 4 as well as in Triton X-100-treated mitochondria, 5 mM gentamicin inhibited by about 30-40% the incorporation of 14CO2 into both pyruvate and propionate. The results indicate that the inhibitory effect of gentamicin on glucose formation in isolated kidney tubules incubated with lactate, pyruvate, or propionate is likely due to a decrease of the rate of carboxylation reactions.  相似文献   

2.
The regulation of gluconeogenesis from alpha-ketoisovalerate and propionate was investigated in perfused livers from fasted rats. With alpha-ketoisovalerate as the gluconeogenic precursor, infusion of beta-hydroxybutyrate and acetate stimulated the rate of alpha-ketoisovalerate decarboxylation, but inhibited the rate of glucose production. Oleate, on the other hand, inhibited both alpha-ketoisovalerate decarboxylation and glucose production. When propionate was the primary gluconeogenic substrate, oleate, beta-hydroxybutyrate, and acetate infusion did not significantly alter hepatic glucose production. The present studies suggest that gluconeogenesis from alpha-ketoisovalerate is regulated at the level of various dehydrogenases prior to formation of propionyl-CoA, but subsequent to the branched-chain alpha-keto acid dehydrogenase reaction.  相似文献   

3.
Propionate and pyruvate added to isolated normal and biotin-deficient adult rat hepatocytes increase the production of glucose. This production decreases about 30% on biotin deficiency. Malonate inhibits gluconeogenesis from propionate showing the metabolic transformation of propionyl-CoA via the Krebs cycle. Neither glucagon nor dibutyryl-cyclic AMP significantly stimulate gluconeogenesis.  相似文献   

4.
1. Extracts from Moraxella lwoffi oxidize propionate, but at a low rate when compared with whole cells. 2. This oxidative activity requires the formation of propionyl-CoA. 3. Enzymes catalysing the formation of propionyl phosphate and propionyl-CoA are present. The presence of a propionyl-CoA hydrolase is considered to be an artifact, but partly responsible for the low rates of oxidation. 4. Enzymes catalysing the reduction of NAD(+) and the formation of pyruvate with propionyl-CoA as substrate are also present. 5. That the only pathway for the metabolism of propionate in extracts is a direct one to acetate via pyruvate was confirmed by the use of (14)C-labelled materials. 6. A possible sequence of enzyme-catalysed reactions that will account for the experimental observations is described.  相似文献   

5.
α-Ketobutyrate, an intermediate in the catabolism of threonine and methionine, is metabolized to CO2 and propionyl-CoA. Recent studies have suggested that propionyl-CoA may interfere with normal hepatic oxidative metabolism. Based on these observations, the present study examined the effect of α-ketobutyrate on palmitic acid and pyruvate metabolism in hepatocytes isolated from fed rats. α-Ketobutyrate (10 mM) inhibited the oxidation of palmitic acid by 34%. In the presence of 10 mM carnitine, the inhibition of palmitic acid oxidation by α-ketobutyrate was reduced to 21%. These observations are similar to those previously reported using propionate as an inhibitor of fatty acid oxidation, suggesting that propionyl-CoA may be responsible for the inhibition. α-Ketobutyrate (10 mM) inhibited 14CO2 generation from [14C]pyruvate by more than 75%. This inhibition was quantitatively larger than seen with equal concentrations of propionate. Carnitine (10 mM) had no effect on the inhibition of pyruvate oxidation by α-ketobutyrate despite the generation of large amounts of propionylcarnitine during the incubation. α-Ketobutyate inhibited [14C]glucose formation from [14C]pyruvate by more than 60%. This contrasted to a 30% inhibition caused by propionate. These results suggest that α-ketobutyrate inhibits hepatic pyruvate metabolism by a mechanism independent of propionyl-CoA formation. The present study demonstrates that tissue accumulation of α-ketobutyrate may lead to disruption of normal cellular metabolism. Additionally, the production of propionyl-CoA from α-ketobutyrate is associated with increased generation of propionylcarnitine. These observations provide further evidence that organic acid accumulation associated with a number of disease states may result in interference with normal hepatic metabolism and increased carnitine requirements.  相似文献   

6.
The rates of glucose production from various substrates entering gluconeogenesis at different steps were investigated in hepatocytes isolated from term-fetus and newborn rabbits fasted during the first 2 days of life. The data were compared to the rate of glucose production measured in hepatocytes from young rabbits (50-60 days) starved for 48 h. The net production of glucose from substrates (lactate, pyruvate, propionate, alanine) entering gluconeogenesis below phosphoenolpyruvate was very low at birth and increased during the first day of life, in relation with an increased cytosolic phosphoenolpyruvate carboxykinase activity. The net production of glucose from precursors entering gluconeogenesis at the level of triose phosphates (dihydroxyacetone, fructose) was low at birth but a maximal capacity for gluconeogenesis was reached within 6 h after birth. This enhanced gluconeogenic capacity was associated with a fall in hepatic fructose 2,6-bisphosphate concentration and a reduced glycolytic flux. In contrast, a high glucose production from galactose was already present at birth and did not rise at 24 or 48 h after delivery. These results suggest that the development of gluconeogenic capacity in hepatocytes isolated from newborn rabbit is dependent upon two factors, a decrease in the F2,6-P2 concentration which reduces the glycolytic flux and an increase in the activity of cytosolic phosphoenolpyruvate carboxykinase.  相似文献   

7.
1. The rate and stability to aging of the metabolism of propionate by sheep-liver slices and sucrose homogenates were examined. Aging for up to 20min. at 37° in the absence of added substrate had little effect with slices, whole homogenates or homogenates without the nuclear fraction. 2. Metabolism of propionate by sucrose homogenates was confined to the mitochondrial fraction, but the mitochondrial supernatant (microsomes plus cell sap) stimulated propionate removal. 3. The rate of propionate metabolism by liver slices was higher in a high potassium phosphate–bicarbonate medium [0·88(±s.e.m. 0·16)μmole/mg. of N/hr.] than in Krebs–Ringer bicarbonate medium [0·44(±s.e.m. 0·13)μmole/mg. of N/hr.]. 4. Metabolism of propionate by sucrose homogenates freed from nuclei was dependent on the presence of oxygen, carbon dioxide and ATP. Propionate removal was stimulated 250% by Mg2+ ions and 670% by cytochrome c. 5. In the complete medium 2·39(±s.e.m. 0·15)μmoles of propionate were consumed/mg. of N/hr. 6. The ratio of oxygen consumption to propionate utilization was sufficient to account for the complete oxidation of half the propionate consumed. 7. The only products detected under these conditions were succinate, fumarate and malate. Propionate had no effect on the production of lactate from endogenous sources and did not itself give rise to lactate. 8. Methylmalonate did not accumulate when propionate was metabolized and was not oxidized. It was detected as an intermediate in the conversion of propionyl-CoA into succinate. The rate of this reaction sequence was adequate to account for the rate of propionate metabolism by sucrose homogenates or slices, provided that the rate of formation of propionyl-CoA was not limiting. 9. The methylmalonate pathway was predominantly a mitochondrial function. 10. The metabolism of propionate appeared to be dependent on active oxidative phosphorylation.  相似文献   

8.
1. The regulatory effects that adenine nucleotides are known to exert on enzymes of glycolysis and gluconeogenesis were demonstrated to operate in kidney-cortex slices and in the isolated perfused rat kidney by the addition of exogenous ATP, ADP and AMP to the incubation or perfusion media. 2. Both preparations rapidly converted added ATP into ADP and AMP, and ADP into AMP; added AMP was rapidly dephosphorylated. AMP formed from ATP was dephosphorylated at a lower rate than was added AMP, especially when the initial ATP concentration was high (10mm). Deamination of added AMP occurred more slowly than dephosphorylation of AMP. 3. Gluconeogenesis from lactate or propionate by rat kidney-cortex slices, and from lactate by the isolated perfused rat kidney, was inhibited by the addition of adenine nucleotides to the incubation or perfusion media. In contrast, oxygen consumption and the utilization of propionate or lactate by slices were not significantly affected by added ATP or AMP. 4. The extent and rapidity of onset of the inhibition of renal gluconeogenesis were proportional to the AMP concentration in the medium and the tissue, and were not due to the production of acid or P(i) or the formation of complexes with Mg(2+) ions. 5. Glucose uptake by kidney-cortex slices was stimulated 30-50% by added ATP, but the extra glucose removed was not oxidized to carbon dioxide and did not all appear as lactate. Glucose uptake, but not lactate production, by the isolated perfused kidney was also stimulated by the addition of ATP or AMP. 6. In the presence of either glucose or lactate, ATP and AMP greatly increased the concentrations of C(3) phosphorylated intermediates and fructose 1,6-diphosphate in the kidney. There was a simultaneous rise in the concentration of malate and fall in the concentration of alpha-oxoglutarate. 7. The effects of added adenine nucleotides on renal carbohydrate metabolism seem to be mainly due to an increased concentration of intracellular AMP, which inhibits fructose diphosphatase and deinhibits phosphofructokinase. This conclusion is supported by the accumulation of intermediates of the glycolytic pathway between fructose diphosphate and pyruvate. 8. ATP or ADP (10mm) added to the medium perfusing an isolated rat kidney temporarily increased the renal vascular resistance, greatly diminishing the flow rate of perfusion medium for a period of several minutes.  相似文献   

9.
Synthesis of phosphoenolpyruvate from propionate in sheep liver   总被引:2,自引:2,他引:0       下载免费PDF全文
1. Utilization of propionate by sheep liver mitochondria was stimulated equally by pyruvate or alpha-oxoglutarate, with formation predominantly of malate. Pyruvate increased conversion of propionate carbon into citrate, whereas alpha-oxoglutarate increased formation of phosphoenolpyruvate. The fraction of metabolized propionate converted into phosphoenolpyruvate was about 17% in the presence or absence of alpha-oxoglutarate and about 7% in the presence of pyruvate. Pyruvate consumption was inhibited by 80% by 5mm-propionate. 2. Compared with rat liver, sheep liver was characterized by very high activities of phosphoenolpyruvate carboxykinase and moderately high activities of aconitase in the mitochondria and by low activities of ;malic' enzyme, pyruvate kinase and lactate dehydrogenase in the cytosol. Activities of phosphoenolpyruvate carboxy-kinase were similar in liver cytosol from rats and sheep. Activities of malate dehydrogenase and NADP-linked isocitrate dehydrogenase in sheep liver were about half those in rat liver. 3. The phosphate-dicarboxylate antiport was active in sheep liver mitochondria, but compared with rat liver mitochondria the citrate-malate antiport showed only low activity and mitochondrial aconitase was relatively inaccessible to external citrate. The rate of swelling of mitochondria induced by phosphate in solutions of ammonium malate was inversely related to the concentration of malate. 4. The results are discussed in relation to gluconeogenesis from propionate in sheep liver. It is proposed that propionate is converted into malate by the mitochondria and the malate is converted into phosphoenolpyruvate by enzymes in the cytosol. In this way sufficient NADH would be generated in the cytosol to convert the phosphoenolpyruvate into glucose.  相似文献   

10.
Mechanisms of growth inhibition by propionate on the growth of Rhodopseudomonas sphaeroides were studied. Partially purified pyruvate dehydrogenase complex (PDC) from R. sphaeroides was inhibited by propionyl-CoA, one of the metabolic intermediates of propionate, while propionate itself did not inhibit the enzyme. This suggests that the inhibitor of the growth in vivo is not propionate but propionyl-CoA. The inhibition by propionyl-CoA was competitive with respect to coenzyme A concentration. The K1 value for propionyl-CoA was 0.84 mM. Addition of NaHCO3, which restored the growth of this bacterium in the presence of propionate, increased the rate of propionate incorporation by 1.7-fold and decreased the intracellular level of propionyl-CoA by half. These findings suggest that HCO3-ion lowers the level of propionyl-CoA by accelerating its carboxylation reaction, which is catalyzed by propionyl-CoA carboxylase. Effects of NaHCO3 and acetate on the growth restoration were also studied by the use of propionyl-CoA carboxylase-deficient mutants. NaHCO3 did not restore the growth of the mutants, indicating an essential role of propionyl-CoA carboxylase on the restoration of growth by NaHCO3 as suggested above. Addition of acetate restores the growth of the mutants in the presence of propionate. Acetate probably restores the growth by supplying acetyl-CoA.  相似文献   

11.
12.
Biochemical aspects of bovine ketosis   总被引:11,自引:10,他引:1       下载免费PDF全文
1. The concentrations of acetoacetate, β-hydroxybutyrate and metabolites related to gluconeogenesis were determined in biopsy samples of the livers of ketotic, normal lactating and normal non-lactating cows. Key enzymes of gluconeogenesis in the liver were also assayed. 2. Significant decreases were found in the ketotic liver in the concentrations of glucogenic amino acids (glutamate, glutamine, alanine) and of glucogenic oxo acids (α-oxoglutarate, pyruvate, oxaloacetate). 3. The β-hydroxybutyrate/acetoacetate concentration ratios were generally much higher than in rat liver. 4. The concentration of total fat was sevenfold higher in the ketotic liver, and that of glucose plus glycogen fourfold lower than in normal liver. 5. The blood of ketotic cows showed a marked rise in the concentration of free fatty acids. 6. The activities of pyruvate carboxylase, propionyl-CoA carboxylase, phosphopyruvate carboxylase and fructose 1,6-diphosphatase showed no clear-cut differences between normal and ketotic animals. 7. Glucose injection promptly relieved the ketotic condition with respect to both the clinical and biochemical signs. The fall in the concentrations of the ketone bodies in the blood was preceded by a fall in the concentrations of free fatty acids and glycerol. 8. The findings are taken to be consistent with the concept that an increased rate of gluconeogenesis, causing a decrease in the concentration of oxaloacetate, is a major causal factor in ketogenesis.  相似文献   

13.
Methylcitrate synthase is a key enzyme of the methylcitrate cycle and required for fungal propionate degradation. Propionate not only serves as a carbon source, but also acts as a food preservative (E280-283) and possesses a negative effect on polyketide synthesis. To investigate propionate metabolism from the opportunistic human pathogenic fungus Aspergillus fumigatus, methylcitrate synthase was purified to homogeneity and characterized. The purified enzyme displayed both, citrate and methylcitrate synthase activity and showed similar characteristics to the corresponding enzyme from Aspergillus nidulans. The coding region of the A. fumigatus enzyme was identified and a deletion strain was constructed for phenotypic analysis. The deletion resulted in an inability to grow on propionate as the sole carbon source. A strong reduction of growth rate and spore colour formation on media containing both, glucose and propionate was observed, which was coincident with an accumulation of propionyl-CoA. Similarly, the use of valine, isoleucine and methionine as nitrogen sources, which yield propionyl-CoA upon degradation, inhibited growth and polyketide production. These effects are due to a direct inhibition of the pyruvate dehydrogenase complex and blockage of polyketide synthesis by propionyl-CoA. The surface of conidia was studied by electron scanning microscopy and revealed a correlation between spore colour and ornamentation of the conidial surface. In addition, a methylcitrate synthase deletion led to an attenuation of virulence, when tested in an insect infection model and attenuation was even more pronounced, when whitish conidia from glucose/propionate medium were applied. Therefore, an impact of methylcitrate synthase in the infection process is discussed.  相似文献   

14.
Isolated rat renal tubules from glucose from pyruvate, malate, glycerol and α-ketoglutarate. The rate of glucose formation from all but glycerol is enhanced by an increase in Ca2+ concentration. Because changes in inorganic phosphate concentrations influence the uptake and retention of calcium by isolated cells, the effect of changes in phosphate concentration upon renal gluconeogenesis was examined. It was found that changing phosphate concentration altered the metabolism of isolated rat renal tubules in three ways which dependend upon the Ca2+ concentration. In the absence of Ca2+, increasing phosphate concentration from 0.07 to 1.2 mM led to a stimulation of the decarboxylation of [U-14C]malate, [1-14C]pyruvate, [2-14C]-pyruvate, α-keto[5-14C]glutarate and [1,3-14C2]glycerol, and to an increase in ATP concentration but had no effect upon the rate of glucose formation from malate, pyruvate, α-ketoglutarate but a slight stimulation of glucose production from glycerol. A further increase in phosphate above 1.2 mM had no effect on any of these parameters. In the presence of either low (0.2 mM) or high (2.0 mM) Ca2+, changing phosphate concentration had no effect upon the decarboxylation of any of these substrates except glycerol whose decarboxylation was stimulated by increasing medium phosphate concentration. In the presence of calcium, increasing phosphate concentration led to an inhibition of glucose formation from malate, pyruvate and α-ketoglutarate but not from glycerol. Also in the presence of calcium both parathyroid hormone and cyclic AMP stimulated glucose formation, and under these conditions increasing phosphate concentration led to an inhibition of glucose formation. In tubules treated with parathyroid hormone an increase in phosphate concentration from 0.07 to 6.0 mM led to a significant increase in cyclic AMP concentration even though the rate of glucose formation decreased.Analysis of metabolite concentrations and rates of substrates decarboxylations, under a variety of conditions, revealed that Pi altered renal gluconeogenesis at a site different from those controlled by changes in Ca2+ concentration. The Pi-control site was tentatively identified as the glyceraldehyde phosphate dehydrogenase-glycerate kinase reaction sequence. However, the effect of changing Pi concentration upon parathyroid hormone-induced alterations in cyclic AMP concentration could not be explained by this action of Pi, and was probably due to an effect of Pi upon cellular calcium distribution. Thus, changes in Pi concentration appear to have two cellular effects, only one of which is related to a change in cellular calcium metabolism.  相似文献   

15.
1. Expressions are derived for the steady-state measurement of the quantitative contribution of the liver-type pentose phosphate cycle to glucose metabolism by tissues. One method requires the metabolism of [5-14C]glucose followed by the isolation and degradation of glucose 6-phosphate. The second procedure involves the metabolism of [2-14C]glucose and the isolation and degradation of a triose phosphate derivative, usually lactate or glycerol. 2. Measurements of 14C in C-2 and C-5 of glucose 6-phosphate are required and the values of the C-2/C-5 ratios can be used to calculate the quantitative contribution of the L-type pentose cycle in all tissues. 3. The measurement of 14C in C-1, C-2 and C-3 of triose phosphate derivatives can be used to calculate the quantitative contribution of the L-type pentose cycle relative to glycolysis. 4. The effect of transaldolase and transketolase exchange reactions, reactions of gluconeogenesis and non-oxidative formation of pentose 5-phosphate, isotopic equilibration of triose phosphate pools and isotopic equilibration of fructose 6-phosphate and glucose 6-phosphate, which could interfere with a clear interpretation of the data using [2-14C]- and [5-14C]glucose are discussed.  相似文献   

16.
The propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica catalyzes the first step of propionate catabolism, i.e., the activation of propionate to propionyl-CoA. The PrpE enzyme was purified, and its kinetic properties were determined. Evidence is presented that the conversion of propionate to propionyl-CoA proceeds via a propionyl-AMP intermediate. Kinetic experiments demonstrated that propionate was the preferred acyl substrate (kcat/Km = 1644 mM(-1) x s(-1)). Adenosine 5'-propyl phosphate was a potent inhibitor of the enzyme, and inhibition kinetics identified a Bi Uni Uni Bi Ping Pong mechanism for the reaction catalyzed by the PrpE enzyme. Site-directed mutagenesis was used to change the primary sequence of the wild-type protein at positions G245A, P247A, K248A, K248E, G249A, K592A, and K592E. Mutant PrpE proteins were purified, and the effects of the mutations on enzyme activity were investigated. Both PrpEK592 mutant proteins (K592A and K592E) failed to convert propionate to propionyl-CoA, and plasmids containing these alleles of prpE failed to restore growth on propionate of S. enterica carrying null prpE alleles on their chromosome. Both PrpEK592 mutant proteins converted propionyl-AMP to propionyl-CoA, suggesting residue K592 played no discernible role in thioester bond formation. To the best of our knowledge, these mutant proteins are the first acyl-CoA synthetases reported that are defective in adenylation activity.  相似文献   

17.
The administration in vivo of the cobalamin analogue hydroxycobalamin[c-lactam] inhibits hepatic L-methylmalonyl-CoA mutase activity. The current studies characterize in vivo and in vitro the hydroxycobalamin[c-lactam]-treated rat as a model of disordered propionate and methylmalonic acid metabolism. Treatment of rats with hydroxycobalamin[c-lactam] (2 micrograms/h by osmotic minipump) increased urinary methylmalonic acid excretion from 0.55 mumol/day to 390 mumol/day after 2 weeks. Hydroxycobalamin[c-lactam] treatment was associated with increased urinary propionylcarnitine excretion and increased short-chain acylcarnitine concentrations in plasma and liver. Hepatocytes isolated from cobalamin-analogue-treated rats metabolized propionate (1.0 mM) to CO2 and glucose at rates which were only 18% and 1% respectively of those observed in hepatocytes from control (saline-treated) rats. In contrast, rates of pyruvate and palmitate oxidation were higher than control in hepatocytes from the hydroxycobalamin[c-lactam]-treated rats. In hepatocytes from hydroxycobalamin[c-lactam]-treated rats, propionylcarnitine was the dominant product generated from propionate when carnitine (10 mM) was present. The addition of carnitine thus resulted in a 4-fold increase in total propionate utilization under these conditions. Hepatocytes from hydroxycobalamin[c-lactam]-treated rats were more sensitive than control hepatocytes to inhibition of palmitate oxidation by propionate. This inhibition of palmitate oxidation was partially reversed by addition of carnitine. Thus hydroxycobalamin[c-lactam] treatment in vivo rapidly causes a severe defect in propionate metabolism. The consequences of this metabolic defect in vivo and in vitro are those predicted on the basis of propionyl-CoA and methylmalonyl-CoA accumulation. The cobalamin-analogue-treated rat provides a useful model for studying metabolism under conditions of a metabolic defect causing acyl-CoA accretion.  相似文献   

18.
19.
Propionate is used to protect bread and animal feed from moulds. The mode of action of this short-chain fatty acid was studied using Aspergillus nidulans as a model organism. The filamentous fungus is able to grow slowly on propionate, which is oxidized to acetyl-CoA via propionyl-CoA, methylcitrate and pyruvate. Propionate inhibits growth of A. nidulans on glucose but not on acetate; the latter was shown to inhibit propionate oxidation. When grown on glucose a methylcitrate synthase deletion mutant is much more sensitive towards the presence of propionate in the medium as compared to the wild-type and accumulates 10-fold higher levels of propionyl-CoA, which inhibits CoA-dependent enzymes such as pyruvate dehydrogenase, succinyl-CoA synthetase and ATP citrate lyase. The most important inhibition is that of pyruvate dehydrogenase, as this affects glucose and propionate metabolism directly. In contrast, the blocked succinyl-CoA synthetase can be circumvented by a succinyl-CoA:acetate/propionate CoA-transferase, whereas ATP citrate lyase is required only for biosynthetic purposes. In addition, data are presented that correlate inhibition of fungal polyketide synthesis by propionyl-CoA with the accumulation of this CoA-derivative. A possible toxicity of propionyl-CoA for humans in diseases such as propionic acidaemia and methylmalonic aciduria is also discussed.  相似文献   

20.
Experiments with 14C labelled propionyl-CoA, methylmalonyl-CoA and succinyl-CoA showed that these compounds are intermediates of propionate synthesis in fermentative metabolism of Rhodospirillum rubrum. The rate of propionate and succinate production is dependent on the CO2 concentration of the medium. There is, however, no evidence for a transcarboxylation, and high concentrations of propionate in the medium did not inhibit propionate synthesis as in the case in propionibacteria. PEP-carboxykinase (EC 4.1.1.32) and propionyl-CoA-carboxylase (EC 6.4.1.3) showed high activities, whereas the other two PEP-carboxylases (EC 4.1.1.31, EC 4.1.1.38), and the pyruvate-carboxylase (EC 4.1.1.1.) showed only very low activity. It is probable that in pyruvate fermentation metabolism of R. rubrum no specific enzymes are activated for propionate formation and all enzymes are still present from aerobic or phototrophic preculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号